Academic literature on the topic 'AP-1 [Adaptor proteins-1]'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'AP-1 [Adaptor proteins-1].'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "AP-1 [Adaptor proteins-1]"

1

Fernández, G. Esteban, and Gregory S. Payne. "Laa1p, a Conserved AP-1 Accessory Protein Important for AP-1 Localization in Yeast." Molecular Biology of the Cell 17, no. 7 (2006): 3304–17. http://dx.doi.org/10.1091/mbc.e06-02-0096.

Full text
Abstract:
AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent α-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes.
APA, Harvard, Vancouver, ISO, and other styles
2

Bonifacino, Juan S. "Adaptor proteins involved in polarized sorting." Journal of Cell Biology 204, no. 1 (2014): 7–17. http://dx.doi.org/10.1083/jcb.201310021.

Full text
Abstract:
Polarized cells such as epithelial cells and neurons exhibit different plasma membrane domains with distinct protein compositions. Recent studies have shown that sorting of transmembrane proteins to the basolateral domain of epithelial cells and the somatodendritic domain of neurons is mediated by recognition of signals in the cytosolic domains of the proteins by adaptors. These adaptors are components of protein coats associated with the trans-Golgi network and/or recycling endosomes. The clathrin-associated adaptor protein 1 (AP-1) complex plays a preeminent role in this process, although other adaptors and coat proteins, such as AP-4, ARH, Numb, exomer, and retromer, have also been implicated.
APA, Harvard, Vancouver, ISO, and other styles
3

Čopič, Alenka, Trevor L. Starr, and Randy Schekman. "Ent3p and Ent5p Exhibit Cargo-specific Functions in Trafficking Proteins between the Trans-Golgi Network and the Endosomes in Yeast." Molecular Biology of the Cell 18, no. 5 (2007): 1803–15. http://dx.doi.org/10.1091/mbc.e06-11-1000.

Full text
Abstract:
The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes.
APA, Harvard, Vancouver, ISO, and other styles
4

Huser, Sonja, Gregor Suri, Pascal Crottet, and Martin Spiess. "Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane." Biochemical Journal 450, no. 1 (2013): 73–83. http://dx.doi.org/10.1042/bj20121373.

Full text
Abstract:
The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)–GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.
APA, Harvard, Vancouver, ISO, and other styles
5

Salazar, G., B. Craige, M. L. Styers, et al. "BLOC-1 Complex Deficiency Alters the Targeting of Adaptor Protein Complex-3 Cargoes." Molecular Biology of the Cell 17, no. 9 (2006): 4014–26. http://dx.doi.org/10.1091/mbc.e06-02-0103.

Full text
Abstract:
Mutational analyses have revealed many genes that are required for proper biogenesis of lysosomes and lysosome-related organelles. The proteins encoded by these genes assemble into five distinct complexes (AP-3, BLOC-1-3, and HOPS) that either sort membrane proteins or interact with SNAREs. Several of these seemingly distinct complexes cause similar phenotypic defects when they are rendered defective by mutation, but the underlying cellular mechanism is not understood. Here, we show that the BLOC-1 complex resides on microvesicles that also contain AP-3 subunits and membrane proteins that are known AP-3 cargoes. Mouse mutants that cause BLOC-1 or AP-3 deficiencies affected the targeting of LAMP1, phosphatidylinositol-4-kinase type II alpha, and VAMP7-TI. VAMP7-TI is an R-SNARE involved in vesicle fusion with late endosomes/lysosomes, and its cellular levels were selectively decreased in cells that were either AP-3- or BLOC-1–deficient. Furthermore, BLOC-1 deficiency selectively altered the subcellular distribution of VAMP7-TI cognate SNAREs. These results indicate that the BLOC-1 and AP-3 protein complexes affect the targeting of SNARE and non-SNARE AP-3 cargoes and suggest a function of the BLOC-1 complex in membrane protein sorting.
APA, Harvard, Vancouver, ISO, and other styles
6

Peden, Andrew A., Viola Oorschot, Boris A. Hesser, Cary D. Austin, Richard H. Scheller, and Judith Klumperman. "Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins." Journal of Cell Biology 164, no. 7 (2004): 1065–76. http://dx.doi.org/10.1083/jcb.200311064.

