Academic literature on the topic 'Antiprotozoal agents'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiprotozoal agents.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antiprotozoal agents"

1

Graebin, C., F. Uchoa, L. Bernardes, V. Campo, I. Carvalho, and V. Eifler-Lima. "Antiprotozoal Agents: An Overview." Anti-Infective Agents in Medicinal Chemistry 8, no. 4 (October 1, 2009): 345–66. http://dx.doi.org/10.2174/187152109789760199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chibale, Kelly. "Towards broadspectrum antiprotozoal agents." Arkivoc 2002, no. 9 (January 17, 2003): 93–98. http://dx.doi.org/10.3998/ark.5550190.0003.910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Phillipson, J., and Colin Wright. "Antiprotozoal Agents from Plant Sources." Planta Medica 57, S 1 (October 1991): S53—S59. http://dx.doi.org/10.1055/s-2006-960230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khaw, M., and C. B. Panosian. "Human antiprotozoal therapy: past, present, and future." Clinical Microbiology Reviews 8, no. 3 (July 1995): 427–39. http://dx.doi.org/10.1128/cmr.8.3.427.

Full text
Abstract:
Human protozoal infections are ubiquitous and occur worldwide. In many cases, antiprotozoal agents currently in use predate the modern antibiotic era. Despite the relative lag in development of new antiprotozoal agents, the 1990s have witnessed an increasing level of interest in these infections, inspired by international travel and immigration, a growing awareness of antiprotozoal drug resistance, and the significance of acute and recrudescent protozoal infections in immunosuppressed hosts. This review summarizes for nonclinician readers the past, present, and future therapies for common human protozoal infections, as well as pharmacologic mechanisms of action and resistance and common toxicities associated with these agents.
APA, Harvard, Vancouver, ISO, and other styles
5

McClure, C. D., and Linda L. Nolan. "HERB EXTRACTS AS POTENTIAL ANTIPROTOZOAL AGENTS." Acta Horticulturae, no. 426 (August 1996): 91–104. http://dx.doi.org/10.17660/actahortic.1996.426.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ismail, Mohamed A., Reto Brun, Tanja Wenzler, Farial A. Tanious, W. David Wilson, and David W. Boykin. "Dicationic biphenyl benzimidazole derivatives as antiprotozoal agents." Bioorganic & Medicinal Chemistry 12, no. 20 (October 2004): 5405–13. http://dx.doi.org/10.1016/j.bmc.2004.07.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bassanini, Ivan, Silvia Parapini, Nicoletta Basilico, and Anna Sparatore. "Novel Hydrophilic Riminophenazines as Potent Antiprotozoal Agents." ChemMedChem 14, no. 22 (November 5, 2019): 1940–49. http://dx.doi.org/10.1002/cmdc.201900522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mendonça-Junior, Francisco Jaime Bezerra. "Special Issue “Drug Discovery of Antiprotozoal Agents”." Pharmaceuticals 17, no. 2 (January 30, 2024): 176. http://dx.doi.org/10.3390/ph17020176.

Full text
Abstract:
Protozoal diseases, such as leishmaniasis, malaria, African sleeping sickness, Chagas disease, amoebiasis, giardiasis, cryptococcosis, and toxoplasmosis (among others), affect and/or have the potential to infect more than one billion people worldwide [...]
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Kim, Hayat, and Shin. "Recent Advances in the Discovery of Novel Antiprotozoal Agents." Molecules 24, no. 21 (October 28, 2019): 3886. http://dx.doi.org/10.3390/molecules24213886.

Full text
Abstract:
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012–2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
APA, Harvard, Vancouver, ISO, and other styles
10

Upadhayaya, Ram Shankar, Shailesh S. Dixit, Andras Földesi, and Jyoti Chattopadhyaya. "New antiprotozoal agents: Their synthesis and biological evaluations." Bioorganic & Medicinal Chemistry Letters 23, no. 9 (May 2013): 2750–58. http://dx.doi.org/10.1016/j.bmcl.2013.02.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Antiprotozoal agents"

1

Thapar, Mita Maini. "Pharmacokinetics and dynamics of Atovaquone and Proguanil (Malarone®) /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-035-4/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haupt, Hayley Claire. "Exploring the potential of chloroquine and quinacrine derivatives as new antiprotozoal and tumour drug resistance reversal agents." Master's thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/6974.

