To see the other types of publications on this topic, follow the link: Antimicrobial peptites.

Journal articles on the topic 'Antimicrobial peptites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antimicrobial peptites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Browne, Katrina, Sudip Chakraborty, Renxun Chen, et al. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (2020): 7047. http://dx.doi.org/10.3390/ijms21197047.

Full text
Abstract:
Antimicrobial resistance is a multifaceted crisis, imposing a serious threat to global health. The traditional antibiotic pipeline has been exhausted, prompting research into alternate antimicrobial strategies. Inspired by nature, antimicrobial peptides are rapidly gaining attention for their clinical potential as they present distinct advantages over traditional antibiotics. Antimicrobial peptides are found in all forms of life and demonstrate a pivotal role in the innate immune system. Many antimicrobial peptides are evolutionarily conserved, with limited propensity for resistance. Additiona
APA, Harvard, Vancouver, ISO, and other styles
2

Kraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.

Full text
Abstract:
ABSTRACTAntimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out anin silicodiscovery pipeline to i
APA, Harvard, Vancouver, ISO, and other styles
3

Haney, Evan F., Leonard T. Nguyen, David J. Schibli, and Hans J. Vogel. "Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1172–84. http://dx.doi.org/10.3762/bjoc.8.130.

Full text
Abstract:
A number of physicochemical characteristics have been described which contribute to the biological activity of antimicrobial peptides. This information was used to design a novel antimicrobial peptide sequence by using an intrinsically inactive membrane-associated peptide derived from the HIV glycoprotein, gp41, as a starting scaffold. This peptide corresponds to the tryptophan-rich membrane-proximal region of gp41, which is known to interact at the interfacial region of the viral membrane and adopts a helical structure in the presence of lipids. Three synthetic peptides were designed to incre
APA, Harvard, Vancouver, ISO, and other styles
4

Fleeman, Renee M., Luis A. Macias, Jennifer S. Brodbelt, and Bryan W. Davies. "Defining principles that influence antimicrobial peptide activity against capsulatedKlebsiella pneumoniae." Proceedings of the National Academy of Sciences 117, no. 44 (2020): 27620–26. http://dx.doi.org/10.1073/pnas.2007036117.

Full text
Abstract:
The extracellular polysaccharide capsule ofKlebsiella pneumoniaeresists penetration by antimicrobials and protects the bacteria from the innate immune system. Host antimicrobial peptides are inactivated by the capsule as it impedes their penetration to the bacterial membrane. While the capsule sequesters most peptides, a few antimicrobial peptides have been identified that retain activity against encapsulatedK. pneumoniae,suggesting that this bacterial defense can be overcome. However, it is unclear what factors allow peptides to avoid capsule inhibition. To address this, we created a peptide
APA, Harvard, Vancouver, ISO, and other styles
5

Boparai, Jaspreet Kaur, and Pushpender Kumar Sharma. "Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications." Protein & Peptide Letters 27, no. 1 (2019): 4–16. http://dx.doi.org/10.2174/0929866526666190822165812.

Full text
Abstract:
Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonst
APA, Harvard, Vancouver, ISO, and other styles
6

Nava Lara, Rodrigo, Longendri Aguilera-Mendoza, Carlos Brizuela, Antonio Peña, and Gabriel Del Rio. "Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs." Molecules 24, no. 7 (2019): 1258. http://dx.doi.org/10.3390/molecules24071258.

Full text
Abstract:
The emergence of microbes resistant to common antibiotics represent a current treat to human health. It has been recently recognized that non-antibiotic labeled drugs may promote antibiotic-resistance mechanisms in the human microbiome by presenting a secondary antibiotic activity; hence, the development of computer-assisted procedures to identify antibiotic activity in human-targeted compounds may assist in preventing the emergence of resistant microbes. In this regard, it is worth noting that while most antibiotics used to treat human infectious diseases are non-peptidic compounds, most know
APA, Harvard, Vancouver, ISO, and other styles
7

Patrzykat, Aleksander, Jeffrey W. Gallant, Jung-Kil Seo, Jennifer Pytyck, and Susan E. Douglas. "Novel Antimicrobial Peptides Derived from Flatfish Genes." Antimicrobial Agents and Chemotherapy 47, no. 8 (2003): 2464–70. http://dx.doi.org/10.1128/aac.47.8.2464-2470.2003.