Full text
Abstract:
The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal compartment that also exhibits budding profiles positive for AP-1. AP-3 colocalizes with clathrin, but to a lesser extent than does AP-1. The AP-3– and AP-1–bearing tubular compartments contain endocytosed transferrin, transferrin receptor, asialoglycoprotein receptor, and low amounts of the cation-independent mannose 6-phosphate receptor and the lysosome-associated membrane proteins (LAMPs) 1 and 2. Quantitative analysis revealed that of these distinct cargo proteins, only LAMP-1 and LAMP-2 are concentrated in the AP-3–positive membrane domains. Moreover, recycling of endocytosed LAMP-1 and CD63 back to the cell surface is greatly increased in AP-3–deficient cells. Based on these data, we propose that AP-3 defines a novel pathway by which lysosomal membrane proteins are transported from tubular sorting endosomes to lysosomes.
APA, Harvard, Vancouver, ISO, and other styles
7

Chi, Susan, Hong Cao, Jing Chen, and Mark A. McNiven. "Eps15 Mediates Vesicle Trafficking from thetrans-Golgi Network via an Interaction with the Clathrin Adaptor AP-1." Molecular Biology of the Cell 19, no. 8 (2008): 3564–75. http://dx.doi.org/10.1091/mbc.e07-10-0997.

Full text
Abstract:
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2–binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15–AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.
APA, Harvard, Vancouver, ISO, and other styles
8

Fölsch, Heike, Marc Pypaert, Peter Schu, and Ira Mellman. "Distribution and Function of Ap-1 Clathrin Adaptor Complexes in Polarized Epithelial Cells." Journal of Cell Biology 152, no. 3 (2001): 595–606. http://dx.doi.org/10.1083/jcb.152.3.595.

Full text
Abstract:
Expression of the epithelial cell–specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD μ subunit, μ1A, being replaced by the closely related μ1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged μ1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.
APA, Harvard, Vancouver, ISO, and other styles
9

Chakrabarti, R., M. Joly, and S. Corvera. "Redistribution of clathrin-coated vesicle adaptor complexes during adipocytic differentiation of 3T3-L1 cells." Journal of Cell Biology 123, no. 1 (1993): 79–87. http://dx.doi.org/10.1083/jcb.123.1.79.

Full text
Abstract:
Mechanisms for intracellular retention of proteins are induced during adipocytic differentiation of 3T3-L1 cells. To investigate the potential role of clathrin lattices in these retention processes, we performed a morphological and biochemical analysis of coated vesicle components in 3T3-L1 cells. Optical sectioning and image restoration revealed a marked increase in the staining of clathrin and beta adaptins in the perinuclear region of cells with differentiation. In addition, predominance of beta (subunit of the AP-2, plasma membrane adaptor) over beta' (subunit of the AP-1, Golgi adaptor) adaptin was observed in immunoblots of clathrin-coated vesicles purified from nondifferentiated fibroblasts, and this ratio was reversed in coated vesicles purified from differentiated adipocytes. These results indicate that the relative abundance of TGN-derived clathrin lattices increases markedly during adipocytic differentiation. Subcellular fractionation indicated that cytosolic AP-1 and AP-2 adaptors comprised approximately 70% of the total cellular adaptor pool. Interestingly, neither the concentration nor the relative ratio of cytosolic AP-1 to AP-2 adaptors increased significantly during differentiation. These data suggest that the increase in TGN-derived lattices results from differentiation-induced mechanisms for enhanced assembly or stabilization of adaptors on Golgi membranes. Interestingly, double-immunofluorescence microscopy also revealed that whereas extensive colocalization between clathrin and beta adaptins occurred both in fibroblasts and adipocytes, structures stained only with anti-adaptin antibody could be detected. Taken together these results suggest that membranes coated with adaptors, but not clathrin, can exist in these cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Okamoto, Curtis T., та Young Y. Jeng. "An immunologically distinct β-adaptin on tubulovesicles of gastric oxyntic cells". American Journal of Physiology-Cell Physiology 275, № 5 (1998): C1323—C1329. http://dx.doi.org/10.1152/ajpcell.1998.275.5.c1323.