Full text
Abstract:
Bibliography: leaves 108-113.
Compounds containing the quinoline and acridine moieties have been utilized extensively in the search for new antiprotozoal and multidrug resistance reversal agents. Hence, these moieties formed the basis for the synthesis of new compounds. New sulfonamides, ureas and amine analogues were synthesized and evaluated for inhibitory activity against trypanothione reductase (TryR), in vitro activity against the causative agents of trypanosomiasis, leishmaniasis as well as chloroquine-sensitive and resistant malaria. Some were also evaluated as potential tumour multidrug resistance reversal agents.
APA, Harvard, Vancouver, ISO, and other styles
3

Rodenko, Boris. "A new entry to adenosine analogues via purine nitration combinatorial synthesis of antiprotozoal agents and adenosine receptor ligands /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/71739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moyo, Sipho Dugunye. "Comparative study of clan CA cysteine proteases: an insight into the protozoan parasites." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1020309.

Full text
Abstract:
Protozoan infections such as Malaria, Leishmaniasis, Toxoplasmosis, Chaga’s disease and African trypanosomiasis caused by the Plasmodium, Leishmania, Toxoplasma and Trypanosoma genuses respectively; inflict a huge economic, health and social impact in endemic regions particularly tropical and sub-tropical regions. The combined infections are estimated at over a billion annually and approximately 1.1 million deaths annually. The global burden of the protozoan infections is worsened by the increased drug resistance, toxicity and the relatively high cost of treatment and prophylaxis. Therefore there has been a high demand for new drugs and drug targets that play a role in parasite virulence. Cysteine proteases have been validated as viable drug targets due to their role in the infectivity stage of the parasites within the human host. There is a variety of cysteine proteases hence they are subdivided into families and in this study we focus on the clan CA, papain family C1 proteases. The current inhibitors for the protozoan cysteine proteases lack selectivity and specificity which contributes to drug toxicity. Therefore there is a need to identify the differences and similarities between the host, vector and protozoan proteases. This study uses a variety of bioinformatics tools to assess these differences and similarities. The Plasmodium cysteine protease FP-2 is the most characterized protease hence it was used as a reference to all the other proteases and its homologs were retrieved, aligned and the evolutionary relationships established. The homologs were also analysed for common motifs and the physicochemical properties determined which were validated using the Kruskal-Wallis test. These analyses revealed that the host and vector cathepsins share similar properties while the parasite cathepsins differ. At sub-site level sub-site 2 showed greater variations suggesting diverse ligand specificity within the proteases, a revelation that is vital in the design of antiprotozoan inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
5

Пришляк, О. Я., А. Л. Процик, О. П. Бойчук, and У. Я. Мазурок. "Лямбліоз: клініко-епідеміологічні особливості та лікувальна корекція." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/43134.

Full text
Abstract:
Лямбліоз входить в число найбільш поширених паразитарних захворювань в світі. За даними Всесвітньої організації охорони здоров'я, десята частина населення земної кулі інвазована лямбліями. Розрізняють три основні шляхи передачі лямбліозу: водний, контактно-побутовий і харчовий. Паразит викликає не тільки механічне подразнення стінки тонкого кишечнику, але і може призвести до патологічних рефлекторних реакцій з боку органів травлення.
APA, Harvard, Vancouver, ISO, and other styles
6

Oliveira, Sara Alexandra Craveiro. "Novos sistemas terapêuticos para o tratamento de doenças negligenciadas provocadas por protozoários: especial ênfase para Leishmaniose e doença de Chagas." Master's thesis, [s.n.], 2015. http://hdl.handle.net/10284/5185.

