To see the other types of publications on this topic, follow the link: Apatite de type silicates de lanthane.

Journal articles on the topic 'Apatite de type silicates de lanthane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Apatite de type silicates de lanthane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yoshioka, H. "Oxide ionic conductivity of apatite-type lanthanum silicates." Journal of Alloys and Compounds 408-412 (February 2006): 649–52. http://dx.doi.org/10.1016/j.jallcom.2004.12.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Li Peng, and Zhi Hua Ren. "Synthesis, Structure and Electrical Properties of Pr-Doped Apatite-Type Lanthanum Silicates." Advanced Materials Research 1094 (March 2015): 155–59. http://dx.doi.org/10.4028/www.scientific.net/amr.1094.155.

Full text
Abstract:
Apatite-type lanthanum silicates doped with Pr3+ at the La site, La10-xPrxSi6O27 (x = 0, 1, 2, 3, 4, 4.5), were synthesized via sol-gel process. Thermal behavior of the dried gel of La10-xPrxSi6O27 sample was studied using TG/DTA. X-ray diffraction, SEM and complex impedance analysis were used to investigate the microstructure and electrical properties of La10-xPrxSi6O27 ceramics. The XRD results indicated the maximum doping quantity of Pr3+ is x = 4.5. Lanthanum silicates doped with Pr3+ cations have a higher total conductivity than that of undoped lanthanum silicates. The enhanced total cond
APA, Harvard, Vancouver, ISO, and other styles
3

SHI, Qingle, and Hua ZHANG. "Electrical properties of iron doped apatite-type lanthanum silicates." Journal of Rare Earths 30, no. 12 (2012): 1235–39. http://dx.doi.org/10.1016/s1002-0721(12)60212-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kharlamova, Tamara, Svetlana Pavlova, Vladislav Sadykov, et al. "Mechanochemical Synthesis of Fe-Doped Apatite-Type Lanthanum Silicates." European Journal of Inorganic Chemistry 2010, no. 4 (2010): 589–601. http://dx.doi.org/10.1002/ejic.200900867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pandis, Pavlos K., Dimitris E. Perros, and Vassilis N. Stathopoulos. "Doped apatite-type lanthanum silicates in CO oxidation reaction." Catalysis Communications 114 (August 2018): 98–103. http://dx.doi.org/10.1016/j.catcom.2018.06.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujii, Kotaro, Masatomo Yashima, Keisuke Hibino, et al. "High oxide-ion conductivity in Si-deficient La9.565(Si5.826□0.174)O26 apatite without interstitial oxygens due to the overbonded channel oxygens." Journal of Materials Chemistry A 6, no. 23 (2018): 10835–46. http://dx.doi.org/10.1039/c8ta02237b.

Full text
Abstract:
Overbonding of the channel oxygens in the apatite-type lanthanum silicates was found to be a key for the high oxide-ion conductivities by the present single-crystal neutron and X-ray diffraction studies.
APA, Harvard, Vancouver, ISO, and other styles
7

Kharlamova, T., S. Pavlova, V. Sadykov, et al. "Low-temperature synthesis and characterization of apatite-type lanthanum silicates☆." Solid State Ionics 179, no. 21-26 (2008): 1018–23. http://dx.doi.org/10.1016/j.ssi.2008.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kharlamova, Tamara, Svetlana Pavlova, Vladislav Sadykov, et al. "Low-Temperature Synthesis Methods of Doped Apatite-Type Lanthanum Silicates." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 40, no. 13 (2007): 1187–91. http://dx.doi.org/10.1252/jcej.07we145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Yong, Dong-Kyu Shin, Eui-Chol Shin, Hyun-Ho Seo, and Jong-Sook Lee. "Oxide ion conduction anisotropy deconvoluted in polycrystalline apatite-type lanthanum silicates." Journal of Materials Chemistry 21, no. 9 (2011): 2940. http://dx.doi.org/10.1039/c0jm03242e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kharlamova, T. S., A. S. Matveev, A. V. Ishchenko, et al. "Synthesis and physicochemical and catalytic properties of apatite-type lanthanum silicates." Kinetics and Catalysis 55, no. 3 (2014): 361–71. http://dx.doi.org/10.1134/s0023158414030057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Noviyanti, Atiek Rostika, Dani Gustaman Syarif, Riansyah Amynurdin, Iwan Hastiawan, Iman Rahayu, and Yati B. Yuliyati. "Konduktivitas Apatit Lantanum Silikat La9.33Si6O26 Hasil Sintesis Hidrotermal dengan Mineraliser NaOH dan KOH." ALCHEMY Jurnal Penelitian Kimia 14, no. 1 (2018): 1. http://dx.doi.org/10.20961/alchemy.14.1.8468.1-15.

Full text
Abstract:
<p>Apatit lantanum silikat banyak digunakan sebagai elektrolit pada sel bahan bakar padatan (SOFC). Beberapa oksida apatit lantanum silikat La<sub>9.33</sub>Si<sub>6</sub>O<sub>26 </sub>telah disintesis dengan metode hidrotermal guna mengamati pentingnya peranan mineraliser terhadap karakternya. Penelitian ini bertujuan untuk mengetahui pengaruh jenis dan konsentrasi mineraliser terhadap kristalinitas, ukuran partikel dan hubungannya dengan sifat konduktivitas oksida apatit lantanum silikat. Struktur, ukuran partikel dan konduktivitas oksida apatit mas
APA, Harvard, Vancouver, ISO, and other styles
12

Kim, Dae-Young, Gwang-Ho Jeong, and Sung-Gap Lee. "Electrical Properties of Bi-doped Apatite-type Lanthanum Silicates Materials for SOFCs." Journal of the Korean Institute of Electrical and Electronic Material Engineers 25, no. 6 (2012): 486–90. http://dx.doi.org/10.4313/jkem.2012.25.6.486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kharlamova, T., S. Pavlova, V. Sadykov, et al. "Fe- and Al-doped apatite-type lanthanum silicates: Structure and property characterization." Solid State Ionics 180, no. 11-13 (2009): 796–99. http://dx.doi.org/10.1016/j.ssi.2008.12.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gasparyan, H., S. Neophytides, D. Niakolas, et al. "Synthesis and characterization of doped apatite-type lanthanum silicates for SOFC applications." Solid State Ionics 192, no. 1 (2011): 158–62. http://dx.doi.org/10.1016/j.ssi.2010.11.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yoshioka, Hideki. "Enhancement of Ionic Conductivity of Apatite-Type Lanthanum Silicates Doped With Cations." Journal of the American Ceramic Society 90, no. 10 (2007): 3099–105. http://dx.doi.org/10.1111/j.1551-2916.2007.01862.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Masson, Olivier, Abid Berghout, Emilie Béchade, et al. "Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates." Science and Technology of Advanced Materials 18, no. 1 (2017): 644–53. http://dx.doi.org/10.1080/14686996.2017.1362939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jothinathan, E., O. Van der Biest, and J. Vleugels. "Electrophoretic deposition of apatite type lanthanum silicates for SOFC half cell production." Advances in Applied Ceramics 111, no. 8 (2012): 459–65. http://dx.doi.org/10.1179/1743676112y.0000000015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tao, Shanwen, and John T. S. Irvine. "Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process." Materials Research Bulletin 36, no. 7-8 (2001): 1245–58. http://dx.doi.org/10.1016/s0025-5408(01)00625-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

FUENTES, A., E. RODRIGUEZREYNA, L. MARTINEZGONZALEZ, M. MACZKA, J. HANUZA, and U. AMADOR. "Room-temperature synthesis of apatite-type lanthanum silicates by mechanically milling constituent oxides." Solid State Ionics 177, no. 19-25 (2006): 1869–73. http://dx.doi.org/10.1016/j.ssi.2006.02.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Iwata, Tomoyuki, Emilie Béchade, Koichiro Fukuda, et al. "Lanthanum- and Oxygen-Deficient Crystal Structures of Oxide-Ion Conducting Apatite-Type Silicates." Journal of the American Ceramic Society 91, no. 11 (2008): 3714–20. http://dx.doi.org/10.1111/j.1551-2916.2008.02731.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Béchade, Emilie, Olivier Masson, Tomoyuki Iwata, et al. "Diffusion Path and Conduction Mechanism of Oxide Ions in Apatite-Type Lanthanum Silicates." Chemistry of Materials 21, no. 12 (2009): 2508–17. http://dx.doi.org/10.1021/cm900783j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Beaudet-Savignat, S., A. Vincent, S. Lambert, and F. Gervais. "Oxide ion conduction in Ba, Ca and Sr doped apatite-type lanthanum silicates." Journal of Materials Chemistry 17, no. 20 (2007): 2078. http://dx.doi.org/10.1039/b615104c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Saoudel, Assia, Abderrezak Amira, and Noureddine Azzouz. "Structure and ionic conductivity of cerium doped La9.33-xCexSi6O26 apatite-type lanthanum silicates." Journal of the Australian Ceramic Society 56, no. 4 (2020): 1261–67. http://dx.doi.org/10.1007/s41779-020-00465-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xiang, Jun, Zhan-Guo Liu, Jia-Hu Ouyang, and Fu-Yao Yan. "Synthesis, structure and electrical properties of rare-earth doped apatite-type lanthanum silicates." Electrochimica Acta 65 (March 2012): 251–56. http://dx.doi.org/10.1016/j.electacta.2012.01.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fleet, Michael E., and Xiaoyang Liu. "High-pressure rare earth silicates: Lanthanum silicate with barium phosphate structure, holmium silicate apatite, and lutetium disilicate type X." Journal of Solid State Chemistry 178, no. 11 (2005): 3275–83. http://dx.doi.org/10.1016/j.jssc.2005.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Zhao Xiang, Bu Yin Li, and Jia Liu. "Synthesis and Impedance Spectroscopy of Ga-Doped La9.33(SiO4)6O2 Apatite Oxide Ion Conductor." Key Engineering Materials 434-435 (March 2010): 723–26. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.723.

Full text
Abstract:
Apatite materials are interesting alternative solid oxide fuel cell (SOFC) electrolytes because of their open structure including tunnels for the diffusion of oxide ions and their good chemical stability. However, the conductivity was still relative low when it was used as SOFC in the intermediate operating temperature range. So the apatite-type lanthanum silicates/germanates and doping were widely researched for enhancing conductivity recently. This study reports the influence of Ga doping on conductivity of the apatite phase La9.33(SiO4)6O2 according to the formula La9.33+x/3(SiO4)6-x(GaO4)x
APA, Harvard, Vancouver, ISO, and other styles
27

Bonhomme, Claire, Sophie Beaudet-Savignat, Thierry Chartier, Alexandre Maître, Anne-Laure Sauvet, and Bernard Soulestin. "Sintering kinetics and oxide ion conduction in Sr-doped apatite-type lanthanum silicates, La9Sr1Si6O26.5." Solid State Ionics 180, no. 36-39 (2009): 1593–98. http://dx.doi.org/10.1016/j.ssi.2009.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rodríguez-Reyna, E., A. F. Fuentes, M. Maczka, J. Hanuza, K. Boulahya, and U. Amador. "Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling." Journal of Solid State Chemistry 179, no. 2 (2006): 522–31. http://dx.doi.org/10.1016/j.jssc.2005.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kharlamova, Tamara, Svetlana Pavlova, Vladislav A. Sadykov, et al. "Structure and Transport Properties of Doped Apatite-type Lanthanum Silicates Prepared via Mechanochemical Route." ECS Transactions 25, no. 2 (2019): 1791–800. http://dx.doi.org/10.1149/1.3205720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Saoudel, Assia, Abderrezak Amira, and Noureddine Azzouz. "Correction to: Structure and ionic conductivity of cerium doped La9.33−xCexSi6O26 apatite-type lanthanum silicates." Journal of the Australian Ceramic Society 56, no. 4 (2020): 1269. http://dx.doi.org/10.1007/s41779-020-00486-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

FUKUDA, Koichiro. "Syntheses and Oxide-Ion Conductivity of Highly c-Axis-Oriented Polycrystals of Apatite-Type Lanthanum Silicates." Nihon Kessho Gakkaishi 56, no. 1 (2014): 43–48. http://dx.doi.org/10.5940/jcrsj.56.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kinoshita, Tomohiro, Tomoyuki Iwata, Emilie Béchade, et al. "Effect of Mg substitution on crystal structure and oxide-ion conductivity of apatite-type lanthanum silicates." Solid State Ionics 181, no. 21-22 (2010): 1024–32. http://dx.doi.org/10.1016/j.ssi.2010.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nunotani, Naoyoshi, Naoki Moriyama, Kenji Matsuo, and Nobuhito Imanaka. "Novel Catalysts for Methane Combustion Based on Cobalt-Doped Lanthanum Silicates Having an Apatite-type Structure." ACS Applied Materials & Interfaces 9, no. 46 (2017): 40344–50. http://dx.doi.org/10.1021/acsami.7b14069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kharlamova, Tamara, Svetlana Pavlova, Vladislav Sadykov, et al. "Al-Doped Apatite-Type Nanocrystalline Lanthanum Silicates Prepared by Mechanochemical Synthesis: Phase, Structural and Microstructural Study." European Journal of Inorganic Chemistry 2008, no. 6 (2008): 939–47. http://dx.doi.org/10.1002/ejic.200700972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shi, Qingle, Lihua Lu, Yanwei Zeng, and Hua Zhang. "Influence of pH on the property of apatite-type lanthanum silicates prepared by sol-gel process." Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, no. 5 (2012): 841–46. http://dx.doi.org/10.1007/s11595-012-0559-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kharlamova, Tamara, Olga Vodyankina, Alexander Matveev, et al. "The structure and texture genesis of apatite-type lanthanum silicates during their synthesis by co-precipitation." Ceramics International 41, no. 10 (2015): 13393–408. http://dx.doi.org/10.1016/j.ceramint.2015.07.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Shi, Qingle, Lihua Lu, Hongjian Jin, Hua Zhang, and Yanwei Zeng. "Electrical properties and thermal expansion of cobalt doped apatite-type lanthanum silicates based electrolytes for IT-SOFC." Materials Research Bulletin 47, no. 3 (2012): 719–23. http://dx.doi.org/10.1016/j.materresbull.2011.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kioupis, D., and G. Kakali. "Structural and electrical characterization of Sr- and Al- doped apatite type lanthanum silicates prepared by the pechini method." Ceramics International 42, no. 8 (2016): 9640–47. http://dx.doi.org/10.1016/j.ceramint.2016.03.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

YOSHIOKA, H., Y. NOJIRI, and S. TANASE. "Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions." Solid State Ionics 179, no. 38 (2008): 2165–69. http://dx.doi.org/10.1016/j.ssi.2008.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Higuchi, Yoshikatsu, Masayuki Sugawara, Koji Onishi, Masatomi Sakamoto, and Susumu Nakayama. "Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC." Ceramics International 36, no. 3 (2010): 955–59. http://dx.doi.org/10.1016/j.ceramint.2009.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vincent, Adrien, Sophie Beaudet Savignat, and François Gervais. "Elaboration and ionic conduction of apatite-type lanthanum silicates doped with Ba, La10−xBax(SiO4)6O3−x/2 with x=0.25–2." Journal of the European Ceramic Society 27, no. 2-3 (2007): 1187–92. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Misso, Agatha Matos, Daniel Ricco Elias, Fernando dos Santos, and Chieko Yamagata. "Low Temperature Synthesis of Lanthanum Silicate Apatite Type by Modified Sol Gel Process." Advanced Materials Research 975 (July 2014): 143–48. http://dx.doi.org/10.4028/www.scientific.net/amr.975.143.

Full text
Abstract:
Rare earth silicate apatite type is a very important and promising material for application as an electrolyte in IT-SOFC (Intermediate Temperature Solid Oxide Fuel Cell). Lanthanum silicate apatite, La9,33Si6O26, exhibits high conductivity and has high efficiency, long term stability, fuel flexibility, low emissions and relatively low cost compared to yttria stabilized zirconia (YSZ - yttria stabilized zirconia), at temperatures between 600 to 800 °C. One of the problems of YSZ is its high operating temperature which results in long starting times and problems of mechanical and chemical compat
APA, Harvard, Vancouver, ISO, and other styles
43

Yin, Guang-Chao, Hong Yin, Lin-Hong Zhong, et al. "Crystal structure and ionic conductivity of Mg-doped apatite-type lanthanum silicates La 10 Si 6− x Mg x O 27− x ( x = 0–0.4)." Chinese Physics B 23, no. 4 (2014): 048202. http://dx.doi.org/10.1088/1674-1056/23/4/048202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shi, Qing Le, Hua Zhang, Tian Jing Li, Fang Li Yu, Hai Jun Hou, and Peng De Han. "Sintering Properties of Apatite-Type Lanthanum Silicate Electrolytes." Materials Science Forum 814 (March 2015): 65–70. http://dx.doi.org/10.4028/www.scientific.net/msf.814.65.

Full text
Abstract:
The sintering properties of appetite-type lanthanum silicate La10Si6O27prepared by sol-gel process were studied. The precursor powder was sintered by one-step sintering (OSS) process, two-step sintering (TSS) process and spark-plasma sintering (SPS) process. The phase structure, microstructure, relative density, thermal expansion properties, electrochemical properties of the samples were investigated by means of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Archimedes method, dilatometer, and AC impedance spectroscopy. The experimental results show that
APA, Harvard, Vancouver, ISO, and other styles
45

Hori, Shigeo, Yasuhiro Takatani, Hiroaki Kadoura, Takeshi Uyama, Satoru Fujita, and Toshihiko Tani. "Chemical solution deposition of the highly c-axis oriented apatite type lanthanum silicate thin films." Dalton Transactions 44, no. 40 (2015): 17551–56. http://dx.doi.org/10.1039/c5dt02569a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pandis, P. K., E. Xenogiannopoulou, P. M. Sakkas, G. Sourkouni, Ch Argirusis та V. N. Stathopoulos. "Compositional effect of Cr contamination susceptibility of La9.83Si6−x−yAlxFeyO26±δ apatite-type SOFC electrolytes in contact with CROFER 22 APU". RSC Advances 6, № 55 (2016): 49429–35. http://dx.doi.org/10.1039/c6ra02025a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Wen Zhao, Zhi Liang Huang, Qian Zi Li, and Juan Chen. "Synthesis and Conductivity Investigation of Cu Doped Apatite Type Lanthanum Silicate Electrolyte." Key Engineering Materials 726 (January 2017): 245–49. http://dx.doi.org/10.4028/www.scientific.net/kem.726.245.

Full text
Abstract:
In this paper, Cu-doped lanthanum silicate electrolyte (La9.33Si6-xCuxO26-x) precursor was synthesized by urea-nitrate combustion method using La2O3, CuO and TEOS as raw materials. The as-prepared precursor was lighted at 600 °C and sintered at 800 °C. The sintered powder samples were grinded and mixed absolutely by ball milled. Finally, we preformed and sintered powder samples to synthesis Cu-doped lanthanum silicate ceramics. Ac impedance method and analysis was used to test conductivity of as-prepared electrolyte, investigated the influence of balling time, sintering temperature and doping
APA, Harvard, Vancouver, ISO, and other styles
48

Jothinathan, Ezhil, Kim Vanmeensel, Jef Vleugels, et al. "Apatite type lanthanum silicate and composite anode half cells." Solid State Ionics 192, no. 1 (2011): 419–23. http://dx.doi.org/10.1016/j.ssi.2010.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hwan Jo, Seung, P. Muralidharan, and Do Kyung Kim. "Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder." Journal of Materials Research 24, no. 1 (2009): 237–44. http://dx.doi.org/10.1557/jmr.2009.0018.

Full text
Abstract:
Highly sinterable La10Si6O27 and La10Si5.5M0.5O27 (M = Mg, and Al) nanopowders with apatite-type structure have been synthesized via a homogeneous precipitation method using diethylamine (DEA) as a precipitant. The synthetic approach using an organic precipitant with dispersant characteristics is advantageous in configuring weakly agglomerated nanopowders, leading to desirable sintering activity. X-ray diffraction powder patterns confirmed the single-phase crystalline lanthanum silicate of hexagonal apatite structure at 800 °C, which is a relatively lower calcination temperature compared to co
APA, Harvard, Vancouver, ISO, and other styles
50

Fukuda, Koichiro, Toru Asaka, Masahiro Okino, et al. "Anisotropy of oxide-ion conduction in apatite-type lanthanum silicate." Solid State Ionics 217 (June 2012): 40–45. http://dx.doi.org/10.1016/j.ssi.2012.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!