Full text
Abstract:
ABSTRACT We report on the identification of active novel antimicrobials determined by screening both the genomic information and the mRNA transcripts from a number of different flatfish for sequences encoding antimicrobial peptides, predicting the sequences of active peptides from the genetic information, producing the predicted peptides chemically, and testing them for their activities. We amplified 35 sequences from various species of flatfish using primers whose sequences are based on conserved flanking regions of a known antimicrobial peptide from winter flounder, pleurocidin. We analyzed
APA, Harvard, Vancouver, ISO, and other styles
8

Hwang, Peter M., and Hans J. Vogel. "Structure-function relationships of antimicrobial peptides." Biochemistry and Cell Biology 76, no. 2-3 (1998): 235–46. http://dx.doi.org/10.1139/o98-026.

Full text
Abstract:
Antimicrobial peptides are ubiquitously produced throughout nature. Many of these relatively short peptides (6-50 residues) are lethal towards bacteria and fungi, yet they display minimal toxicity towards mammalian cells. All of the peptides are highly cationic and hydrophobic. It is widely believed that they act through nonspecific binding to biological membranes, even though the exact nature of these interactions is presently unclear. High-resolution nuclear magnetic resonance (NMR) has contributed greatly to knowledge in this field, providing insight about peptide structure in aqueous solut
APA, Harvard, Vancouver, ISO, and other styles
9

Kopeykin, P. M., M. S. Sukhareva, N. V. Lugovkina, and O. V. Shamova. "CHEMICAL SYNTHESIS AND ANALYSIS OF ANTIMICROBIAL AND HEMOLYTIC ACTIVITY OF STRUCTURAL ANALOGOUS OF A PEPTIDE PROTEGRIN 1." Medical academic journal 19, no. 1S (2019): 169–70. http://dx.doi.org/10.17816/maj191s1169-170.

Full text
Abstract:
Search for new tools for combating infectious diseases and investigation of molecular mechanisms of their antimicrobial action in in vitro and in vivo models are the urgent tasks of experimental medicine and pathophysiology. A promising direction for the development of new effective antibiotic drugs is creation of analogues of natural protective molecules that provide a host defense against pathogenic bacteria, in particular analogues of antimicrobial peptides of the innate immune system. The aim of our work was design, chemical synthesis and characterization of antimicrobial and hemolytic act
APA, Harvard, Vancouver, ISO, and other styles
10

Ruijne, Fleur, and Oscar P. Kuipers. "Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials." Biochemical Society Transactions 49, no. 1 (2021): 203–15. http://dx.doi.org/10.1042/bst20200425.

Full text
Abstract:
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure–activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced pe
APA, Harvard, Vancouver, ISO, and other styles
11

Wu, Chih-Lung, Ju-Yun Hsueh, Bak-Sau Yip, Ya-Han Chih, Kuang-Li Peng, and Jya-Wei Cheng. "Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli." International Journal of Molecular Sciences 21, no. 13 (2020): 4578. http://dx.doi.org/10.3390/ijms21134578.

Full text
Abstract:
There is an urgent and imminent need to develop new antimicrobials to fight against antibiotic-resistant bacterial and fungal strains. In this study, a checkerboard method was used to evaluate the synergistic effects of the antimicrobial peptide P-113 and its bulky non-nature amino acid substituted derivatives with vancomycin against vancomycin-resistant Enterococcus faecium, Staphylococcus aureus, and wild-type Escherichia coli. Boron-dipyrro-methene (BODIPY) labeled vancomycin was used to characterize the interactions between the peptides, vancomycin, and bacterial strains. Moreover, neutral
APA, Harvard, Vancouver, ISO, and other styles
12

Bachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, et al. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.

Full text
Abstract:
ABSTRACT Antimicrobial peptides are short, positively charged, amphipathic peptides that possess a wide spectrum of antimicrobial activity and have an important role in the host's innate immunity. Lack of, or dysfunctions in, antimicrobial peptides have been correlated with infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative anaerobe and a major pathogen associated with periodontal diseases, is resistant to antimicrobial peptides of human and nonhuman origin, a feature that likely contributes to its virulence. Expressing a robust proteolytic activity, P. gin
APA, Harvard, Vancouver, ISO, and other styles
13

Jenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.