Full text
Abstract:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
As Doenças Negligenciadas ou doenças tropicais, advêm de um conjunto de factores biológicos, ecológicos e evolutivos, com uma elevada incidência nos países de clima tropical. A situação económica desfavorável e o baixo desenvolvimento, estão também directamente relacionados com a sua ocorrência. Estas doenças representam um encargo significativo para a saúde em certas partes do mundo. Os medicamentos disponíveis no tratamento das mesmas não são capazes de atender às suas necessidades clínicas. Como tal, tem havido um esforço significativo para o desenvolvimento de novos sistemas terapêuticos ao longo dos últimos anos. Estes desenvolvimentos têm sido liderados por várias instituições ou agências governamentais com o intuito de obter progressos a concepção de novos fármacos contra estas afecções. Os temas abordados neste estudo incidirão essencialmente sobre a Leishmaniose e a Doença de Chagas. Ambas são causadas por diferentes protozoários, desenvolvendo diferentes manifestações e sintomatologia, dependendo da espécie. Os sistemas terapêuticos (ST) convencionais apresentam inúmeras resistências, pelo que este estudo visa a descrição de novos sistemas terapêuticos (NST) com o intuito de melhorar a biodisponibilidade dos fármacos no respectivo local de acção. Entre eles distinguem-se os lipossomas, niossomas, nanopartículas de lípidos sólidos, nanopartículas poliméricas, nanoemulsões, micelas, entre outros que serão abordados ao longo deste trabalho. Neglected diseases or tropical disorders, come from a number of biological, ecological and evolutionary factors, with high incidence in tropical countries. The unfavorable economic situation and the low development, are also directly related to its occurrence. These diseases represent a significant burden to health in certain parts of the world. The drugs available for treating these diseases are not able to satisfy their clinical needs. However, over the last years, there has been a significant effort at developing DDS. Several institutions or governmental agencies have been leading these developments in order to obtain progress when developing new drugs against these diseases. The discussed themes in this study will coincide essentially on leishmaniasis and Chagas disease. Both are caused by different protozoa, and develop different manifestations and symptoms, according to the specific species. The conventional therapeutic systems already present a lot of resistances, and the intent of this study is the discovery of DDS looking to improve the drugs bioavailability in the respective place of action. These include liposomes, niosomes, solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, micelles, among others that will be addressed throughout this work.
APA, Harvard, Vancouver, ISO, and other styles
7

Couture, Karine. "Etude de la métallation en série diazinique 1) premier échange iode-lithium avec les alkylamidures de lithium 2) amination électrophile 3) première métallation sans groupe directeur." Rouen, 1995. http://www.theses.fr/1995ROUES020.

Full text
Abstract:
Ce travail consiste en l'étude de la réaction de métallation en série diazinique. Dans une première partie, nous avons pu mettre en évidence pour la première fois en série diazinique, un mécanisme d'halogen-dance avec migration de l'iode. De plus, nous avons pu observer pour la première fois dans cette série, un exceptionnel échange iode-métal avec les alkylamidures de lithium. Cette réaction a été appliquée à la synthèse de leshmaniacides. Dans une seconde partie, nous avons mis au point l'amination électrophile par métallation en série diazinique. Cette réaction d'amination a été appliquée à la synthèse de molécules biologiquement actives et nous a permis d'accéder à un azaanalogue de la Névirapine ainsi qu'à des précurseurs de sulfamides connus. Dans une troisième partie, nous avons tenté d'élargir la gamme des groupes ortho-directeurs en série pyrimidinique (NHCOtBu, CONHtBu). Dans la dernière partie, une nouvelle fonctionnalisation directe des diazines sans groupe ortho-directeur a été réalisée avec succès
APA, Harvard, Vancouver, ISO, and other styles
8

Betbeder, Didier. "Synthese et etude du mode d'action d'inhibiteurs de voies metaboliques du trypanosome." Toulouse 3, 1988. http://www.theses.fr/1988TOU30029.

Full text
Abstract:
Etude d'inhibiteurs de voies metaboliques du trypanosome. Synthese et action d'inhibiteurs possibles d'enzymes de replication. Etude d'enzymes de la glycolyse, cible cle dans le trypanosome, celui-ci utilisant le glucose comme seule source d'energie. Puis caracterisation d'une proteine qui presente les proprietes de recepteur vis-a-vis d'une nouvelle famille de trypanocides derives du diphenyl methane
APA, Harvard, Vancouver, ISO, and other styles
9

Sola, I., A. Artigas, M. C. Taylor, Stephen Y. Gbedema, B. Perez, M. V. Clos, Colin W. Wright, J. M. Kelly, and D. Muñoz-Torrero. "Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines." 2014. http://hdl.handle.net/10454/7496.

