Academic literature on the topic 'Applications; Educational; Rapid Prototyping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Applications; Educational; Rapid Prototyping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Applications; Educational; Rapid Prototyping"
Yusoff, Wan, and Emad El-Kashif. "Rapid Prototyping as a Tool of Fabricating Biomodel in Medical Applications: Technique and Cost Evaluation." Advanced Materials Research 1115 (July 2015): 627–30. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.627.
Full textKotarski, Denis, Petar Piljek, Marko Pranjić, Carlo Giorgio Grlj, and Josip Kasać. "A Modular Multirotor Unmanned Aerial Vehicle Design Approach for Development of an Engineering Education Platform." Sensors 21, no. 8 (April 13, 2021): 2737. http://dx.doi.org/10.3390/s21082737.
Full textFalkowski, Piotr, and Andrzej Malcher. "Dynamically Programmable Analog Arrays in Acoustic Frequency Range Signal Processing." Metrology and Measurement Systems 18, no. 1 (January 1, 2011): 77–90. http://dx.doi.org/10.2478/v10178-011-0008-1.
Full textMavromanolakis, Georgios, T. Manousos, M. Kechri, P. L. Kollia, and G. Kanellopoulos. "Studying, designing and 3d-printing an operational model of the Antikythera Mechanism." Open Schools Journal for Open Science 1, no. 3 (May 20, 2019): 70. http://dx.doi.org/10.12681/osj.17965.
Full textWeis, Torben, Mirko Knoll, Andreas Ulbrich, Gero Muhl, and Alexander Brandle. "Rapid Prototyping for Pervasive Applications." IEEE Pervasive Computing 6, no. 2 (April 2007): 76–84. http://dx.doi.org/10.1109/mprv.2007.41.
Full textHahn, Jim, and Alaina Morales. "Rapid Prototyping a Collections-based Mobile Wayfinding Application." Journal of Academic Librarianship 37, no. 5 (September 2011): 416–22. http://dx.doi.org/10.1016/j.acalib.2011.06.001.
Full textBannach, David, Oliver Amft, and Paul Lukowicz. "Rapid Prototyping of Activity Recognition Applications." IEEE Pervasive Computing 7, no. 2 (April 2008): 22–31. http://dx.doi.org/10.1109/mprv.2008.36.
Full textHwang, Kao-Shing, Wen-Hsu Hsiao, Gaung-Ting Shing, and Kim-Joan Chen. "Rapid Prototyping Platform for Robotics Applications." IEEE Transactions on Education 54, no. 2 (May 2011): 236–46. http://dx.doi.org/10.1109/te.2010.2049359.
Full textHieu, L. C., N. Zlatov, J. Vander Sloten, E. Bohez, L. Khanh, P. H. Binh, P. Oris, and Y. Toshev. "Medical rapid prototyping applications and methods." Assembly Automation 25, no. 4 (December 2005): 284–92. http://dx.doi.org/10.1108/01445150510626415.
Full textStampfl, Jürgen, and Robert Liska. "New Materials for Rapid Prototyping Applications." Macromolecular Chemistry and Physics 206, no. 13 (July 5, 2005): 1253–56. http://dx.doi.org/10.1002/macp.200500199.
Full textDissertations / Theses on the topic "Applications; Educational; Rapid Prototyping"
Baptista, Nunes Jose Miguel B. M. "The Experiential Dual Layer Model (EDLM) : a conceptual model integrating a constructivist theoretical approach to academic learning with the process of hypermedia design." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312743.
Full textSharp, Cahlan A. "Using "Social Scriptures" as a Tool for Gospel Learning and Sharing." Diss., CLICK HERE for online access, 2010. http://contentdm.lib.byu.edu/ETD/image/etd3523.pdf.
Full textRimell, James Tristan. "Selective laser sintering of ultra high molecular weight polyethylene and Rapidsteel 2.0 for biomedical applications." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246693.
Full textTruscott, M., van Vuuren M. Janse, G. Booysen, and Beer D. De. "Customised patient implants : future lifeline of the medical industry." Interim : Interdisciplinary Journal, Vol 7, Issue 1: Central University of Technology Free State Bloemfontein, 2008. http://hdl.handle.net/11462/384.
Full textLong-term growth in the additive fabrication industry will come from designs that are difficult, time-consuming, costly, or impossible to produce using standard techniques. Growth will occur with advances in the current additive processes, coupled with breakthroughs in new materials, which are expected to emerge over the next five to 10 years. These advanced materials will better satisfy the design requirements of many new products. The paper considers currently available technologies and discusses recent advancements in direct metal freeform fabrication and its potential of revolutionising the medical industry.
Aliakbari, Mina. "Additive Manufacturing: State-of-the-Art, Capabilities, and Sample Applications with Cost Analysis." Thesis, KTH, Industriell produktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103598.