Full text
Abstract:
SUMMARY Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides wit
APA, Harvard, Vancouver, ISO, and other styles
14

Nagarajan, Deepesh, Tushar Nagarajan, Neha Nanajkar, and Nagasuma Chandra. "A Uniform In Vitro Efficacy Dataset to Guide Antimicrobial Peptide Design." Data 4, no. 1 (2019): 27. http://dx.doi.org/10.3390/data4010027.

Full text
Abstract:
Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptides are therefore promising drug candidates in the face of overwhelming multi-drug resistance to conventional antibiotics. Over the past few decades, thousands of antimicrobial peptides have been characterized in vitro, and their efficacy data are now available in a multitude of public databases. Computational antimicrobial peptide design attempts t
APA, Harvard, Vancouver, ISO, and other styles
15

Bechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.

Full text
Abstract:
More than 40 antimicrobial peptides and proteins (AMPs) are expressed in the oral cavity. These AMPs have been organized into 6 functional groups, 1 of which, cationic AMPs, has received extensive attention in recent years for their promise as potential antibiotics. The goal of this review is to describe recent advances in our understanding of the diverse mechanisms of action of cationic AMPs and the bacterial resistance against these peptides. The recently developed peptide GL13K is used as an example to illustrate many of the discussed concepts. Cationic AMPs typically exhibit an amphipathic
APA, Harvard, Vancouver, ISO, and other styles
16

Locock, Katherine E. S. "Bioinspired Polymers: Antimicrobial Polymethacrylates." Australian Journal of Chemistry 69, no. 7 (2016): 717. http://dx.doi.org/10.1071/ch16047.

Full text
Abstract:
Naturally occurring antimicrobial peptides have been honed by evolution over millions of years to give highly safe and efficacious antimicrobials that form part of many organisms’ immune systems. By studying these peptides to identify key aspects of structure and composition, suitable synthetic polymer mimics can be designed that hold potential as anti-infective agents. This review focusses on an important aspect of peptide mimicry, that of replicating the chemical functionality provided by key amino acids present in antimicrobial peptides. These include polymethacrylate mimics of arginine-ric
APA, Harvard, Vancouver, ISO, and other styles
17

Gasu, Edward Ntim, Hubert Senanu Ahor, and Lawrence Sheringham Borquaye. "Peptide Extract from Olivancillaria hiatula Exhibits Broad-Spectrum Antibacterial Activity." BioMed Research International 2018 (December 23, 2018): 1–11. http://dx.doi.org/10.1155/2018/6010572.

Full text
Abstract:
Increasing reports of infectious diseases worldwide have become a global concern in recent times. Depleted antibiotic pipelines, rapid and complex cases of antimicrobial resistance, and emergence and re-emergence of infectious disease have necessitated an urgent need for the development of new antimicrobial therapeutics, preferably with novel modes of action. Due to their distinct mode of action, antimicrobial peptides offer an interesting alternative to conventional antibiotics to deal with the problems enumerated. In this study, the antimicrobial potential of the peptide extract from the mar
APA, Harvard, Vancouver, ISO, and other styles
18

Fernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.

Full text
Abstract:
ABSTRACT As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipid A of lipopolysaccharide (LPS) is a key component of this adaptive peptide resistance, but to date, the regulatory mechanism underlying peptide regulation in P. aeruginosa has remained elusive.
APA, Harvard, Vancouver, ISO, and other styles
19

Grishin, Sergei Y., Pavel A. Domnin, Sergey V. Kravchenko, et al. "Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa?" International Journal of Molecular Sciences 22, no. 18 (2021): 9776. http://dx.doi.org/10.3390/ijms22189776.

Full text
Abstract:
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: “cell pene
APA, Harvard, Vancouver, ISO, and other styles
20

Ball, S. L., G. P. Siou, J. A. Wilson, A. Howard, B. H. Hirst, and J. Hall. "Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils." Journal of Laryngology & Otology 121, no. 10 (2007): 973–78. http://dx.doi.org/10.1017/s0022215107006184.

Full text
Abstract:
Background: Recurrent acute tonsillitis is one of the most frequent ENT referrals, yet its pathogenesis remains poorly understood, and tonsillectomy still costs the National Health Service more than £60 000 000 annually. Antimicrobial cationic peptides are components of the innate immune system. They are generally small, highly positively charged peptides with broad spectrum antimicrobial activity which function as the body's ‘natural antibiotics'. The role of antimicrobial cationic peptides in the susceptibility of patients to recurrent acute tonsillitis is unknown.Aims: To characterise and c
APA, Harvard, Vancouver, ISO, and other styles
21

Mishra, Biswajit, Jayaram Lakshmaiah Narayana, Tamara Lushnikova, et al. "Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities." Pharmaceuticals 13, no. 10 (2020): 271. http://dx.doi.org/10.3390/ph13100271.

Full text
Abstract:
Antibiotic resistance poses a threat to our society, and 10 million people could die by 2050. To design potent antimicrobials, we made use of the antimicrobial peptide database (APD). Using the database filtering technology, we identified a useful template and converted it into an effective peptide WW291 against methicillin-resistant Staphylococcus aureus (MRSA). Here, we compared the antibacterial activity and cytotoxicity of a family of peptides obtained from sequence permutation of WW291. The resulting eight WW peptides (WW291-WW298) gained different activities against a panel of bacteria.
APA, Harvard, Vancouver, ISO, and other styles
22

Silva, Osmar N., Marcelo D. T. Torres, Jicong Cao, et al. "Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties." Proceedings of the National Academy of Sciences 117, no. 43 (2020): 26936–45. http://dx.doi.org/10.1073/pnas.2012379117.

Full text
Abstract:
Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in
APA, Harvard, Vancouver, ISO, and other styles
23

Xie, Zhipeng, Manchuriga Wang, and Yingxia Zhang. "Antimicrobial peptide database helps design novel antimicrobial peptides." Toxicon 158 (February 2019): S76. http://dx.doi.org/10.1016/j.toxicon.2018.10.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cunsolo, Vincenzo, Rosario Schicchi, Marco Chiaramonte, et al. "Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta." Antibiotics 9, no. 11 (2020): 747. http://dx.doi.org/10.3390/antibiotics9110747.

Full text
Abstract:
The present work was designed to identify and characterize novel antimicrobial peptides (AMPs) from Charybdis pancration (Steinh.) Speta, previously named Urginea maritima, is a Mediterranean plant, well-known for its biological properties in traditional medicine. Polypeptide-enriched extracts from different parts of the plant (roots, leaves and bulb), never studied before, were tested against two relevant pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. With the aim of identifying novel natural AMPs, peptide fraction displaying antimicrobial activity (the bulb) that showed minimum
APA, Harvard, Vancouver, ISO, and other styles
25

Jung, Sook-In, Jonathan S. Finkel, Norma V. Solis, et al. "Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans." Eukaryotic Cell 12, no. 3 (2013): 411–19. http://dx.doi.org/10.1128/ec.00285-12.

Full text
Abstract:
ABSTRACTIn order to colonize the host and cause disease,Candida albicansmust avoid being killed by host defense peptides. Previously, we determined that the regulatory protein Ssd1 governs antimicrobial peptide resistance inC. albicans. Here, we sought to identify additional genes whose products govern susceptibility to antimicrobial peptides. We discovered that abcr1Δ/Δ mutant, like thessd1Δ/Δ mutant, had increased susceptibility to the antimicrobial peptides, protamine, RP-1, and human β defensin-2. Homozygous deletion ofBCR1in thessd1Δ/Δ mutant did not result in a further increase in antimi
APA, Harvard, Vancouver, ISO, and other styles
26

Strandberg, Erik, Deniz Tiltak, Marco Ieronimo, Nathalie Kanithasen, Parvesh Wadhwani та Anne S. Ulrich. "Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides". Pure and Applied Chemistry 79, № 4 (2007): 717–28. http://dx.doi.org/10.1351/pac200779040717.

