Journal articles on the topic 'Antitrypanosomal agents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antitrypanosomal agents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Steverding, Dietmar, and Kevin M. Tyler. "Novel antitrypanosomal agents." Expert Opinion on Investigational Drugs 14, no. 8 (2005): 939–55. http://dx.doi.org/10.1517/13543784.14.8.939.
Full textIssa, Victor Sarli, and Edimar Alcides Bocchi. "Antitrypanosomal agents: treatment or threat?" Lancet 376, no. 9743 (2010): 768. http://dx.doi.org/10.1016/s0140-6736(10)61372-4.
Full textSchmidt, Ines, Sarah Göllner, Antje Fuß, et al. "Bistacrines as potential antitrypanosomal agents." Bioorganic & Medicinal Chemistry 25, no. 16 (2017): 4526–31. http://dx.doi.org/10.1016/j.bmc.2017.06.051.
Full textRyczak, Jasmin, Ma'ayan Papini, Annette Lader, et al. "2-Arylpaullones are selective antitrypanosomal agents." European Journal of Medicinal Chemistry 64 (June 2013): 396–400. http://dx.doi.org/10.1016/j.ejmech.2013.03.065.
Full textRassi, Anis, Anis Rassi, and José Antonio Marin-Neto. "Antitrypanosomal agents: treatment or threat? – Authors' reply." Lancet 376, no. 9743 (2010): 768–69. http://dx.doi.org/10.1016/s0140-6736(10)61373-6.
Full textSilva, Daniel G., J. Robert Gillespie, Ranae M. Ranade, et al. "New Class of Antitrypanosomal Agents Based on Imidazopyridines." ACS Medicinal Chemistry Letters 8, no. 7 (2017): 766–70. http://dx.doi.org/10.1021/acsmedchemlett.7b00202.
Full textDing, Dazhong, Yaxue Zhao, Qingqing Meng, et al. "Discovery of Novel Benzoxaborole-Based Potent Antitrypanosomal Agents." ACS Medicinal Chemistry Letters 1, no. 4 (2010): 165–69. http://dx.doi.org/10.1021/ml100013s.
Full textRodríguez Arce, Esteban, Eugenia Putzu, Michel Lapier, et al. "New heterobimetallic ferrocenyl derivatives are promising antitrypanosomal agents." Dalton Transactions 48, no. 22 (2019): 7644–58. http://dx.doi.org/10.1039/c9dt01317b.
Full textQiao, Zhitao, Qi Wang, Fenglong Zhang, et al. "Chalcone–Benzoxaborole Hybrid Molecules as Potent Antitrypanosomal Agents." Journal of Medicinal Chemistry 55, no. 7 (2012): 3553–57. http://dx.doi.org/10.1021/jm2012408.
Full textPapadopoulou, Maria V., William D. Bloomer, Howard S. Rosenzweig, Ivan P. O'Shea, Shane R. Wilkinson, and Marcel Kaiser. "3-Nitrotriazole-based piperazides as potent antitrypanosomal agents." European Journal of Medicinal Chemistry 103 (October 2015): 325–34. http://dx.doi.org/10.1016/j.ejmech.2015.08.042.
Full textCogo, Juliana, Juan Cantizani, Ignacio Cotillo, et al. "Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents." Bioorganic & Medicinal Chemistry 26, no. 14 (2018): 4065–72. http://dx.doi.org/10.1016/j.bmc.2018.06.033.
Full textVeale, Clinton G. L., Dustin Laming, Tarryn Swart, Kelly Chibale, and Heinrich C. Hoppe. "Exploring the Antiplasmodial 2‐Aminopyridines as Potential Antitrypanosomal Agents." ChemMedChem 14, no. 24 (2019): 2034–41. http://dx.doi.org/10.1002/cmdc.201900492.
Full textKryshchyshyn, Anna, Danylo Kaminskyy, Oleksandr Karpenko, Andrzej Gzella, Philippe Grellier, and Roman Lesyk. "Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents." European Journal of Medicinal Chemistry 174 (July 2019): 292–308. http://dx.doi.org/10.1016/j.ejmech.2019.04.052.
Full textKryshchyshyn, Anna, Danylo Kaminskyy, Philippe Grellier, and Roman Lesyk. "Trends in research of antitrypanosomal agents among synthetic heterocycles." European Journal of Medicinal Chemistry 85 (October 2014): 51–64. http://dx.doi.org/10.1016/j.ejmech.2014.07.092.
Full textBelmonte-Reche, Efres, Marta Martínez-García, Pablo Peñalver, et al. "Tyrosol and hydroxytyrosol derivatives as antitrypanosomal and antileishmanial agents." European Journal of Medicinal Chemistry 119 (August 2016): 132–40. http://dx.doi.org/10.1016/j.ejmech.2016.04.047.
Full textSealey-Cardona, Marco, Simon Cammerer, Simon Jones, et al. "Kinetic Characterization of Squalene Synthase from Trypanosoma cruzi: Selective Inhibition by Quinuclidine Derivatives." Antimicrobial Agents and Chemotherapy 51, no. 6 (2007): 2123–29. http://dx.doi.org/10.1128/aac.01454-06.
Full textTullius Scotti, Marcus, Luciana Scotti, Hamilton Ishiki, et al. "Natural Products as a Source for Antileishmanial and Antitrypanosomal Agents." Combinatorial Chemistry & High Throughput Screening 19, no. 7 (2016): 537–53. http://dx.doi.org/10.2174/1386207319666160506123921.
Full textKryshchyshyn, Anna, Danylo Kaminskyy, Philippe Grellier, and Roman Lesyk. "ChemInform Abstract: Trends in Research of Antitrypanosomal Agents Among Synthetic Heterocycles." ChemInform 45, no. 45 (2014): no. http://dx.doi.org/10.1002/chin.201445286.
Full textChianese, Giuseppina, Ernesto Fattorusso, Fernando Scala, et al. "Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin." Organic & Biomolecular Chemistry 10, no. 35 (2012): 7197. http://dx.doi.org/10.1039/c2ob26124c.
Full textPapadopoulou, Maria V., William D. Bloomer, Howard S. Rosenzweig, Shane R. Wilkinson, and Marcel Kaiser. "Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents." European Journal of Medicinal Chemistry 87 (November 2014): 79–88. http://dx.doi.org/10.1016/j.ejmech.2014.09.045.
Full textRomero, Angel H., Jonathan Rodríguez, Yael García-Marchan, Jacques Leañez, Xenón Serrano-Martín, and Simón E. López. "Aryl- or heteroaryl-based hydrazinylphthalazine derivatives as new potential antitrypanosomal agents." Bioorganic Chemistry 72 (June 2017): 51–56. http://dx.doi.org/10.1016/j.bioorg.2017.03.008.
Full textBenítez, Julio, Aline Cavalcanti de Queiroz, Isabel Correia, et al. "New oxidovanadium(IV) N -acylhydrazone complexes: Promising antileishmanial and antitrypanosomal agents." European Journal of Medicinal Chemistry 62 (April 2013): 20–27. http://dx.doi.org/10.1016/j.ejmech.2012.12.036.
Full textEttari, Roberta, Santo Previti, Sandro Cosconati, et al. "Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents." Bioorganic & Medicinal Chemistry Letters 26, no. 15 (2016): 3453–56. http://dx.doi.org/10.1016/j.bmcl.2016.06.047.
Full textGamaleldin, Noha M., Walid Bakeer, Ahmed M. Sayed, et al. "Exploration of Chemical Diversity and Antitrypanosomal Activity of Some Red Sea-Derived Actinomycetes Using the OSMAC Approach Supported by LC-MS-Based Metabolomics and Molecular Modelling." Antibiotics 9, no. 9 (2020): 629. http://dx.doi.org/10.3390/antibiotics9090629.
Full textOkaiyeto, Kunle, and Anthony I. Okoh. "In Vitro Assessment of Antiplasmodial and Antitrypanosomal Activities of Chloroform, Ethyl Acetate and Ethanol Leaf Extracts of Oedera genistifolia." Applied Sciences 10, no. 19 (2020): 6987. http://dx.doi.org/10.3390/app10196987.
Full textAugustyns, K., K. Amssoms, A. Yamani, P. Rajan, and A. Haemers. "Trypanothione as a Target in the Design of Antitrypanosomal and Antileishmanial Agents." Current Pharmaceutical Design 7, no. 12 (2001): 1117–41. http://dx.doi.org/10.2174/1381612013397564.
Full textFiggitt, D., W. Denny, P. Chavalitshewinkoon, P. Wilairat, and R. Ralph. "In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents." Antimicrobial Agents and Chemotherapy 36, no. 8 (1992): 1644–47. http://dx.doi.org/10.1128/aac.36.8.1644.
Full textKosower, EM, AE Radkowsky, AH Fairlamb, SL Croft, and RA Neal. "Bimane cyclic esters, possible stereologues of trypanothione as antitrypanosomal agents. Bimanes 29." European Journal of Medicinal Chemistry 30, no. 9 (1995): 659–71. http://dx.doi.org/10.1016/0223-5234(96)88283-3.
Full textHernandes, Marcelo Zaldini, Marcelo Montenegro Rabello, Ana Cristina Lima Leite, et al. "Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents." Bioorganic & Medicinal Chemistry 18, no. 22 (2010): 7826–35. http://dx.doi.org/10.1016/j.bmc.2010.09.056.
Full textJones, Amy J., Marcel Kaiser, and Vicky M. Avery. "Identification and Characterization of FTY720 for the Treatment of Human African Trypanosomiasis." Antimicrobial Agents and Chemotherapy 60, no. 3 (2015): 1859–61. http://dx.doi.org/10.1128/aac.02116-15.
Full textWang, Jiayi, Marcel Kaiser, and Brent Copp. "Investigation of Indolglyoxamide and Indolacetamide Analogues of Polyamines as Antimalarial and Antitrypanosomal Agents." Marine Drugs 12, no. 6 (2014): 3138–60. http://dx.doi.org/10.3390/md12063138.
Full textScalese, Gonzalo, Ignacio Machado, Isabel Correia, et al. "Exploring oxidovanadium(iv) homoleptic complexes with 8-hydroxyquinoline derivatives as prospective antitrypanosomal agents." New Journal of Chemistry 43, no. 45 (2019): 17756–73. http://dx.doi.org/10.1039/c9nj02589h.
Full textTurner, William R., and Leslie M. Werbel. "Novel bis[1,6-dihydro-6,6-dimethyl-1,3,5-triazine-2,4-diamines] as antitrypanosomal agents." Journal of Medicinal Chemistry 28, no. 11 (1985): 1728–40. http://dx.doi.org/10.1021/jm00149a032.
Full textChanquia, Santiago N., Facundo Larregui, Vanesa Puente, Carlos Labriola, Elisa Lombardo, and Guadalupe García Liñares. "Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents." Bioorganic Chemistry 83 (March 2019): 526–34. http://dx.doi.org/10.1016/j.bioorg.2018.10.053.
Full textCarvalho, Samir A., Larisse O. Feitosa, Márcio Soares, et al. "Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents." European Journal of Medicinal Chemistry 54 (August 2012): 512–21. http://dx.doi.org/10.1016/j.ejmech.2012.05.041.
Full textPapadopoulou, Maria V., William D. Bloomer, Howard S. Rosenzweig, et al. "Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation." Bioorganic & Medicinal Chemistry 23, no. 19 (2015): 6467–76. http://dx.doi.org/10.1016/j.bmc.2015.08.014.
Full textCunha, André Barreto, Ronan Batista, María Ángeles Castro, and Jorge Mauricio David. "Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues." Molecules 26, no. 4 (2021): 1081. http://dx.doi.org/10.3390/molecules26041081.
Full textFlittner, Dagmar, Marcel Kaiser, Pascal Mäser, Norberto P. Lopes, and Thomas J. Schmidt. "The Alkaloid-Enriched Fraction of Pachysandra terminalis (Buxaceae) Shows Prominent Activity against Trypanosoma brucei rhodesiense." Molecules 26, no. 3 (2021): 591. http://dx.doi.org/10.3390/molecules26030591.
Full textTwumasi, Emmanuella Bema, Pearl Ihuoma Akazue, Kwaku Kyeremeh, et al. "Antischistosomal, antionchocercal and antitrypanosomal potentials of some Ghanaian traditional medicines and their constituents." PLOS Neglected Tropical Diseases 14, no. 12 (2020): e0008919. http://dx.doi.org/10.1371/journal.pntd.0008919.
Full textWalzer, P. D., C. K. Kim, J. Foy, M. J. Linke, and M. T. Cushion. "Cationic antitrypanosomal and other antimicrobial agents in the therapy of experimental Pneumocystis carinii pneumonia." Antimicrobial Agents and Chemotherapy 32, no. 6 (1988): 896–905. http://dx.doi.org/10.1128/aac.32.6.896.
Full textKOSOWER, E. M., A. E. RADKOWSKY, A. H. FAIRLAMB, S. L. CROFT, and R. A. NEAL. "ChemInform Abstract: Bimane Cyclic Esters, Possible Stereologues of Trypanothione as Antitrypanosomal Agents. Bimanes 29." ChemInform 27, no. 2 (2010): no. http://dx.doi.org/10.1002/chin.199602197.
Full textDing, Dazhong, Qingqing Meng, Guangwei Gao, et al. "Design, Synthesis, and Structure−Activity Relationship ofTrypanosoma bruceiLeucyl-tRNA Synthetase Inhibitors as Antitrypanosomal Agents." Journal of Medicinal Chemistry 54, no. 5 (2011): 1276–87. http://dx.doi.org/10.1021/jm101225g.
Full textPapadopoulou, Maria V., William D. Bloomer, Howard S. Rosenzweig, et al. "Novel 3-Nitro-1H-1,2,4-triazole-Based Amides and Sulfonamides as Potential Antitrypanosomal Agents." Journal of Medicinal Chemistry 55, no. 11 (2012): 5554–65. http://dx.doi.org/10.1021/jm300508n.
Full textJadav, Surender S., Vishnu N. Badavath, Ramesh Ganesan, Narayana M. Ganta, Dominique Besson, and Venkatesan Jayaprakash. "Biological Evaluation of 2-aminothiazole Hybrid as Antimalarial and Antitrypanosomal Agents: Design and Synthesis." Anti-Infective Agents 18, no. 2 (2020): 101–8. http://dx.doi.org/10.2174/2211352516666181016122537.
Full textValente, Maria, Víctor M. Castillo-Acosta, Antonio E. Vidal, and Dolores González-Pacanowska. "Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention." Parasitology 146, no. 14 (2019): 1743–54. http://dx.doi.org/10.1017/s0031182019001355.
Full textKryshchyshyn, Anna, Danylo Kaminskyy, Igor Nektegayev, Philippe Grellier, and Roman Lesyk. "Isothiochromenothiazoles—A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei." Scientia Pharmaceutica 86, no. 4 (2018): 47. http://dx.doi.org/10.3390/scipharm86040047.
Full textOluwafemi, Awotunde J., Emmanuel O. Okanla, Pelayo Camps, et al. "Evaluation of Cryptolepine and Huperzine Derivatives as Lead Compounds towards New Agents for the Treatment of Human African Trypanosomiasis." Natural Product Communications 4, no. 2 (2009): 1934578X0900400. http://dx.doi.org/10.1177/1934578x0900400205.
Full textCogo, Juliana, Vanessa Kaplum, Diego Pereira Sangi, Tânia Ueda-Nakamura, Arlene Gonçalves Corrêa, and Celso Vataru Nakamura. "Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents." European Journal of Medicinal Chemistry 90 (January 2015): 107–23. http://dx.doi.org/10.1016/j.ejmech.2014.11.018.
Full textFernández, Mariana, Lorena Becco, Isabel Correia, et al. "Oxidovanadium(IV) and dioxidovanadium(V) complexes of tridentate salicylaldehyde semicarbazones: Searching for prospective antitrypanosomal agents." Journal of Inorganic Biochemistry 127 (October 2013): 150–60. http://dx.doi.org/10.1016/j.jinorgbio.2013.02.010.
Full textLarayetan, Rotimi, Zacchaeus S. Ololade, Oluranti O. Ogunmola, and Ayodele Ladokun. "Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antitrypanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus." Evidence-Based Complementary and Alternative Medicine 2019 (August 28, 2019): 1–14. http://dx.doi.org/10.1155/2019/5410923.
Full text