Full text
Abstract:
Clathrin and the γ-adaptin subunit of the AP-1 clathrin adaptor have been previously identified on H-K-ATPase-rich tubulovesicles from gastric acid secretory (oxyntic) cells [C. T. Okamoto, S. M. Karam, Y. Y. Jeng, J. G. Forte, and J. Goldenring. Am. J. Physiol. 274 ( Cell Physiol. 43): C1017–C1029]. We further characterized this AP-1 adaptor from rabbit and hog tubulovesicles biochemically and immunologically. Clathrin coat proteins were stripped from purified tubulovesicular membranes and fractionated by hydroxyapatite chromatography. The AP-1 adaptor appears to elute at 200 mM sodium phosphate, based on the presence of proteins in this fraction that are immunoreactive with antibodies against three of the four subunits of this heterotetrameric complex: the γ-, μ1-, and ς1-adaptin subunits. Although the putative β-adaptin subunit in this fraction is not immunoreactive with the anti-β-adaptin monoclonal antibody (MAb), this β-adaptin is immunoreactive with polyclonal antibodies (PAbs) directed against the peptide sequence Gly625-Asp-Leu-Leu-Gly-Asp-Leu-Leu-Asn-Leu-Asp-Leu-Gly-Pro-Pro-Val640, a region conserved between β1- and β2-adaptins that is thought to be involved in the binding of clathrin heavy chain. Immunoprecipitation of the AP-1 adaptor complex from this fraction with anti-γ-adaptin MAb 100/3 resulted in the coimmunoprecipitation of the β-adaptin that did not react with the anti-β-adaptin MAb but did react with the anti-β-adaptin PAbs. In contrast, immunoprecipitation of the AP-1 adaptor complex from crude clathrin-coated vesicles from brain resulted in the coimmunoprecipitation of a β-adaptin that was recognized by both the anti-β-adaptin MAb and PAbs. These results suggest that the tubulovesicular AP-1 adaptor complex may be distinct from that found in the trans-Golgi network and may contain an immunologically distinct β-adaptin. This immunologically distinct β-adaptin may be diagnostic of apical tubulovesicular endosomes of epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "AP-1 [Adaptor proteins-1]"

1

Dugast, Marc. "Mécanismes de tri impliqués dans le trafic intracellulaire des molécules du CMH II et dans les effets de Nef du VIH-1 sur les CMH et CD4." Paris 7, 2005. http://www.theses.fr/2005PA077016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fessart, Delphine. "Regulation of the endocytic adaptor proteins [beta] arrestin and AP-2 during clathrin-mediated internalization of Angiotensin II type 1 receptor." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102501.

Full text
Abstract:
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors. They transduce the signals mediated by a diverse range of signalling molecules, including ions, amines, and peptides, as well as photons, to mediate intracellular functions. These receptors play a fundamental role in many physiological responses such as cardiovascular functions. To remain responsive to their environment, cells must find a way to rapidly desensitize and resensitize their activated GPCRs. Desensitization of receptors, for instance, involves the phosphorylation of receptors by G protein-coupled receptor kinase (GRKs) followed by the recruitment of betaarrestin. This interferes with the binding of the G protein (the signalling effector). betaarrestin then targets the receptors to the clathrin endocytosis pathway, and serves as an adaptor linking receptors to other signalling pathways. Internalization of receptors serves not only to remove desensitized receptors from the plasma membrane, but also to engage receptors in the resensitization pathway.
The internalization of Angiotensin II (Ang II) type 1 receptor (AT1R) is controversial and poorly described. Therefore, our laboratory studies the mechanisms behind AT1R internalization. The agonist-induced internalization of AT1R begins with the formation of a complex including betaarrestin, the clathrin adaptor AP-2, and the tyrosine protein kinase, c-Src. In turn, this c-Src recruitment regulates the clathrin-mediated internalization of AT1R by controlling the formation of endocytic complexes during endocytosis. Indeed, the recruitment of c-Src is involved in the dissociation of AP-2 during receptor internalization. Based on our evidence that AP-2 and c-Src can be found in the same complex, we suggested that AP-2 could be phosphorylated by c-Src. Indeed, we found that Ang II induced the c-Src-mediated tyrosine phosphorylation of the beta-subunit of AP-2 (beta2-adaptin). We were able to map one of the tyrosines in beta2-adaptin and assess its role in regulating the binding of its principal partner: betaarrestin. The phosphorylation state of beta2-adaptin dictates its association profile with betaarrestin: when phosphorylated it reduces its binding to betaarrestin. Finally, we proposed a model for AT1R internalization. Overall, these studies are significant because they allow a better understanding of the underlying mechanism that regulates the initial steps of clathrin-coated vesicle endocytosis of AT1R.
APA, Harvard, Vancouver, ISO, and other styles
3