Full text
Abstract:
The effect of C-terminal amidation on the antimicrobial and hemolytic activities of antimicrobial peptides was studied using three cationic peptides which form amphiphilic α-helices when bound to membranes. The natural antimicrobial peptide PGLa, the designer-made antibiotic MSI-103, and the cell-penetrating "model amphipathic peptide" (MAP) are all amidated in their original forms, and their biological activities were compared with the same sequences carrying a free C-terminus. It was found that, in general, a free COOH-terminus reduces both the antimicrobial activity and the hemolytic side e
APA, Harvard, Vancouver, ISO, and other styles
27

Michalek, Matthias, Bruno Vincent, Rainer Podschun, Joachim Grötzinger, Burkhard Bechinger, and Sascha Jung. "Hydramacin-1 in Action: Scrutinizing the Barnacle Model." Antimicrobial Agents and Chemotherapy 57, no. 7 (2013): 2955–66. http://dx.doi.org/10.1128/aac.02498-12.

Full text
Abstract:
ABSTRACTHydramacin-1 (HM1) from the metazoanHydraexerts antimicrobial activity against a wide range of bacterial strains. Notably, HM1 induces the aggregation of bacterial cells, accompanied by precipitation. To date, the proposed mechanism of peptide-lipid interaction, termed the barnacle model, has not been described on the molecular level. Here, we show by biochemical and biophysical techniques that the lipid-peptide interactions of HM1 are initiated by electrostatic and hydrophobic effects, in particular, by tryptophan and neighboring polar amino acid residues that cause an interfacial loc
APA, Harvard, Vancouver, ISO, and other styles
28

Almsned, Fahad. "Designing Antimicrobial Peptide: Current Status." Journal of Medical Science And clinical Research 05, no. 03 (2016): 19282–94. http://dx.doi.org/10.18535/jmscr/v5i3.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yeaman, Michael R., Kimberly D. Gank, Arnold S. Bayer, and Eric P. Brass. "Synthetic Peptides That Exert Antimicrobial Activities in Whole Blood and Blood-Derived Matrices." Antimicrobial Agents and Chemotherapy 46, no. 12 (2002): 3883–91. http://dx.doi.org/10.1128/aac.46.12.3883-3891.2002.

Full text
Abstract:
ABSTRACT Peptides that exert antimicrobial activity in artificial media may lack activity within blood or other complex biological matrices. To facilitate the evaluation of antimicrobial peptides for possible therapeutic utility, an ex vivo assay was developed to assess the extent and durability of peptide antimicrobial activities in complex fluid biomatrices of whole blood, plasma, and serum compared with those in conventional media. Novel antimicrobial peptides (RP-1 and RP-11) were designed based in part on platelet microbicidal proteins. RP-1, RP-11, or gentamicin was introduced into bioma
APA, Harvard, Vancouver, ISO, and other styles
30

Eckert, Randal, Fengxia Qi, Daniel K. Yarbrough, Jian He, Maxwell H. Anderson, and Wenyuan Shi. "Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp." Antimicrobial Agents and Chemotherapy 50, no. 4 (2006): 1480–88. http://dx.doi.org/10.1128/aac.50.4.1480-1488.2006.

Full text
Abstract:
ABSTRACT Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via add
APA, Harvard, Vancouver, ISO, and other styles
31

Suryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2017.v11i1.23008.

Full text
Abstract:
Objective: In this study, antimicrobial activity was predicted against novel antimicrobial target 1SDE receptor to understand the structural feature of predicted peptides using machine learning approach from Ocimum tenuiflorum. Methods: Protein sequences from O. tenuiflorum were digested using peptide cutter and further processed for the prediction of antimicrobial peptide (AMP) through AMP predictor tool of CAMP which have multidimensional algorithms such as support vector machine, artificial neural network, random forest, and discriminant analysis. After analyzing various peptides, only four
APA, Harvard, Vancouver, ISO, and other styles
32

Suryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23008.

Full text
Abstract:
Objective: In this study, antimicrobial activity was predicted against novel antimicrobial target 1SDE receptor to understand the structural feature of predicted peptides using machine learning approach from Ocimum tenuiflorum. Methods: Protein sequences from O. tenuiflorum were digested using peptide cutter and further processed for the prediction of antimicrobial peptide (AMP) through AMP predictor tool of CAMP which have multidimensional algorithms such as support vector machine, artificial neural network, random forest, and discriminant analysis. After analyzing various peptides, only four
APA, Harvard, Vancouver, ISO, and other styles
33

Baeder, Desiree Y., Guozhi Yu, Nathanaël Hozé, Jens Rolff, and Roland R. Regoes. "Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models." Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1695 (2016): 20150294. http://dx.doi.org/10.1098/rstb.2015.0294.

Full text
Abstract:
Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrob
APA, Harvard, Vancouver, ISO, and other styles
34

Lorenzón, E. N., G. F. Cespedes, E. F. Vicente, et al. "Effects of Dimerization on the Structure and Biological Activity of Antimicrobial Peptide Ctx-Ha." Antimicrobial Agents and Chemotherapy 56, no. 6 (2012): 3004–10. http://dx.doi.org/10.1128/aac.06262-11.

Full text
Abstract:
ABSTRACTIt is well known that cationic antimicrobial peptides (cAMPs) are potential microbicidal agents for the increasing problem of antimicrobial resistance. However, the physicochemical properties of each peptide need to be optimized for clinical use. To evaluate the effects of dimerization on the structure and biological activity of the antimicrobial peptide Ctx-Ha, we have synthesized the monomeric and three dimeric (Lys-branched) forms of the Ctx-Ha peptide by solid-phase peptide synthesis using a combination of 9-fluorenylmethyloxycarbonyl (Fmoc) andt-butoxycarbonyl (Boc) chemical appro
APA, Harvard, Vancouver, ISO, and other styles
35

Ménard, Sandrine, Valentina Förster, Michael Lotz, et al. "Developmental switch of intestinal antimicrobial peptide expression." Journal of Experimental Medicine 205, no. 1 (2008): 183–93. http://dx.doi.org/10.1084/jem.20071022.

Full text
Abstract:
Paneth cell–derived enteric antimicrobial peptides provide protection from intestinal infection and maintenance of enteric homeostasis. Paneth cells, however, evolve only after the neonatal period, and the antimicrobial mechanisms that protect the newborn intestine are ill defined. Using quantitative reverse transcription–polymerase chain reaction, immunohistology, reverse-phase high-performance liquid chromatography, and mass spectrometry, we analyzed the antimicrobial repertoire in intestinal epithelial cells during postnatal development. Surprisingly, constitutive expression of the cathelin
APA, Harvard, Vancouver, ISO, and other styles
36

López-García, Belén, Luis González-Candelas, Enrique Pérez-Payá, and Jose F. Marcos. "Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits." Molecular Plant-Microbe Interactions® 13, no. 8 (2000): 837–46. http://dx.doi.org/10.1094/mpmi.2000.13.8.837.

Full text
Abstract:
A hexapeptide of amino acid sequence Ac-Arg-Lys-Thr-Trp-Phe-Trp-NH 2 was demonstrated to have antimicrobial activity against selected phytopathogenic fungi that cause postharvest decay in fruits. The peptide synthesized with either all D- or all L-amino acids inhibited the in vitro growth of strains of Penicillium italicum, P. digitatum, and Botrytis cinerea, with MICs of 60 to 80 μM and 50% inhibitory concentration (IC50) of 30 to 40 μM. The inhibitory activity of the peptide was both sequence- and fungus-specific since (i) sequence-related peptides lacked activity (including one with five re
APA, Harvard, Vancouver, ISO, and other styles
37

Nüsslein, Klaus, Lachelle Arnt, Jason Rennie, Cullen Owens, and Gregory N. Tew. "Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic." Microbiology 152, no. 7 (2006): 1913–18. http://dx.doi.org/10.1099/mic.0.28812-0.

Full text
Abstract:
The human-mediated use and abuse of classical antibiotics has created a strong selective pressure for the rapid evolution of antibiotic resistance. As resistance levels rise, and the efficacy of classical antibiotics wanes, the intensity of the search for alternative antimicrobials has increased. One class of molecules that has attracted much attention is the antimicrobial peptides (AMPs). They exhibit broad-spectrum activity, they are potent and they are widespread as part of the innate defence system of both vertebrates and invertebrates. However, peptides are complex molecules that suffer f
APA, Harvard, Vancouver, ISO, and other styles
38

Audrain, Bianca, Lionel Ferrières, Amira Zairi, et al. "Induction of the Cpx Envelope Stress Pathway Contributes to Escherichia coli Tolerance to Antimicrobial Peptides." Applied and Environmental Microbiology 79, no. 24 (2013): 7770–79. http://dx.doi.org/10.1128/aem.02593-13.

