Academic literature on the topic 'Antipredatory behaviour'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antipredatory behaviour.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antipredatory behaviour"
Azevedo, Cristiano S. de, and Robert J. Young. "Shyness and boldness in greater rheas Rhea americana Linnaeus (Rheiformes, Rheidae): the effects of antipredator training on the personality of the birds." Revista Brasileira de Zoologia 23, no. 1 (March 2006): 202–10. http://dx.doi.org/10.1590/s0101-81752006000100012.
Full textYlönen, Hannu. "Vole cycles and antipredatory behaviour." Trends in Ecology & Evolution 9, no. 11 (November 1994): 426–30. http://dx.doi.org/10.1016/0169-5347(94)90125-2.
Full textAzevedo, Cristiano S. de, and Robert J. Young. "Do captive-born greater rheas Rhea americana Linnaeus (Rheiformes, Rheidae) remember antipredator training?" Revista Brasileira de Zoologia 23, no. 1 (March 2006): 194–201. http://dx.doi.org/10.1590/s0101-81752006000100011.
Full textLefcort, Hugh, and Steven M. Eiger. "Antipredatory Behaviour of Feverish Tadpoles: Implications for Pathogen Transmission." Behaviour 126, no. 1-2 (1993): 13–27. http://dx.doi.org/10.1163/156853993x00317.
Full textFava, Gustavo A., and Juan C. Acosta. "Escape distance and escape latency following simulated rapid bird attacks in an Andean lizard, Phymaturus williamsi." Behaviour 155, no. 10-12 (2018): 861–81. http://dx.doi.org/10.1163/1568539x-00003506.
Full textOrtega, Zaida, Abraham Mencía, and Valentín Pérez-Mellado. "Antipredatory behaviour of a mountain lizard towards the chemical cues of its predatory snakes." Behaviour 155, no. 10-12 (2018): 817–40. http://dx.doi.org/10.1163/1568539x-00003504.
Full textReyes-Olivares, Claudio, Alex Vera-Quispe, Alejandro Zúñiga, and Félix A. Urra. "Description of the antipredatory head-wobble behaviour in Chilean rear-fanged snakes Tachymenis peruviana Wiegmann, 1835 and Tachymenis chilensis coronellina Werner, 1898 (Serpentes, Dipsadidae)." Herpetozoa 35 (July 25, 2022): 155–58. http://dx.doi.org/10.3897/herpetozoa.35.e84842.
Full textIbáñez, Alejandro, José Martín, Andrea Gazzola, and Daniele Pellitteri-Rosa. "Freshwater turtles reveal personality traits in their antipredatory behaviour." Behavioural Processes 157 (December 2018): 142–47. http://dx.doi.org/10.1016/j.beproc.2018.08.011.
Full textUgolini, A. "Orientation in the water and antipredatory behaviour in sandhoppers." Marine Behaviour and Physiology 14, no. 4 (May 1989): 223–30. http://dx.doi.org/10.1080/10236248909378709.
Full textDownes, Sharon, and Anke Maria Hoefer. "Antipredatory behaviour in lizards: interactions between group size and predation risk." Animal Behaviour 67, no. 3 (March 2004): 485–92. http://dx.doi.org/10.1016/j.anbehav.2003.05.010.
Full textDissertations / Theses on the topic "Antipredatory behaviour"
Aslanzadeh, Shervin. "Risk perception and antipredatory behaviour of locusts and crickets versus predation strategies of Central netted dragon (Ctenopherus nuchalis)." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10091.
Full textFitzGibbon, Clare Dorothea. "The antipredator behaviour of Thomson's gazelles." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292868.
Full textHoward, Simon William. "Effects of trout on galaxiid growth and antipredator behaviour." Thesis, University of Canterbury. Biological Sciences, 2007. http://hdl.handle.net/10092/1438.
Full textSnider, Madison R. "Antipredator Behavior and Morphology in Isolated Cyprinodont Fishes." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/29880.
Full textNorth Dakota State University. Department of Environmental and Conservation Science
Desert Fishes Council (U.S.)
North American Native Fishes Association
Burke, da Silva Karen. "Antipredator calling by the eastern chipmunk, Tamius striatus." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68157.
Full textExperiments were carried out to determine the function of the trill and chipping. Demographic and contextual effects indicate that the trill is in part a call which functions to warn kin but may also indicate to conspecifics that the caller has escaped into a refuge. An experiment with a tethered cat concluded that chipping is likely to function to deter predators from hunting in the area. This is done through vocal mobbing by several individuals whose home ranges overlap.
Dias, Cleide Rosa. "Foraging and antipredator behaviour in an acarine predator-prey system on tomato." Universidade Federal de Viçosa, 2013. http://locus.ufv.br/handle/123456789/3972.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
As plantas possuem mecanismos de defesa contra os ataques dos herbívoros. Estes mecanismos podem afetar diretamente os herbívoros, por exemplo, plantas podem produzir metabólitos secundários que reduzem ou param o desenvolvimento dos herbívoros, ou indiretamente por meio de interação com os inimigos naturais dos herbívoros. Plantas atacadas podem produzir compostos voláteis atrativos para inimigos naturais. Essas pistas voláteis são indicativas da presença das presas e são importantes para o sucesso do forrageamento de inimigos naturais. Por outro lado, herbívoros também são capazes de perceber pistas indicativas da presença de predadores e usá-las para evitar locais com risco de predação. Comportamentos antipredação aumentam a sobrevivência das presas, no entanto também podem gerar custos. No presente trabalho, foram estudados os comportamentos de forrageamento e antipredação no sistema do tomateiro com os ácaros fitófagos Tetranychus urticae e Tetranychus evansi, e os ácaros predadores Phytoseiulus longipes e Phytoseiulus macropilis. Ambos os predadores foram capazes de reconhecer pistas de tomateiros infestados mostrando preferência por plantas infestadas por T. evansi e T. urticae em relação a plantas limpas, mas não mostram preferência entre as presas. Estes predadores se alimentam de ambas as presas, no entanto P. macropilis não completa seu ciclo de vida se alimentando apenas de T. evansi. Assim, para P. longipes ambasas presas como fonte de alimento adequada, mas para P. macropilis T. evansi é um alimento de qualidade inferior. É possível que P. macropilis não seja capaz de distinguir pistas oriundas de tomateiros infestados por T. evansi ou T. urticae. Adicionalmente, T. evansi é capaz de perceber a presença de P. longipes e P. macropilis, e foi capaz de reconhecer pistas oriundas desses predadores e mudar seu comportamento de acordo com a espécie de predador e da escala espacial. Tetranychus evansi tentou escapar por mais vezes nos discos foliares com pistas de ambos predadores, tendo também redução no tempo de alimentação. No entanto, também há custos associados a estes comportamentos: T. evansi apresentou redução na taxa de oviposição nos discos foliares com pistas de P. longipes, mas não com pistas de P. macropilis, provavelmente por que este predador não é perigoso para T. evansi como P. longipes é. Em uma escala espacial maior (hexágono de plantas) onde os ácaros caminhariam sobre substrato tendo de percorrer longas distâncias e perceber pistas com intensidade provavelmente mais fraca, T. evansi não evitou plantas com predadores. Todos os tomateiros estavam infestados com coespecíficos que produzem grande quantidade de teia, possivelmente T. evansi não evitou plantas com predadores pela possível proteção conferida pela teia. Concluindo, os predadores P. longipes e P. macropilis são capazes de usar pistas de plantas atacadas para localizar suas presas T. evansi e T. urticae, mas não as distinguem. Tetranychus evansi é capaz de perceber a presença de ambos predadores e mostrar comportamento antipredação de acordo com o perigo oferecido pelo predador e a escala espacial envolvida.
Plants have mechanisms to defend themselves against herbivore attacks. These mechanisms may affect the herbivores directly, for example, plants can produce secondary metabolites that reduce or stop the growth of the herbivores, or indirectly by interacting with the natural enemies of the herbivores. Upon herbivore attack, plants are known to produce volatiles that are attractive to natural enemies. These volatile cues are indicative of the presence of prey, and are important for the foraging success of the natural enemies. In return, herbivores are able to recognize cues associated with the presence of predators and use these to avoid patches with predators. Such antipredator behaviour increases the survival of the prey; however, it may also have costs. Here, we studied the antipredator and foraging behaviour of the spider mites Tetranychus urticae and T. evansi, the predatory mites Phytoseiulus longipes and P. macropilis on tomato plants. Although the predators feed on both prey, P. macropilis can not complete its life cycle feeding only on T. evansi. Thus, for P. longipes both prey are adequate food sources, but T. evansi is a bad food source for P. macropilis. Both predators were able to recognize cues from infested or uninfested plants, showing preference for plants infested by T. evansi or T. urticae compared to uninfested plants, but they did not show a preference for plants with either of the two prey.It is possible that P. macropilis are not able to discriminate cues from tomato plants infested by these prey. Additionally, T. evansi can perceive the presence of P. longipes and P. macropilis. This herbivore was able to recognize cues from these predatory mites and to change its behaviour according to the species of predator and spatial scale. The spider mite tried to escape more often from leaf discs with predator cues, and also reduced its time spent feeding. However, there were also costs associated with this antipredator behaviour: T. evansi showed a decrease in oviposition rate on leaf discs with cues from P. longipes, but not with cues from P. macropilis, probably because this predator is not as dangerous to T. evansi as P. longipes is. At a larger spatial scale (hexagon of plants), where the spider mites walked on substrate soil and in all directions, T. evansi did not avoid plants with conspecific and predators; probably it perceived the presence of conspecific that produce high density of web which can protect it against predation. Concluding, the predatory mites P. longipes and P. macropilis can use cues from attacked plants to locate T. evansi and T. urticae, but do not discriminate between these two prey. In turn, T. evansi can perceive the presence of these predators, showing antipredator behaviour towards dangerous and harmless predators, according to the spatial scale.