Foote, Christopher. "The role of the AP-1 adaptor complex in trafficking between the trans-Golgi Network and endosomal system." Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4172.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2005.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (November 7, 2006) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Tavares, Lucas Alves. "O envolvimento da proteína adaptadora 1 (AP-1) no mecanismo de regulação negativa do receptor CD4 por Nef de HIV-1." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-06012017-113215/.

Full text
Abstract:
O Vírus da Imunodeficiência Humana (HIV) é o agente etiológico da Síndrome da Imunodeficiência Adquirida (AIDS). A AIDS é uma doença de distribuição mundial, e estima-se que existam atualmente pelo menos 36,9 milhões de pessoas infectadas com o vírus. Durante o seu ciclo replicativo, o HIV promove diversas alterações na fisiologia da célula hospedeira a fim de promover sua sobrevivência e potencializar a replicação. A rápida progressão da infecção pelo HIV-1 em humanos e em modelos animais está intimamente ligada à função da proteína acessória Nef. Dentre as diversas ações de Nef está a regulação negativa de proteínas importantes na resposta imunológica, como o receptor CD4. Sabe-se que esta ação resulta da indução da degradação de CD4 em lisossomos, mas os mecanismos moleculares envolvidos ainda são totalmente elucidados. Nef forma um complexo tripartite com a cauda citosólica de CD4 e a proteína adaptadora 2 (AP-2), em vesículas revestidas por clatrina nascentes, induzindo a internalização e degradação lisossomal de CD4. Pesquisas anteriores demonstraram que o direcionamento de CD4 aos lisossomos por Nef envolve a entrada do receptor na via dos corpos multivesiculares (MVBs), por um mecanismo atípico, pois, embora não necessite da ubiquitinação de carga, depende da ação de proteínas que compõem os ESCRTs (Endosomal Sorting Complexes Required for Transport) e da ação de Alix, uma proteína acessória da maquinaria ESCRT. Já foi reportado que Nef interage com subunidades dos complexos AP-1, AP-2, AP-3 e Nef não parece interagir com subunidades de AP-4 e AP-5. Entretanto, o papel da interação de Nef com AP-1 e AP-3 na regulação negativa de CD4 ainda não está totalmente elucidado. Ademais, AP-1, AP-2 e AP-3 são potencialmente heterogêneos devido à existência de isoformas múltiplas das subunidades codificadas por diferentes genes. Todavia, existem poucos estudos para demonstrar se as diferentes combinações de isoformas dos APs são formadas e se possuem propriedades funcionais distintas. O presente trabalho procurou identificar e caracterizar fatores celulares envolvidos na regulação do tráfego intracelular de proteínas no processo de regulação negativa de CD4 induzido por Nef. Mais especificamente, este estudo buscou caracterizar a participação do complexo AP-1 na modulação negativa de CD4 por Nef de HIV-1, através do estudo funcional das duas isoformas de ?-adaptina, subunidades de AP-1. Utilizando a técnica de Pull-down demonstramos que Nef é capaz de interagir com ?2. Além disso, nossos dados de Imunoblot indicaram que a proteína ?2-adaptina, e não ?1-adaptina, é necessária no processo de degradação lisossomal de CD4 por Nef e que esta participação é conservada para degradação de CD4 por Nef de diferentes cepas virais. Ademais, por citometria de fluxo, o silenciamento de ?2, e não de ?1, compromete a diminuição dos níveis de CD4 por Nef da membrana plasmática. A análise por imunofluorêsncia indireta também revelou que a diminuição dos níveis de ?2 impede a redistribuição de CD4 por Nef para regiões perinucleares, acarretando no acúmulo de CD4, retirados por Nef da membrana plasmática, em endossomos primários. A depleção de ?1A, outra subunidade de AP-1, acarretou na diminuição dos níveis celulares de ?2 e ?1, bem como, no comprometimento da eficiente degradação de CD4 por Nef. Além disso, foi possível observar que, ao perturbar a maquinaria ESCRT via super-expressão de HRS (uma subunidade do complexo ESCRT-0), ocorreu um acumulo de ?2 em endossomos dilatados contendo HRS-GFP, nos quais também detectou-se CD4 que foi internalizado por Nef. Em conjunto, os resultados indicam que ?2-adaptina é uma importante molécula para o direcionamento de CD4 por Nef para a via ESCRT/MVB, mostrando ser uma proteína relevante no sistema endo-lisossomal. Ademais, os resultados indicaram que as isoformas ?-adaptinas não só possuem funções distintas, mas também parecem compor complexos AP-1 com diferentes funções celulares, já que apenas a variante AP-1 contendo ?2, mas não ?1, participa da regulação negativa de CD4 por Nef. Estes estudos contribuem para o melhor entendimento dos mecanismos moleculares envolvidos na atividade de Nef, que poderão também ajudar na melhor compreensão da patogênese do HIV e da síndrome relacionada. Em adição, este trabalho contribui para o entendimento de processos fundamentais da regulação do tráfego de proteínas transmembrana no sistema endo-lisossomal.
The Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS). AIDS is a disease which has a global distribution, and it is estimated that there are currently at least 36.9 million people infected with the virus. During the replication cycle, HIV promotes several changes in the physiology of the host cell to promote their survival and enhance replication. The fast progression of HIV-1 in humans and animal models is closely linked to the function of an accessory protein Nef. Among several actions of Nef, one is the most important is the down-regulation of proteins from the immune response, such as the CD4 receptor. It is known that this action causes CD4 degradation in lysosome, but the molecular mechanisms are still incompletely understood. Nef forms a tripartite complex with the cytosolic tail of the CD4 and adapter protein 2 (AP-2) in clathrin-coated vesicles, inducing CD4 internalization and lysosome degradation. Previous research has demonstrated that CD4 target to lysosomes by Nef involves targeting of this receptor to multivesicular bodies (MVBs) pathway by an atypical mechanism because, although not need charging ubiquitination, depends on the proteins from ESCRTs (Endosomal Sorting Complexes Required for Transport) machinery and the action of Alix, an accessory protein ESCRT machinery. It has been reported that Nef interacts with subunits of AP- 1, AP-2, AP-3 complexes and Nef does not appear to interact with AP-4 and AP-5 subunits. However, the role of Nef interaction with AP-1 or AP-3 in CD4 down-regulation is poorly understood. Furthermore, AP-1, AP-2 and AP-3 are potentially heterogeneous due to the existence of multiple subunits isoforms encoded by different genes. However, there are few studies to demonstrate if the different combinations of APs isoforms are form and if they have distinct functional properties. This study aim to identify and characterize cellular factors involved on CD4 down-modulation induced by Nef from HIV-1. More specifically, this study aimed to characterize the involvement of AP-1 complex in the down-regulation of CD4 by Nef HIV-1 through the functional study of the two isoforms of ?-adaptins, AP-1 subunits. By pull-down technique, we showed that Nef is able to interact with ?2. In addition, our data from immunoblots indicated that ?2- adaptin, not ?1-adaptin, is required in Nef-mediated targeting of CD4 to lysosomes and the ?2 participation in this process is conserved by Nef from different viral strains. Furthermore, by flow cytometry assay, ?2 depletion, but not ?1 depletion, compromises the reduction of surface CD4 levels induced by Nef. Immunofluorescence microscopy analysis also revealed that ?2 depletion impairs the redistribution of CD4 by Nef to juxtanuclear region, resulting in CD4 accumulation in primary endosomes. Knockdown of ?1A, another subunit of AP-1, resulted in decreased cellular levels of ?1 and ?2 and, compromising the efficient CD4 degradation by Nef. Moreover, upon artificially stabilizing ESCRT-I in early endosomes, via overexpression of HRS, internalized CD4 accumulates in enlarged HRS-GFP positive endosomes, where co-localize with ?2. Together, the results indicate that ?2-adaptin is a molecule that is essential for CD4 targeting by Nef to ESCRT/MVB pathway, being an important protein in the endo-lysosomal system. Furthermore, the results indicate that ?-adaptins isoforms not only have different functions, but also seem to compose AP-1 complex with distinct cell functions, and only the AP-1 variant comprising ?2, but not ?1, acts in the CD4 down-regulation induced by Nef. These studies contribute to a better understanding on the molecular mechanisms involved in Nef activities, which may also help to improve the understanding of the HIV pathogenesis and the related syndrome. In addition, this work contributes with the understanding of primordial process regulation on intracellular trafficking of transmembrane proteins.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Jing. "PI(4)-dependent recruitment of clathrin adaptors to the trans-Golgi Network." 2005. http://edissertations.library.swmed.edu/pdf/WangJ042905/WangJing.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mishra, Ratnakar. "Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice." Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0003-C12E-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burgess, Jason. "The Clathrin Adaptor AP-1 and Type II Phosphatidylinositol 4-Kinase are Required for Glue Granule Biogenesis in Drosophila." Thesis, 2012. http://hdl.handle.net/1807/33847.