Full text
Abstract:
We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Antiprotozoal agents"

1

Gutiérrez, Rosa Martha Pérez. Handbook of compounds with antiprotozoal activity isolated from plants. New York: Nova Science Publishers, Inc., 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Organization, World Health, ed. WHO model prescribing information: Drugs used in parasitic diseases. Geneva: WHO, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

K, Majumder Hemanta, ed. Drug targets in kinetoplastid parasites. New York: Springer Science+Business Media, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Abdi Y., ed. Handbook of drugs for tropical parasitic infections. 2nd ed. London: Taylor & Francis, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

L, Gorbach Sherwood. 1999 Pocketbook of Antimicrobial Therapy & Prevention. Lippincott Williams & Wilkins, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gutierrez, Rosa Martha Perez. Handbook of Compounds of Antiprotozoal Activity Isolated from Plants. Nova Science Pub Inc, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

World Health Organization (WHO). Model Prescribing Information. World Health Organization, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

World Health Organization (WHO). Who Model Prescribing Information: Drugs Used in Parasitic Diseases. World Health Organization, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

World Health Organization (WHO). Who Model Prescribing Information: Drugs Used in Skin Diseases. World Health Organization, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

World Health Organization (WHO). Who Model Prescribing Information: Drugs Used in Anaesthesia. World Health Organisation, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Antiprotozoal agents"

1

Newbold, C. Jamie. "Assessing Antiprotozoal Agents." In In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies, 47–53. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3297-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chabala, John C., and Max W. Miller. "Chemistry of Antiprotozoal Agents." In Chemotherapy of Parasitic Diseases, 25–85. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, Geoffrey. "Antiprotozoal and Anthelmintic Agents." In Drug Interactions in Infectious Diseases, 581–611. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-213-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kiang, Tony K. L., Kyle John Wilby, and Mary H. H. Ensom. "Antiprotozoal and Anthelmintic Agents." In Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions, 515–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72416-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jack, David B. "Pharmacokinetic data on antiprotozoal agents." In Handbook of Clinical Pharmacokinetic Data, 53–55. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-22495-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Franklin, T. J., and G. A. Snow. "Antifungal, antiprotozoal and antiviral agents." In Biochemistry of Antimicrobial Action, 137–60. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0825-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Looker, Douglas L., J. Joseph Marr, and Ronald L. Stotish. "Modes of Action of Antiprotozoal Agents." In Chemotherapy of Parasitic Diseases, 193–207. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1233-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Phillipson, J. David, Colin W. Wright, Geoffrey C. Kirby, and David C. Warhurst. "Tropical Plants as Sources of Antiprotozoal Agents." In Phytochemical Potential of Tropical Plants, 1–40. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1783-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adetunji, Charles Oluwaseun, and Oyetunde T. Oyeyemi. "Antiprotozoal Activity of Some Medicinal Plants against Entamoeba histolytica, the Causative Agent of Amoebiasis." In Medical Biotechnology, Biopharmaceutics, Forensic Science and Bioinformatics, 341–58. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178903-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Croft, Simon L., and Karin Seifert. "Antiprotozoal agents." In Antibiotic and Chemotherapy, 406–26. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-7020-4064-1.00035-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Antiprotozoal agents"

1

Salehi, P., F. Nemati, K. Babanezhad-Harikandei, N. Hadian, M. Bararjanian, and I. Bruno. "Novel noscapine derivatives as potent anticancer and antiprotozoal agents." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rahman, Adeyemi, and Isabel Rozas. "Derivatives of guanidine-based DNA minor groove binders as antiprotozoal agents." In 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nué-Martínez, J. Jonathan, Ibon Alkorta, and Christophe Dardonville. "Solving a chemical challenge in the synthesis of antiprotozoal agents targeting the DNA minor groove: A high yield synthesis of <em>trans</em>-azoxybenzene." In 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography