Journal articles on the topic 'Antimicrobial peptites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antimicrobial peptites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Browne, Katrina, Sudip Chakraborty, Renxun Chen, et al. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (2020): 7047. http://dx.doi.org/10.3390/ijms21197047.
Full textKraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.
Full textHaney, Evan F., Leonard T. Nguyen, David J. Schibli, and Hans J. Vogel. "Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1172–84. http://dx.doi.org/10.3762/bjoc.8.130.
Full textFleeman, Renee M., Luis A. Macias, Jennifer S. Brodbelt, and Bryan W. Davies. "Defining principles that influence antimicrobial peptide activity against capsulatedKlebsiella pneumoniae." Proceedings of the National Academy of Sciences 117, no. 44 (2020): 27620–26. http://dx.doi.org/10.1073/pnas.2007036117.
Full textBoparai, Jaspreet Kaur, and Pushpender Kumar Sharma. "Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications." Protein & Peptide Letters 27, no. 1 (2019): 4–16. http://dx.doi.org/10.2174/0929866526666190822165812.
Full textNava Lara, Rodrigo, Longendri Aguilera-Mendoza, Carlos Brizuela, Antonio Peña, and Gabriel Del Rio. "Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs." Molecules 24, no. 7 (2019): 1258. http://dx.doi.org/10.3390/molecules24071258.
Full textPatrzykat, Aleksander, Jeffrey W. Gallant, Jung-Kil Seo, Jennifer Pytyck, and Susan E. Douglas. "Novel Antimicrobial Peptides Derived from Flatfish Genes." Antimicrobial Agents and Chemotherapy 47, no. 8 (2003): 2464–70. http://dx.doi.org/10.1128/aac.47.8.2464-2470.2003.
Full textHwang, Peter M., and Hans J. Vogel. "Structure-function relationships of antimicrobial peptides." Biochemistry and Cell Biology 76, no. 2-3 (1998): 235–46. http://dx.doi.org/10.1139/o98-026.
Full textKopeykin, P. M., M. S. Sukhareva, N. V. Lugovkina, and O. V. Shamova. "CHEMICAL SYNTHESIS AND ANALYSIS OF ANTIMICROBIAL AND HEMOLYTIC ACTIVITY OF STRUCTURAL ANALOGOUS OF A PEPTIDE PROTEGRIN 1." Medical academic journal 19, no. 1S (2019): 169–70. http://dx.doi.org/10.17816/maj191s1169-170.
Full textRuijne, Fleur, and Oscar P. Kuipers. "Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials." Biochemical Society Transactions 49, no. 1 (2021): 203–15. http://dx.doi.org/10.1042/bst20200425.
Full textWu, Chih-Lung, Ju-Yun Hsueh, Bak-Sau Yip, Ya-Han Chih, Kuang-Li Peng, and Jya-Wei Cheng. "Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli." International Journal of Molecular Sciences 21, no. 13 (2020): 4578. http://dx.doi.org/10.3390/ijms21134578.
Full textBachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, et al. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.
Full textJenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.
Full textNagarajan, Deepesh, Tushar Nagarajan, Neha Nanajkar, and Nagasuma Chandra. "A Uniform In Vitro Efficacy Dataset to Guide Antimicrobial Peptide Design." Data 4, no. 1 (2019): 27. http://dx.doi.org/10.3390/data4010027.
Full textBechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.
Full textLocock, Katherine E. S. "Bioinspired Polymers: Antimicrobial Polymethacrylates." Australian Journal of Chemistry 69, no. 7 (2016): 717. http://dx.doi.org/10.1071/ch16047.
Full textGasu, Edward Ntim, Hubert Senanu Ahor, and Lawrence Sheringham Borquaye. "Peptide Extract from Olivancillaria hiatula Exhibits Broad-Spectrum Antibacterial Activity." BioMed Research International 2018 (December 23, 2018): 1–11. http://dx.doi.org/10.1155/2018/6010572.
Full textFernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.
Full textGrishin, Sergei Y., Pavel A. Domnin, Sergey V. Kravchenko, et al. "Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa?" International Journal of Molecular Sciences 22, no. 18 (2021): 9776. http://dx.doi.org/10.3390/ijms22189776.