Hollis-Brown, Lisa Anne. "Individual variation in the antipredator behavior of captive rhesus monkeys (Macaca mulatta) /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textLingle, Susan Harrison. "Antipredator behaviour, coyote predation and habitat segregation of white-tailed deer and mule deer." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624840.
Full textHanson, Anne Lela Fullerton. "Plasticity and tonic processes in the antipredator behavior of rock squirrels (Spermophilus variegatus) /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Full textTaylor, David A. "Ecological and phylogenetic characteristics of consumed red-backed salamanders influence antipredator behavior of conspecifics." Diss., Online access via UMI:, 2006.
Find full textBooks on the topic "Antipredatory behaviour"
D, Brodie Edmund. Functional and genetic integration of color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. 1991.
Find full textPredator-induced changes in life history of adult Chironomous tentans (Diptera: Chironomidae): Costs of larval antipredator behavior of adaptive life history shifts. Ottawa: National Library of Canada, 1993.
Find full textTong, Wenfei. How Birds Behave. CSIRO Publishing, 2020. http://dx.doi.org/10.1071/9781486313297.
Full textBook chapters on the topic "Antipredatory behaviour"
Mori, Akira, and Ryo Ito. "Antipredator behavior." In APA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior., 833–52. Washington: American Psychological Association, 2017. http://dx.doi.org/10.1037/0000011-040.
Full textCaine, Nancy G. "Antipredator Behavior." In Handbook of Primate Behavioral Management, 127–38. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120652-9.
Full textMcElroy, Eric J. "Antipredator Behavioral Mechanisms." In Behavior of Lizards, 143–88. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781498782739-6.
Full textBeckman, Amanda K., Faith O. Hardin, Allison M. Kohler, and Michael L. Morrison. "Sociality and Antipredator Behavior." In Songbird Behavior and Conservation in the Anthropocene, 127–54. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429299568-6.
Full textBaba, Yoshichika, and Hiroto Ogawa. "Cercal System-Mediated Antipredator Behaviors." In The Cricket as a Model Organism, 211–28. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56478-2_14.
Full textEverley, Kirsty A., Andrew N. Radford, and Stephen D. Simpson. "Pile-Driving Noise Impairs Antipredator Behavior of the European Sea Bass Dicentrarchus labrax." In The Effects of Noise on Aquatic Life II, 273–79. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2981-8_32.
Full textMacedonia, Joseph M. "Adaptation and Phylogenetic Constraints in the Antipredator Behavior of Ringtailed and Ruffed Lemurs." In Lemur Social Systems and Their Ecological Basis, 67–84. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2412-4_6.
Full textHeise-Pavlov, Sigrid R. "Evolutionary Aspects of the Use of Predator Odors in Antipredator Behaviors of Lumholtz’s Tree-Kangaroos (Dendrolagus lumholtzi)." In Chemical Signals in Vertebrates 13, 261–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22026-0_19.
Full text"Antipredatory Behavior." In Species of Mind. The MIT Press, 1997. http://dx.doi.org/10.7551/mitpress/6395.003.0008.
Full textBlanchard, D. Caroline, and Robert J. Blanchard. "Antipredator Defense." In The Behavior of the Laboratory Rat, 335–43. Oxford University Press, 2004. http://dx.doi.org/10.1093/acprof:oso/9780195162851.003.0031.
Full textConference papers on the topic "Antipredatory behaviour"
Maji, Chandan, and Debasis Mukherjee. "Antipredator behaviour in a predator-prey system in presence of a competitor." In RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127486.
Full textBorduin, Russell, Karthik Ramaswamy, Ashwin Mohan, Rex Cocroft, and Satish S. Nair. "Modeling the Rapid Transmission of Information Within a Social Group of Insects: Emergent Patterns in the Antipredator Signals." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2298.
Full text