Full text
Abstract:
ABSTRACTAntimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolip
APA, Harvard, Vancouver, ISO, and other styles
39

Spinello, Angelo, Maria Cusimano, Domenico Schillaci, Luigi Inguglia, Giampaolo Barone та Vincenzo Arizza. "Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus". Marine Drugs 16, № 10 (2018): 366. http://dx.doi.org/10.3390/md16100366.

Full text
Abstract:
With the aim to obtain new antimicrobials against important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, we focused on antimicrobial peptides (AMPs) from Echinoderms. An example of such peptides is Paracentrin 1 (SP1), a chemically synthesised peptide fragment of a sea urchin thymosin. In the present paper, we report on the biological activity of a Paracentrin 1 derivative obtained by recombination. The recombinant paracentrin RP1, in comparison to the synthetic SP1, is 22 amino acids longer and it was considerably more active against the planktonic forms of S. aureus AT
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Yong-lian, and Hsiao-Chang Chan. "S1h1-4 An epididymis-specific antimicrobial peptide has dual functions in sperm maturation(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Das, Bharati, and Maneesh Jain. "A New and Promising Avenue In Selective Antimicrobial Treatment For Particularly Targeted Antimicrobial Peptides." Journal of Advances and Scholarly Researches in Allied Education 15, no. 7 (2018): 69–75. http://dx.doi.org/10.29070/15/57667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hitt, Samantha J., Barney M. Bishop, and Monique L. van Hoek. "Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae." Journal of Medical Microbiology 69, no. 11 (2020): 1262–72. http://dx.doi.org/10.1099/jmm.0.001260.

Full text
Abstract:
Introduction. The rise of carbapenem-resistant enterobacteriaceae (CRE) is a growing crisis that requires development of novel therapeutics. Hypothesis. To this end, cationic antimicrobial peptides (CAMPs) represent a possible source of new potential therapeutics to treat difficult pathogens such as carbapenem-resistant Klebsiella pneumoniae (CRKP), which has gained resistance to many if not all currently approved antibiotics, making treatment difficult. Aim. To examine the anti-CRKP antimicrobial activity of the predicted cathelicidins derived from Varanus komodoensis (Komodo dragon) as well
APA, Harvard, Vancouver, ISO, and other styles
43

Pirtskhalava, Malak, Anthony A. Amstrong, Maia Grigolava, et al. "DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics." Nucleic Acids Research 49, no. D1 (2020): D288—D297. http://dx.doi.org/10.1093/nar/gkaa991.

Full text
Abstract:
Abstract The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is an open-access, comprehensive database containing information on amino acid sequences, chemical modifications, 3D structures, bioactivities and toxicities of peptides that possess antimicrobial properties. DBAASP is updated continuously, and at present, version 3.0 (DBAASP v3) contains >15 700 entries (8000 more than the previous version), including >14 500 monomers and nearly 400 homo- and hetero-multimers. Of the monomeric antimicrobial peptides (AMPs), >12 000 are synthetic, about 2700
APA, Harvard, Vancouver, ISO, and other styles
44

Oyston, P. C. F., M. A. Fox, S. J. Richards, and G. C. Clark. "Novel peptide therapeutics for treatment of infections." Journal of Medical Microbiology 58, no. 8 (2009): 977–87. http://dx.doi.org/10.1099/jmm.0.011122-0.

Full text
Abstract:
As antibiotic resistance increases worldwide, there is an increasing pressure to develop novel classes of antimicrobial compounds to fight infectious disease. Peptide therapeutics represent a novel class of therapeutic agents. Some, such as cationic antimicrobial peptides and peptidoglycan recognition proteins, have been identified from studies of innate immune effector mechanisms, while others are completely novel compounds generated in biological systems. Currently, only selected cationic antimicrobial peptides have been licensed, and only for topical applications. However, research using ne
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Guangshun. "Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction." Antibiotics 9, no. 8 (2020): 491. http://dx.doi.org/10.3390/antibiotics9080491.

Full text
Abstract:
Amphibians are widely distributed on different continents, except for the polar regions. They are important sources for the isolation, purification and characterization of natural compounds, including peptides with various functions. Innate immune antimicrobial peptides (AMPs) play a critical role in warding off invading pathogens, such as bacteria, fungi, parasites, and viruses. They may also have other biological functions such as endotoxin neutralization, chemotaxis, anti-inflammation, and wound healing. This article documents a bioinformatic analysis of over 1000 amphibian antimicrobial pe
APA, Harvard, Vancouver, ISO, and other styles
46

Nava Lara, Rodrigo A., Jesús A. Beltrán, Carlos A. Brizuela, and Gabriel Del Rio. "Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques." Pharmaceuticals 13, no. 9 (2020): 204. http://dx.doi.org/10.3390/ph13090204.

Full text
Abstract:
Polypharmacologic human-targeted antimicrobials (polyHAM) are potentially useful in the treatment of complex human diseases where the microbiome is important (e.g., diabetes, hypertension). We previously reported a machine-learning approach to identify polyHAM from FDA-approved human targeted drugs using a heterologous approach (training with peptides and non-peptide compounds). Here we discover that polyHAM are more likely to be found among antimicrobials displaying a broad-spectrum antibiotic activity and that topological, but not chemical features, are most informative to classify this acti
APA, Harvard, Vancouver, ISO, and other styles
47

He, Dangui, Zhijian Cao, Ruhong Zhang, and Wenhua Li. "Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus." Antibiotics 10, no. 8 (2021): 896. http://dx.doi.org/10.3390/antibiotics10080896.

Full text
Abstract:
Scorpion venom is a mixture of bioactive peptides, among which neurotoxins and antimicrobial peptides serve especially vital functions. Scorpion venom peptides in Buthidae species have been well described, but toxic peptides from non-Buthidae species have been under-investigated. Here, an antimicrobial peptide gene, Ctri9594, was cloned and functionally identified from the venom of the scorpion Chaerilus tricostatus. The precursor nucleotide sequence of Ctri9594 is 199 nt in length, including a 43 nt 5′ UTR, 115 nt 3′ UTR and 210 nt ORF. The ORF encodes 69 amino acid residues, containing a 21
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, Young Soo, and Hyung Joon Cha. "High-Throughput and Facile Assay of Antimicrobial Peptides Using pH-Controlled Fluorescence Resonance Energy Transfer." Antimicrobial Agents and Chemotherapy 50, no. 10 (2006): 3330–35. http://dx.doi.org/10.1128/aac.00455-06.

Full text
Abstract:
ABSTRACT Amphipathic antimicrobial peptides can destroy bacteria cells by inducing membrane permeabilization, forming one strategy for innate defense by various organisms. However, although the antimicrobial peptides are considered a promising alternative for use against multidrug-resistant bacteria, large-scale screening of potential candidate antimicrobial peptides will require a simple, rapid assay for antimicrobial activity. Here, we describe a novel fluorescence resonance energy transfer (FRET)-based assay system for antimicrobial peptides which takes advantage of pH-related changes in FR
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Bin, Peng Lyu, Shuping Xie, et al. "LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi." Biomolecules 9, no. 6 (2019): 242. http://dx.doi.org/10.3390/biom9060242.

Full text
Abstract:
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the sa
APA, Harvard, Vancouver, ISO, and other styles
50

Tanaka, Tsuyoshi, Yoriko Kokuryu, and Tadashi Matsunaga. "Novel Method for Selection of Antimicrobial Peptides from a Phage Display Library by Use of Bacterial Magnetic Particles." Applied and Environmental Microbiology 74, no. 24 (2008): 7600–7606. http://dx.doi.org/10.1128/aem.00162-08.

Full text
Abstract:
ABSTRACT Antimicrobial peptides were isolated from a phage display peptide library using bacterial magnetic particles (BacMPs) as a solid support. The BacMPs obtained from “Magnetospirillum magneticum” strain AMB-1 consist of pure magnetite (50 to 100 nm in size) and are covered with a lipid bilayer membrane derived from the invagination of the inner membrane. BacMPs are easily purified from a culture of magnetotactic bacteria by magnetic separation. Approximately 4 × 1010 PFU of the library phage (complexity, 2.7 × 109) was reacted with BacMPs. The elution of bound phages from BacMPs was perf
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!