Academic literature on the topic 'Antipalindrome'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antipalindrome.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antipalindrome"

1

Dvořáková, Ľubomíra, Stanislav Kruml, and David Ryzák. "Antipalindromic numbers." Acta Polytechnica 61, no. 3 (2021): 428–34. http://dx.doi.org/10.14311/ap.2021.61.0428.

Full text
Abstract:
Everybody has certainly heard about palindromes: words that stay the same when read backwards. For instance, kayak, radar, or rotor. Mathematicians are interested in palindromic numbers: positive integers whose expansion in a certain integer base is a palindrome. The following problems are studied: palindromic primes, palindromic squares and higher powers, multi-base palindromic numbers, etc. In this paper, we define and study antipalindromic numbers: positive integers whose expansion in a certain integer base is an antipalindrome. We present new results concerning divisibility and antipalindr
APA, Harvard, Vancouver, ISO, and other styles
2

Ambrož, Petr, Zuzana Masáková, and Edita Pelantová. "Morphisms generating antipalindromic words." European Journal of Combinatorics 89 (October 2020): 103160. http://dx.doi.org/10.1016/j.ejc.2020.103160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reutenauer, Christophe, and Laurent Vuillon. "Palindromic Closures and Thue-Morse Substitution for Markoff Numbers." Uniform distribution theory 12, no. 2 (2017): 25–35. http://dx.doi.org/10.1515/udt-2017-0013.

Full text
Abstract:
Abstract We state a new formula to compute the Markoff numbers using iterated palindromic closure and the Thue-Morse substitution. The main theorem shows that for each Markoff number m, there exists a word v ∈ {a, b}∗ such that m − 2 is equal to the length of the iterated palindromic closure of the iterated antipalindromic closure of the word av. This construction gives a new recursive construction of the Markoff numbers by the lengths of the words involved in the palindromic closure. This construction interpolates between the Fibonacci numbers and the Pell numbers.
APA, Harvard, Vancouver, ISO, and other styles
4

Moore, J. H., and G. J. Simmons. "Cycle Structure of the DES for Keys Having Palindromic (or Antipalindromic) Sequences of Round Keys." IEEE Transactions on Software Engineering SE-13, no. 2 (1987): 262–73. http://dx.doi.org/10.1109/tse.1987.233150.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Antipalindrome"

1

Blondin, Massé A. (Alexandre). "Sur le défaut palindromique des mots infinis." Mémoire, 2008. http://www.archipel.uqam.ca/1832/1/M10692.pdf.

Full text
Abstract:
Lorsqu'on s'intéresse à l'étude de la structure combinatoire d'un mot infini w, une stratégie classique consiste à calculer sa fonction de complexité, c'est-à-dire à décrire le nombre de mots de longueur n qui apparaissent dans w, pour chaque entier n ≥ 0. Récemment, des chercheurs se sont intéressés à un raffinement de cette notion en introduisant la fonction de complexité palindromique: pour chaque entier n ≥ 0, nous calculons le nombre de palindromes de longueur n apparaissant dans w. Rappelons qu'un palindrome est un mot qui se lit de la même façon de gauche à droite que de droite à gauche
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Antipalindrome"

1

Katz, Nicholas M. "An O(2n) Example." In Convolution and Equidistribution. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691153308.003.0025.

Full text
Abstract:
This chapter works over a finite field k of odd characteristic. Fix an even integer 2n ≤ 4 and a monic polynomial f(x) ɛ k[x] of degree 2n, f(x)=∑i=02nAixi, A2n=1. The following three assumptions are made about f: (1) f has 2n distinct roots in k¯, and A₀ = −1; gcd{i¦Aᵢ ≠ = 0} = 1; and (3) f is antipalindromic, i.e., for f <sup>pal</sup>(x) := x²ⁿf(1/x), we have f <sup>pal</sup>(x) = −f(x).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!