Full text
Abstract:
Regulated secretion of hormones, digestive enzymes and other biologically active molecules requires formation of secretory granules. However, the molecular machinery required for secretory granule biogenesis is incompletely understood. I used powerful genetic approaches available in the fruit fly Drosophila melanogaster to investigate the factors required for biogenesis of mucin-containing ‘glue granules,’ which form within epithelial cells of the third-instar larval salivary gland. I discovered that clathrin and the clathrin adaptor protein complex (AP-1), as well the enzyme type II phosphatidylinositol 4-kinase (PI4KII), are indispensable for glue granule biogenesis. Clathrin and AP-1 are necessary for maturation of exocrine, endocrine and neuroendocrine secretory granules in mammalian cells. I found that Drosophila clathrin and AP-1 colocalize at the TGN and that clathrin recruitment requires AP-1. I further showed that clathrin and AP-1 colocalize with secretory cargo at the TGN and on glue granules. Finally, I demonstrated that loss of clathrin or AP-1 leads to a profound block in secretory granule biogenesis. These findings establish a novel role for AP-1/clathrin-dependent trafficking in the formation of mucin-containing secretory granules. Type II phosphatidylinositol 4-kinase (PI4KII) generates the membrane lipid phosphatidylinositol 4-phosphate (PI4P) at the trans-Golgi network and is required to recruit cargo to endosomes in mammalian cells. I generated null mutations in the sole Drosophila PI4KII and demonstrated a role for PI4KII in both glue granule and pigment granule biogenesis. PI4KII mutant salivary gland cells exhibit small glue granules and mislocalize glue protein to abnormally large late endosomes. Additionally, PI4KII mutants exhibit altered distribution of the granule specific SNARE, SNAP-24. These data point to a crucial role for PI4KII in sorting of regulated secretory products during granule biogenesis. Together, my results indicate that the larval salivary gland is a valuable system for investigating molecular mechanisms involved in secretory granule biogenesis, and provide a framework for future studies using this system.
APA, Harvard, Vancouver, ISO, and other styles
8

Durand, Loreleï. "PC7 : une protéase sécrétoire énigmatique ayant une fonction de sheddase et un ciblage cellulaire unique." Thèse, 2019. http://hdl.handle.net/1866/22519.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "AP-1 [Adaptor proteins-1]"

1

"Adaptor Proteins (AP)." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography