Journal articles on the topic 'API X65 steel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'API X65 steel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Oh, Chang Kyun, Yun Jae Kim, Jong Hyun Baek, Young Pyo Kim, and Woo Sik Kim. "A Micromechanical Model for Ductile Fracture of API X65." Key Engineering Materials 321-323 (October 2006): 43–47. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.43.
Full textAraújo, Bruno Araújo, Reginaldo Florêncio De Paiva Filho, Eudésio Oliveira Vilar, Misael Souto De Oliveira, and Antonio Almeida Silva. "Estudo do efeito da tensão sobre a permeação por Hidrogênio em Aços API 5L X60 e API 5L X65." Revista Principia - Divulgação Científica e Tecnológica do IFPB 1, no. 37 (2017): 18. http://dx.doi.org/10.18265/1517-03062015v1n37p18-26.
Full textQuej-Ake, L. M., J. Marín-Cruz, and A. Contreras. "Electrochemical study of the corrosion rate of API steels in clay soils." Anti-Corrosion Methods and Materials 64, no. 1 (2017): 61–68. http://dx.doi.org/10.1108/acmm-03-2015-1512.
Full textQuej-Ake, L. M., A. Contreras, H. B. Liu, J. L. Alamilla, and E. Sosa. "Assessment on external corrosion rates for API pipeline steels exposed to acidic sand-clay soil." Anti-Corrosion Methods and Materials 65, no. 3 (2018): 281–91. http://dx.doi.org/10.1108/acmm-12-2017-1874.
Full textCheng, Yuanpeng, Zili Li, Yalei Zhao, Yazhou Xu, Qianqian Liu, and Yu Bai. "Effect of main controlling factor on the corrosion behaviour of API X65 pipeline steel in the CO2/oil/water environment." Anti-Corrosion Methods and Materials 64, no. 4 (2017): 371–79. http://dx.doi.org/10.1108/acmm-04-2016-1665.
Full textHashemi, S. H. "Strength–hardness statistical correlation in API X65 steel." Materials Science and Engineering: A 528, no. 3 (2011): 1648–55. http://dx.doi.org/10.1016/j.msea.2010.10.089.
Full textKim, Yun Jae, Chang Kyun Oh, and Chang Sik Oh. "Application of the GTN Model to Quantify Constraint Effects on Ductile Fracture of API X65 Steels." Key Engineering Materials 324-325 (November 2006): 667–70. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.667.
Full textEl-Danaf, Ehab, Muneer Baig, Abdulhakim Almajid, Waleed Alshalfan, Marawan Al-Mojil, and Saeed Al-Shahrani. "Mechanical, microstructure and texture characterization of API X65 steel." Materials & Design 47 (May 2013): 529–38. http://dx.doi.org/10.1016/j.matdes.2012.12.031.
Full textTesta, Gabriel, Nicola Bonora, Domenico Gentile, et al. "Strain capacity assessment of API X65 steel using damage mechanics." Frattura ed Integrità Strutturale 11, no. 42 (2017): 315–27. http://dx.doi.org/10.3221/igf-esis.42.33.
Full textRakhshkhorshid, M., and S. H. Hashemi. "Experimental study of hot deformation behavior in API X65 steel." Materials Science and Engineering: A 573 (June 2013): 37–44. http://dx.doi.org/10.1016/j.msea.2013.02.045.
Full textOh, Chang-Kyun, Yun-Jae Kim, Jong-Hyun Baek, Young-Pyo Kim, and Woosik Kim. "A phenomenological model of ductile fracture for API X65 steel." International Journal of Mechanical Sciences 49, no. 12 (2007): 1399–412. http://dx.doi.org/10.1016/j.ijmecsci.2007.03.008.
Full textHashemi, Sayyed H. "Correction factors for safe performance of API X65 pipeline steel." International Journal of Pressure Vessels and Piping 86, no. 8 (2009): 533–40. http://dx.doi.org/10.1016/j.ijpvp.2009.01.011.
Full textMansor, N. I. I., S. Abdullah, and A. K. Ariffin. "Discrepancies of fatigue crack growth behaviour of API X65 steel." Journal of Mechanical Science and Technology 31, no. 10 (2017): 4719–26. http://dx.doi.org/10.1007/s12206-017-0918-2.
Full textKnerek, Rangel, Guilherme Vieira Braga Lemos, George Vander Voort, et al. "Investigating an API X65 steel pipe cladded with alloy 625." Tecnologia em Metalurgia, Materiais e Mineração 18 (2021): e2465. http://dx.doi.org/10.4322/2176-1523.20212465.
Full textHossain Seikh, Asiful, Mahmoud S. Soliman, Abdulhakim AlMajid, Khaled Alhajeri, and Waleed Alshalfan. "Austenite Grain Growth Kinetics in API X65 and X70 Line-Pipe Steels during Isothermal Heating." Advances in Materials Science and Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/246143.
Full textQuej-Ake, Luis Manuel, Antonio Contreras, Hongbo Liu, Jorge L. Alamilla, and Eliceo Sosa. "The effect of the hydrodynamic and temperature on corrosion rate of API steels exposed to oilfield produced water." Anti-Corrosion Methods and Materials 66, no. 1 (2019): 101–14. http://dx.doi.org/10.1108/acmm-06-2018-1959.
Full textCho, Kyung-Mox, Joon-Ho Sung, Yun-Kyu Kim, Jong-Geol Moon, Ki-Won Kim, and Ki-Bong Kang. "Effect of Plastic Deformation on Hydrogen Induced Crack Resistance of API X65 Linepipe Steel." Korean Journal of Metals and Materials 54, no. 4 (2016): 295–303. http://dx.doi.org/10.3365/kjmm.2016.54.4.295.
Full textMansor, Nor Izan Izura, Shahrum Abdullah, Ahmad K. Ariffin, and M. Mahmud. "Determining the Accuracy of the Life Determination Analysis for Low Carbon Steel." Applied Mechanics and Materials 786 (August 2015): 89–93. http://dx.doi.org/10.4028/www.scientific.net/amm.786.89.
Full textOliveira, Mariana Cristina de, Rodrigo Monzon Figueredo, Heloisa Andréa Acciari, and Eduardo Norberto Codaro. "Corrosion behavior of API 5L X65 steel subject to plastic deformation." Journal of Materials Research and Technology 7, no. 3 (2018): 314–18. http://dx.doi.org/10.1016/j.jmrt.2018.02.006.
Full textSim, Ho Sup, Ki Seop Cho, Kon Bae Lee, Hyung Ryul Yang, and Hoon Kwon. "Effect of Multipass Severe Rolling Process in the API X65 Steel." Solid State Phenomena 124-126 (June 2007): 1341–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1341.
Full textLiduino, V. S., M. T. S. Lutterbach, and E. F. C. Sérvulo. "Biofilm activity on corrosion of API 5L X65 steel weld bead." Colloids and Surfaces B: Biointerfaces 172 (December 2018): 43–50. http://dx.doi.org/10.1016/j.colsurfb.2018.08.026.
Full textRakhshkhorshid, M. "Modeling the hot deformation flow curves of API X65 pipeline steel." International Journal of Advanced Manufacturing Technology 77, no. 1-4 (2014): 203–10. http://dx.doi.org/10.1007/s00170-014-6447-6.
Full textOhaeri, Enyinnaya G., Tonye Jack, Sandeep Yadav, Jerzy Szpunar, Jiming Zhang, and Jinbo Qu. "EBSD Microstructural studies on quenched-tempered API 5L X65 pipeline steel." Philosophical Magazine 101, no. 17 (2021): 1895–912. http://dx.doi.org/10.1080/14786435.2021.1946189.
Full textKong, Lingzhen, Lingbo Su, Xiayi Zhou, Liqiong Chen, Jie Chen, and Cheng Mao. "A Simple and Efficient Method for Obtaining the Whole-Range Uniaxial Tensile Properties of Pipeline Steel." Metals 8, no. 7 (2018): 555. http://dx.doi.org/10.3390/met8070555.
Full textBunaziv, Ivan, Vigdis Olden, and Odd M. Akselsen. "Metallurgical Aspects in the Welding of Clad Pipelines—A Global Outlook." Applied Sciences 9, no. 15 (2019): 3118. http://dx.doi.org/10.3390/app9153118.
Full textOh, Chang-Kyun, Yun-Jae Kim, Jin-Moo Park, Jong-Hyun Baek, and Woo-Sik Kim. "Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel." Transactions of the Korean Society of Mechanical Engineers A 29, no. 12 (2005): 1621–28. http://dx.doi.org/10.3795/ksme-a.2005.29.12.1621.
Full textGhanbari, E., M. Iannuzzi, and R. S. Lillard. "The Mechanism of Alternating Current Corrosion of API Grade X65 Pipeline Steel." CORROSION 72, no. 9 (2016): 1196–210. http://dx.doi.org/10.5006/2028.
Full textMazza, B., Tommaso Pastore, P. Pedeferri, and Gianni Rondelli. "Electrochemical Polarization Studies of API 5L Grade X65 Steel in Chloride Solution." Key Engineering Materials 20-28 (January 1991): 501–9. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.501.
Full textNatividad, C., R. García, V. H. López, R. Galván-Martínez, M. Salazar, and A. Contreras. "Stress corrosion cracking assessment of API X65 steel non-conventionally heat treated." Materials and Corrosion 67, no. 4 (2015): 352–60. http://dx.doi.org/10.1002/maco.201508566.
Full textSilva, Samara Cruz da, Eduardo Alencar de Souza, Frederick Pessu, et al. "Cracking mechanism in API 5L X65 steel in a CO2-saturated environment." Engineering Failure Analysis 99 (May 2019): 273–91. http://dx.doi.org/10.1016/j.engfailanal.2019.02.031.
Full textLee, Yun-Hee, Hae Moo Lee, Yong-il Kim, and Seung-Hoon Nahm. "Mechanical degradation of API X65 pipeline steel by exposure to hydrogen gas." Metals and Materials International 17, no. 3 (2011): 389–95. http://dx.doi.org/10.1007/s12540-011-0614-1.
Full textHan, Kejiang, Jian Shuai, Xiaomin Deng, Lingzhen Kong, Xing Zhao, and Michael Sutton. "The effect of constraint on CTOD fracture toughness of API X65 steel." Engineering Fracture Mechanics 124-125 (July 2014): 167–81. http://dx.doi.org/10.1016/j.engfracmech.2014.04.014.
Full textHashemi, S. H., and D. Mohammadyani. "Characterisation of weldment hardness, impact energy and microstructure in API X65 steel." International Journal of Pressure Vessels and Piping 98 (October 2012): 8–15. http://dx.doi.org/10.1016/j.ijpvp.2012.05.011.
Full textKim, Young Pyo, Cheol Man Kim, Woo Sik Kim, and Kwang Seon Shin. "Fatigue Crack Growth Behavior in Girth Weld of Natural Gas Transmission Pipelines." Key Engineering Materials 345-346 (August 2007): 303–6. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.303.
Full textWang, Xinhua, Xinghua Tang, Liwei Wang, Cui Wang, and Wenqing Zhou. "Synergistic effect of stray current and stress on corrosion of API X65 steel." Journal of Natural Gas Science and Engineering 21 (November 2014): 474–80. http://dx.doi.org/10.1016/j.jngse.2014.09.007.
Full textMajidi-Jirandehi, A. A., and S. H. Hashemi. "Weld metal fracture characterization of API X65 steel using drop weight tear test." Materials Research Express 6, no. 1 (2018): 016552. http://dx.doi.org/10.1088/2053-1591/aae797.
Full textFatoba, Olusegun, and Robert Akid. "Low Cycle Fatigue Behaviour of API 5L X65 Pipeline Steel at Room Temperature." Procedia Engineering 74 (2014): 279–86. http://dx.doi.org/10.1016/j.proeng.2014.06.263.
Full textSosa, E., V. García-Arriaga, and H. Castaneda. "Impedance distribution at the interface of the API steel X65 in marine environment." Electrochimica Acta 51, no. 8-9 (2006): 1855–63. http://dx.doi.org/10.1016/j.electacta.2005.02.142.
Full textJack, Tonye Alaso, Reza Pourazizi, Enyinnaya Ohaeri, Jerzy Szpunar, Jiming Zhang, and Jinbo Qu. "Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel." International Journal of Hydrogen Energy 45, no. 35 (2020): 17671–84. http://dx.doi.org/10.1016/j.ijhydene.2020.04.211.
Full textOh, Chang-Kyun, Yun-Jae Kim, Jong-Hyun Baek, and Woo-sik Kim. "Development of stress-modified fracture strain for ductile failure of API X65 steel." International Journal of Fracture 143, no. 2 (2007): 119–33. http://dx.doi.org/10.1007/s10704-006-9036-3.
Full textSilva, Cleiton Carvalho, Hélio Cordeiro de Miranda, Marcelo Ferreira Motta, Daniel Correia Freire Ferreira, Ricardo Marinho Reppold, and Giovani Dalpiaz. "A Study on the Effect of the Interpass Temperatures in Properties and Microstructures of the Alloy 625 Dissimilar Fusion Zone." Materials Science Forum 783-786 (May 2014): 2816–21. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2816.
Full textMeriem-Benziane, Madjid, Sabah A. Abdul-Wahab, Nesar Merah, and Benoauda Babaziane. "Numerical Analysis of the Performances of Bonded Composite Repair with Adhesive Band in Pipeline API X65." Advanced Materials Research 875-877 (February 2014): 1101–5. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1101.
Full textFarhad, Farnoosh, Xiang Zhang, and David Smyth-Boyle. "Fatigue behaviour of corrosion pits in X65 steel pipelines." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 5 (2018): 1771–82. http://dx.doi.org/10.1177/0954406218776338.
Full textde Brito, Luciana V. R., Ricardo Coutinho, Eduardo H. S. Cavalcanti, and Marlene Benchimol. "The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel." Biofouling 23, no. 3 (2007): 193–201. http://dx.doi.org/10.1080/08927010701258966.
Full textRakhshkhorshid, Masoud, and Sayyed Hojjat Hashemi. "Firefly algorithm assisted optimised NN to predict the elongation of API X65 pipeline steel." International Journal of Mathematical Modelling and Numerical Optimisation 4, no. 3 (2013): 238. http://dx.doi.org/10.1504/ijmmno.2013.056536.
Full textSoudani, M., M. Hadj Meliani, K. El-Miloudi, et al. "Reduction of hydrogen embrittlement of API 5l X65 steel pipe using a green inhibitor." International Journal of Hydrogen Energy 43, no. 24 (2018): 11150–59. http://dx.doi.org/10.1016/j.ijhydene.2018.04.236.
Full textMohtadi-Bonab, M. A., M. Eskandari, H. Ghaednia, and S. Das. "Effect of Microstructural Parameters on Fatigue Crack Propagation in an API X65 Pipeline Steel." Journal of Materials Engineering and Performance 25, no. 11 (2016): 4933–40. http://dx.doi.org/10.1007/s11665-016-2335-6.
Full textSadeghi, Mohammad Amin, and Mehdi Javidi. "Investigation on stress corrosion cracking of API 5L X65 steel in CO2 corrosion medium." Materials Science and Engineering: A 824 (September 2021): 141856. http://dx.doi.org/10.1016/j.msea.2021.141856.
Full textKorda, Akhmad Ardian, Rizky Hidayat, and Setiadi Suriana. "Kinetics of Strain Aging Behavior of API 5L X65 and API 5L B Steel Types on Long-Term Operations." International Journal of Technology 7, no. 3 (2016): 500. http://dx.doi.org/10.14716/ijtech.v7i3.2812.
Full textde Oliveira, Misael Souto, Antonio Almeida Silva, Marco Antonio dos Santos, Jorge Antonio Palma Carrasco, and João Vitor de Queiroz Marques. "Calibration of the AC Potential Dropping System (ACPD) for Determination of Crack Growth in API 5L X65 Steel under Cathodic Protection Effect." Materials Science Forum 1012 (October 2020): 412–17. http://dx.doi.org/10.4028/www.scientific.net/msf.1012.412.
Full text