Full textBall, S. L., G. P. Siou, J. A. Wilson, A. Howard, B. H. Hirst, and J. Hall. "Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils." Journal of Laryngology & Otology 121, no. 10 (2007): 973–78. http://dx.doi.org/10.1017/s0022215107006184.
Full textMishra, Biswajit, Jayaram Lakshmaiah Narayana, Tamara Lushnikova, et al. "Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities." Pharmaceuticals 13, no. 10 (2020): 271. http://dx.doi.org/10.3390/ph13100271.
Full textSilva, Osmar N., Marcelo D. T. Torres, Jicong Cao, et al. "Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties." Proceedings of the National Academy of Sciences 117, no. 43 (2020): 26936–45. http://dx.doi.org/10.1073/pnas.2012379117.
Full textXie, Zhipeng, Manchuriga Wang, and Yingxia Zhang. "Antimicrobial peptide database helps design novel antimicrobial peptides." Toxicon 158 (February 2019): S76. http://dx.doi.org/10.1016/j.toxicon.2018.10.259.
Full textCunsolo, Vincenzo, Rosario Schicchi, Marco Chiaramonte, et al. "Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta." Antibiotics 9, no. 11 (2020): 747. http://dx.doi.org/10.3390/antibiotics9110747.
Full textJung, Sook-In, Jonathan S. Finkel, Norma V. Solis, et al. "Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans." Eukaryotic Cell 12, no. 3 (2013): 411–19. http://dx.doi.org/10.1128/ec.00285-12.
Full textStrandberg, Erik, Deniz Tiltak, Marco Ieronimo, Nathalie Kanithasen, Parvesh Wadhwani та Anne S. Ulrich. "Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides". Pure and Applied Chemistry 79, № 4 (2007): 717–28. http://dx.doi.org/10.1351/pac200779040717.
Full textMichalek, Matthias, Bruno Vincent, Rainer Podschun, Joachim Grötzinger, Burkhard Bechinger, and Sascha Jung. "Hydramacin-1 in Action: Scrutinizing the Barnacle Model." Antimicrobial Agents and Chemotherapy 57, no. 7 (2013): 2955–66. http://dx.doi.org/10.1128/aac.02498-12.
Full textAlmsned, Fahad. "Designing Antimicrobial Peptide: Current Status." Journal of Medical Science And clinical Research 05, no. 03 (2016): 19282–94. http://dx.doi.org/10.18535/jmscr/v5i3.153.
Full textYeaman, Michael R., Kimberly D. Gank, Arnold S. Bayer, and Eric P. Brass. "Synthetic Peptides That Exert Antimicrobial Activities in Whole Blood and Blood-Derived Matrices." Antimicrobial Agents and Chemotherapy 46, no. 12 (2002): 3883–91. http://dx.doi.org/10.1128/aac.46.12.3883-3891.2002.
Full textEckert, Randal, Fengxia Qi, Daniel K. Yarbrough, Jian He, Maxwell H. Anderson, and Wenyuan Shi. "Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp." Antimicrobial Agents and Chemotherapy 50, no. 4 (2006): 1480–88. http://dx.doi.org/10.1128/aac.50.4.1480-1488.2006.
Full textSuryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2017.v11i1.23008.
Full textSuryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23008.
Full textBaeder, Desiree Y., Guozhi Yu, Nathanaël Hozé, Jens Rolff, and Roland R. Regoes. "Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models." Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1695 (2016): 20150294. http://dx.doi.org/10.1098/rstb.2015.0294.
Full textLorenzón, E. N., G. F. Cespedes, E. F. Vicente, et al. "Effects of Dimerization on the Structure and Biological Activity of Antimicrobial Peptide Ctx-Ha." Antimicrobial Agents and Chemotherapy 56, no. 6 (2012): 3004–10. http://dx.doi.org/10.1128/aac.06262-11.
Full textMénard, Sandrine, Valentina Förster, Michael Lotz, et al. "Developmental switch of intestinal antimicrobial peptide expression." Journal of Experimental Medicine 205, no. 1 (2008): 183–93. http://dx.doi.org/10.1084/jem.20071022.
