Journal articles on the topic 'Antimicrobial peptide resistance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antimicrobial peptide resistance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Browne, Katrina, Sudip Chakraborty, Renxun Chen, Mark DP Willcox, David StClair Black, William R. Walsh, and Naresh Kumar. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (September 24, 2020): 7047. http://dx.doi.org/10.3390/ijms21197047.
Full textJung, Sook-In, Jonathan S. Finkel, Norma V. Solis, Siyang Chaili, Aaron P. Mitchell, Michael R. Yeaman, and Scott G. Filler. "Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans." Eukaryotic Cell 12, no. 3 (January 11, 2013): 411–19. http://dx.doi.org/10.1128/ec.00285-12.
Full textBachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, Natalia I. Chalmers, Michal Gabai-Gutner, Amram Mor, Michael Friedman, and Doron Steinberg. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (December 17, 2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.
Full textFernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (June 14, 2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.
Full textBechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (November 25, 2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.
Full textGank, Kimberly D., Michael R. Yeaman, Satoshi Kojima, Nannette Y. Yount, Hyunsook Park, John E. Edwards, Scott G. Filler, and Yue Fu. "SSD1 Is Integral to Host Defense Peptide Resistance in Candida albicans." Eukaryotic Cell 7, no. 8 (May 30, 2008): 1318–27. http://dx.doi.org/10.1128/ec.00402-07.
Full textChu, Hung-Lun, Hui-Yuan Yu, Bak-Sau Yip, Ya-Han Chih, Chong-Wen Liang, Hsi-Tsung Cheng, and Jya-Wei Cheng. "Boosting Salt Resistance of Short Antimicrobial Peptides." Antimicrobial Agents and Chemotherapy 57, no. 8 (May 28, 2013): 4050–52. http://dx.doi.org/10.1128/aac.00252-13.
Full textRivas-Santiago, Bruno, Carmen J. Serrano, and J. Antonio Enciso-Moreno. "Susceptibility to Infectious Diseases Based on Antimicrobial Peptide Production." Infection and Immunity 77, no. 11 (August 24, 2009): 4690–95. http://dx.doi.org/10.1128/iai.01515-08.
Full textChu, Hung-Lun, Ya-Han Chih, Kuang-Li Peng, Chih-Lung Wu, Hui-Yuan Yu, Doris Cheng, Yu-Ting Chou, and Jya-Wei Cheng. "Antimicrobial Peptides with Enhanced Salt Resistance and Antiendotoxin Properties." International Journal of Molecular Sciences 21, no. 18 (September 16, 2020): 6810. http://dx.doi.org/10.3390/ijms21186810.
Full textRibeiro, Ana R. M., Helena P. Felgueiras, Susana P. G. Costa, and Sílvia M. M. A. Pereira-Lima. "Synthesis of Peptaibolin, an Antimicrobial Peptide." Proceedings 78, no. 1 (December 1, 2020): 47. http://dx.doi.org/10.3390/iecp2020-08654.
Full textTzeng, Yih-Ling, and David S. Stephens. "Antimicrobial peptide resistance in Neisseria meningitidis." Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, no. 11 (November 2015): 3026–31. http://dx.doi.org/10.1016/j.bbamem.2015.05.006.
Full textNava Lara, Rodrigo, Longendri Aguilera-Mendoza, Carlos Brizuela, Antonio Peña, and Gabriel Del Rio. "Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs." Molecules 24, no. 7 (March 31, 2019): 1258. http://dx.doi.org/10.3390/molecules24071258.
Full textLee, Jong-Kook, and Yoonkyung Park. "All d-Lysine Analogues of the Antimicrobial Peptide HPA3NT3-A2 Increased Serum Stability and without Drug Resistance." International Journal of Molecular Sciences 21, no. 16 (August 6, 2020): 5632. http://dx.doi.org/10.3390/ijms21165632.
Full textOyston, P. C. F., M. A. Fox, S. J. Richards, and G. C. Clark. "Novel peptide therapeutics for treatment of infections." Journal of Medical Microbiology 58, no. 8 (August 1, 2009): 977–87. http://dx.doi.org/10.1099/jmm.0.011122-0.
Full textKraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (May 6, 2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.
Full textBoparai, Jaspreet Kaur, and Pushpender Kumar Sharma. "Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications." Protein & Peptide Letters 27, no. 1 (December 10, 2019): 4–16. http://dx.doi.org/10.2174/0929866526666190822165812.
Full textCheung, Gordon YC, and Michael Otto. "Do antimicrobial peptides and antimicrobial-peptide resistance play important roles during bacterial infection?" Future Microbiology 13, no. 10 (August 2018): 1073–75. http://dx.doi.org/10.2217/fmb-2018-0138.
Full textNagarajan, Deepesh, Tushar Nagarajan, Neha Nanajkar, and Nagasuma Chandra. "A Uniform In Vitro Efficacy Dataset to Guide Antimicrobial Peptide Design." Data 4, no. 1 (February 10, 2019): 27. http://dx.doi.org/10.3390/data4010027.
Full textAudrain, Bianca, Lionel Ferrières, Amira Zairi, Guillaume Soubigou, Curtis Dobson, Jean-Yves Coppée, Christophe Beloin, and Jean-Marc Ghigo. "Induction of the Cpx Envelope Stress Pathway Contributes to Escherichia coli Tolerance to Antimicrobial Peptides." Applied and Environmental Microbiology 79, no. 24 (October 4, 2013): 7770–79. http://dx.doi.org/10.1128/aem.02593-13.
Full textLorenzon, Esteban N., Julia P. Piccoli, Norival A. Santos-Filho, and Eduardo M. Cilli. "Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity." Protein & Peptide Letters 26, no. 2 (February 20, 2019): 98–107. http://dx.doi.org/10.2174/0929866526666190102125304.
Full textYu, Hui-Yuan, Chih-Hsiung Tu, Bak-Sau Yip, Heng-Li Chen, Hsi-Tsung Cheng, Kuo-Chun Huang, Hsiu-Jung Lo, and Jya-Wei Cheng. "Easy Strategy To Increase Salt Resistance of Antimicrobial Peptides." Antimicrobial Agents and Chemotherapy 55, no. 10 (July 18, 2011): 4918–21. http://dx.doi.org/10.1128/aac.00202-11.
Full textYeaman, Michael R., and Nannette Y. Yount. "Mechanisms of Antimicrobial Peptide Action and Resistance." Pharmacological Reviews 55, no. 1 (March 1, 2003): 27–55. http://dx.doi.org/10.1124/pr.55.1.2.
Full textTzeng, Yih-Ling, Karita D. Ambrose, Susu Zughaier, Xiaoliu Zhou, Yoon K. Miller, William M. Shafer, and David S. Stephens. "Cationic Antimicrobial Peptide Resistance in Neisseria meningitidis." Journal of Bacteriology 187, no. 15 (August 1, 2005): 5387–96. http://dx.doi.org/10.1128/jb.187.15.5387-5396.2005.
Full textLorenzón, E. N., G. F. Cespedes, E. F. Vicente, L. G. Nogueira, T. M. Bauab, M. S. Castro, and E. M. Cilli. "Effects of Dimerization on the Structure and Biological Activity of Antimicrobial Peptide Ctx-Ha." Antimicrobial Agents and Chemotherapy 56, no. 6 (March 5, 2012): 3004–10. http://dx.doi.org/10.1128/aac.06262-11.
Full textNüsslein, Klaus, Lachelle Arnt, Jason Rennie, Cullen Owens, and Gregory N. Tew. "Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic." Microbiology 152, no. 7 (July 1, 2006): 1913–18. http://dx.doi.org/10.1099/mic.0.28812-0.
Full textRuijne, Fleur, and Oscar P. Kuipers. "Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials." Biochemical Society Transactions 49, no. 1 (January 13, 2021): 203–15. http://dx.doi.org/10.1042/bst20200425.
Full textSimonson, Andrew W., Matthew R. Aronson, and Scott H. Medina. "Supramolecular Peptide Assemblies as Antimicrobial Scaffolds." Molecules 25, no. 12 (June 14, 2020): 2751. http://dx.doi.org/10.3390/molecules25122751.
Full textLin, Yaxian, Siyan Liu, Xinping Xi, Chengbang Ma, Lei Wang, Xiaoling Chen, Zhanzhong Shi, Tianbao Chen, Chris Shaw, and Mei Zhou. "Study on the Structure-Activity Relationship of an Antimicrobial Peptide, Brevinin-2GUb, from the Skin Secretion of Hylarana guentheri." Antibiotics 10, no. 8 (July 22, 2021): 895. http://dx.doi.org/10.3390/antibiotics10080895.
Full textRinker, Sherri D., Michael P. Trombley, Xiaoping Gu, Kate R. Fortney, and Margaret E. Bauer. "Deletion ofmtrCin Haemophilus ducreyi Increases Sensitivity to Human Antimicrobial Peptides and Activates the CpxRA Regulon." Infection and Immunity 79, no. 6 (March 28, 2011): 2324–34. http://dx.doi.org/10.1128/iai.01316-10.
Full textMatson, Jyl S., Hyun Ju Yoo, Kristina Hakansson, and Victor J. DiRita. "Polymyxin B Resistance in El Tor Vibrio cholerae Requires Lipid Acylation Catalyzed by MsbB." Journal of Bacteriology 192, no. 8 (February 12, 2010): 2044–52. http://dx.doi.org/10.1128/jb.00023-10.
Full textFodor, András, Birhan Addisie Abate, Péter Deák, László Fodor, Ervin Gyenge, Michael G. Klein, Zsuzsanna Koncz, et al. "Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review." Pathogens 9, no. 7 (June 29, 2020): 522. http://dx.doi.org/10.3390/pathogens9070522.
Full textBhopale, Girish M. "Antimicrobial Peptides: A Promising Avenue for Human Healthcare." Current Pharmaceutical Biotechnology 21, no. 2 (February 12, 2020): 90–96. http://dx.doi.org/10.2174/1389201020666191011121722.
Full textGebhard, Susanne, Chong Fang, Aishath Shaaly, David J. Leslie, Marion R. Weimar, Falk Kalamorz, Alan Carne, and Gregory M. Cook. "Identification and Characterization of a Bacitracin Resistance Network in Enterococcus faecalis." Antimicrobial Agents and Chemotherapy 58, no. 3 (December 16, 2013): 1425–33. http://dx.doi.org/10.1128/aac.02111-13.
Full textFeng, Yang, Yang-Yang Zhang, Ke Li, Na Tian, Wei-Bo Wang, Qian-Xiong Zhou, and Xue-Song Wang. "Photocleavable antimicrobial peptide mimics for precluding antibiotic resistance." New Journal of Chemistry 42, no. 5 (2018): 3192–95. http://dx.doi.org/10.1039/c8nj00015h.
Full textKooi, Cora, and Pamela A. Sokol. "Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides." Microbiology 155, no. 9 (September 1, 2009): 2818–25. http://dx.doi.org/10.1099/mic.0.028969-0.
Full textRobles-Fort, Aida, Inmaculada García-Robles, Wasundara Fernando, David W. Hoskin, Carolina Rausell, and María Dolores Real. "Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin." Microorganisms 9, no. 2 (January 22, 2021): 222. http://dx.doi.org/10.3390/microorganisms9020222.
Full textTeng, Qiu-Xu, Xiaofang Luo, Zi-Ning Lei, Jing-Quan Wang, John Wurpel, Zuodong Qin, and Dong-Hua Yang. "The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide." Cancers 12, no. 7 (July 19, 2020): 1963. http://dx.doi.org/10.3390/cancers12071963.
Full textLocock, Katherine E. S. "Bioinspired Polymers: Antimicrobial Polymethacrylates." Australian Journal of Chemistry 69, no. 7 (2016): 717. http://dx.doi.org/10.1071/ch16047.
Full textMejía-Argueta, Euridice L., Jonnathan G. Santillán Benítez, and Mariana Ortiz-Reynoso. "Antimicrobial peptides, an alternative to combat bacterial resistance." Acta Biológica Colombiana 25, no. 2 (May 1, 2020): 294–302. http://dx.doi.org/10.15446/abc.v25n2.77407.
Full textMcBride, Shonna M., and Abraham L. Sonenshein. "Identification of a Genetic Locus Responsible for Antimicrobial Peptide Resistance inClostridium difficile." Infection and Immunity 79, no. 1 (October 25, 2010): 167–76. http://dx.doi.org/10.1128/iai.00731-10.
Full textNawrocki, Kathryn, Emily Crispell, and Shonna McBride. "Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria." Antibiotics 3, no. 4 (October 13, 2014): 461–92. http://dx.doi.org/10.3390/antibiotics3040461.
Full textPerron, Gabriel G., Michael Zasloff, and Graham Bell. "Experimental evolution of resistance to an antimicrobial peptide." Proceedings of the Royal Society B: Biological Sciences 273, no. 1583 (November 2005): 251–56. http://dx.doi.org/10.1098/rspb.2005.3301.
Full textLaRock, Christopher N., and Victor Nizet. "Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens." Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, no. 11 (November 2015): 3047–54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.
Full textMusin, Kh G. "ANTIMICROBIAL PEPTIDES — A POTENTIAL REPLACEMENT FOR TRADITIONAL ANTIBIOTICS." Russian Journal of Infection and Immunity 8, no. 3 (November 4, 2018): 295–308. http://dx.doi.org/10.15789/2220-7619-2018-3-295-308.
Full textShao, Changxuan, Weizhong Li, Peng Tan, Anshan Shan, Xiujing Dou, Deying Ma, and Chunyu Liu. "Symmetrical Modification of Minimized Dermaseptins to Extend the Spectrum of Antimicrobials with Endotoxin Neutralization Potency." International Journal of Molecular Sciences 20, no. 6 (March 20, 2019): 1417. http://dx.doi.org/10.3390/ijms20061417.
Full textSallum, Ulysses W., and Thomas T. Chen. "Inducible Resistance of Fish Bacterial Pathogens to the Antimicrobial Peptide Cecropin B." Antimicrobial Agents and Chemotherapy 52, no. 9 (May 12, 2008): 3006–12. http://dx.doi.org/10.1128/aac.00023-08.
Full textMwangi, James, Yizhu Yin, Gan Wang, Min Yang, Ya Li, Zhiye Zhang, and Ren Lai. "The antimicrobial peptide ZY4 combats multidrug-resistantPseudomonas aeruginosaandAcinetobacter baumanniiinfection." Proceedings of the National Academy of Sciences 116, no. 52 (December 16, 2019): 26516–22. http://dx.doi.org/10.1073/pnas.1909585117.
Full textDonini, Marcello, Chiara Lico, Selene Baschieri, Stefania Conti, Walter Magliani, Luciano Polonelli, and Eugenio Benvenuto. "Production of an Engineered Killer Peptide in Nicotiana benthamiana by Using a Potato virus X Expression System." Applied and Environmental Microbiology 71, no. 10 (October 2005): 6360–67. http://dx.doi.org/10.1128/aem.71.10.6360-6367.2005.
Full textNg, Charmaine, and Karina Yew-Hoong Gin. "Monitoring Antimicrobial Resistance Dissemination in Aquatic Systems." Water 11, no. 1 (January 3, 2019): 71. http://dx.doi.org/10.3390/w11010071.
Full textMishra, Biswajit, Jayaram Lakshmaiah Narayana, Tamara Lushnikova, Yingxia Zhang, Radha M. Golla, D. Zarena, and Guangshun Wang. "Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities." Pharmaceuticals 13, no. 10 (September 25, 2020): 271. http://dx.doi.org/10.3390/ph13100271.
Full text