Full textLópez-García, Belén, Luis González-Candelas, Enrique Pérez-Payá, and Jose F. Marcos. "Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits." Molecular Plant-Microbe Interactions® 13, no. 8 (2000): 837–46. http://dx.doi.org/10.1094/mpmi.2000.13.8.837.
Full textNüsslein, Klaus, Lachelle Arnt, Jason Rennie, Cullen Owens, and Gregory N. Tew. "Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic." Microbiology 152, no. 7 (2006): 1913–18. http://dx.doi.org/10.1099/mic.0.28812-0.
Full textAudrain, Bianca, Lionel Ferrières, Amira Zairi, et al. "Induction of the Cpx Envelope Stress Pathway Contributes to Escherichia coli Tolerance to Antimicrobial Peptides." Applied and Environmental Microbiology 79, no. 24 (2013): 7770–79. http://dx.doi.org/10.1128/aem.02593-13.
Full textSpinello, Angelo, Maria Cusimano, Domenico Schillaci, Luigi Inguglia, Giampaolo Barone та Vincenzo Arizza. "Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus". Marine Drugs 16, № 10 (2018): 366. http://dx.doi.org/10.3390/md16100366.
Full textZhang, Yong-lian, and Hsiao-Chang Chan. "S1h1-4 An epididymis-specific antimicrobial peptide has dual functions in sperm maturation(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_2.
Full textDas, Bharati, and Maneesh Jain. "A New and Promising Avenue In Selective Antimicrobial Treatment For Particularly Targeted Antimicrobial Peptides." Journal of Advances and Scholarly Researches in Allied Education 15, no. 7 (2018): 69–75. http://dx.doi.org/10.29070/15/57667.
Full textHitt, Samantha J., Barney M. Bishop, and Monique L. van Hoek. "Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae." Journal of Medical Microbiology 69, no. 11 (2020): 1262–72. http://dx.doi.org/10.1099/jmm.0.001260.
Full textPirtskhalava, Malak, Anthony A. Amstrong, Maia Grigolava, et al. "DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics." Nucleic Acids Research 49, no. D1 (2020): D288—D297. http://dx.doi.org/10.1093/nar/gkaa991.
Full textOyston, P. C. F., M. A. Fox, S. J. Richards, and G. C. Clark. "Novel peptide therapeutics for treatment of infections." Journal of Medical Microbiology 58, no. 8 (2009): 977–87. http://dx.doi.org/10.1099/jmm.0.011122-0.
Full textWang, Guangshun. "Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction." Antibiotics 9, no. 8 (2020): 491. http://dx.doi.org/10.3390/antibiotics9080491.
Full textNava Lara, Rodrigo A., Jesús A. Beltrán, Carlos A. Brizuela, and Gabriel Del Rio. "Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques." Pharmaceuticals 13, no. 9 (2020): 204. http://dx.doi.org/10.3390/ph13090204.
Full textHe, Dangui, Zhijian Cao, Ruhong Zhang, and Wenhua Li. "Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus." Antibiotics 10, no. 8 (2021): 896. http://dx.doi.org/10.3390/antibiotics10080896.
Full textKim, Young Soo, and Hyung Joon Cha. "High-Throughput and Facile Assay of Antimicrobial Peptides Using pH-Controlled Fluorescence Resonance Energy Transfer." Antimicrobial Agents and Chemotherapy 50, no. 10 (2006): 3330–35. http://dx.doi.org/10.1128/aac.00455-06.
Full textLi, Bin, Peng Lyu, Shuping Xie, et al. "LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi." Biomolecules 9, no. 6 (2019): 242. http://dx.doi.org/10.3390/biom9060242.
Full textTanaka, Tsuyoshi, Yoriko Kokuryu, and Tadashi Matsunaga. "Novel Method for Selection of Antimicrobial Peptides from a Phage Display Library by Use of Bacterial Magnetic Particles." Applied and Environmental Microbiology 74, no. 24 (2008): 7600–7606. http://dx.doi.org/10.1128/aem.00162-08.
Full text