Full textAdditive Manufacturing – AM – som är del av en generell term, Rapid Prototyping, består av en familj olika tekniker för att bygga 3D fysiska objekt genom att sekventiellt lägga lager ovanpå varandra. Dessa tekniker har utvecklats över de senaste tre decennierna, där nya material blivit tillgängliga, teknikerna har förbättrats och nya har skapats, men i slutändan bygger de alla på en och samma idé. Det projekt undersöks de huvudsakliga AM -metoderna, deras applikationer och kostnadsdrivare. Här görs först en litteraturstudie av olika tekniker och processer varefter deras användning inom olika industrier undersöks. Den influens AM har i produktionssystem, s.k. Rapid Manufacturing (RM), diskuteras också i förhållande till lean och agila koncept. Eftersom tid och kostnad är de viktigaste faktorerna för tillgänglighet respektive produktivitet utvärderas case-baserad användning av RM utifrån dessa faktorer för att förklara hur AM fungerar i produktionssystem. Att besluta vilken metod som är bäst, är starkt case-baserad. Men det som framkommit från analysen är att i jämförelse med traditionella metoder, är AM mer ekonomiskt vid enstyckstillverkning, men stordriftsfördelar finns i någon utsträckning. Faktiskt det beror på maskinens kapacitetsanvändning och satsstorlek som indikerar maskinens volymanvändning. Trots alla förbättringar under de senaste tre decennierna är användandet av AM ännu inte utbrett. Eftersom efterfrågan, användning, tillämpning och material så väl som dess tekniker fortfarande befinner sig i en tillväxtfas spås en ljusare framtid för en växande kundorienterad marknad.
Fuhrman, Brian Thomas. "Fabrication of advanced thermionic emitters using laser chemical vapor deposition-rapid prototyping." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17048.
Full textYazicioglu, Faruk. "Design And Implementation Of A Two-axes Linear Positioning System For Rapid Prototyping Applications." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608835/index.pdf.
Full textKomlosy, John A. "Applications of Rapid Prototyping to the design and testing of UAV Flight Control System /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA345061.
Full textKomlosy, John A. III. "Applications of Rapid Prototyping to the design and testing of UAV Flight Control System." Thesis, Monterey, California. Naval Postgraduate School, 1998. http://hdl.handle.net/10945/7976.
Full textThe modern engineer has a myriad of new tools to assist in the design and implementation of ever increasingly complex control systems. A promising emerging technology is rapid prototyping. By totally integrating the development process, a Rapid Prototyping System (RPS) takes the designer from initial concept to testing on actual hardware in a systematic, logical sequence. At the Naval Postgraduate School (NPS), we have applied the concept of rapid prototyping to the discipline of flight control. The NPS RPS consists of a commercially available rapid prototyping software suite and open architecture hardware to permit the greatest possible range of control and navigation projects. The RPS is crucial in that it allows students to participate in projects from the initial concept to the flight testing phase of the design process. This thesis will describe in detail two of these projects; the development of an Airspeed Controller using the RPS tools; and the integration of a Voice Control System developed by ViA, Inc. of Northfield, Minnesota. Both projects demonstrate the inherent flexibility and risk reduction of the rapid prototyping a roach to system design.
Desnos, Karol. "Memory Study and Dataflow Representations for Rapid Prototyping of Signal Processing Applications on MPSoCs." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0004/document.
Full textThe development of embedded Digital Signal Processing (DSP) applications for Multiprocessor Systems-on-Chips (MPSoCs) is a complex task requiring the consideration of many constraints including real-time requirements, power consumption restrictions, and limited hardware resources. To satisfy these constraints, it is critical to understand the general characteristics of a given application: its behavior and its requirements in terms of MPSoC resources. In particular, the memory requirements of an application strongly impact the quality and performance of an embedded system, as the silicon area occupied by the memory can be as large as 80% of a chip and may be responsible for a major part of its power consumption. Despite the large overhead, limited memory resources remain an important constraint that considerably increases the development time of embedded systems. Dataflow Models of Computation (MoCs) are widely used for the specification, analysis, and optimization of DSP applications. The popularity of dataflow MoCs is due to their great analyzability and their natural expressivity of the parallelism of a DSP application. The abstraction of time in dataflow MoCs is particularly suitable for exploiting the parallelism offered by heterogeneous MPSoCs. In this thesis, we propose a complete method to study the important aspect of memory characteristic of a DSP application modeled with a dataflow graph. The proposed method spans the theoretical, architecture-independent memory characterization to the quasi-optimal static memory allocation of an application on a real shared-memory MPSoC. The proposed method, implemented as part of a rapid prototyping framework, is extensively tested on a set of state-of-the-art applications from the computer-vision, the telecommunication, and the multimedia domains. Then, because the dataflow MoC used in our method is unable to model applications with a dynamic behavior, we introduce a new dataflow meta-model to address the important challenge of managing dynamics in DSP-oriented representations. The new reconfigurable and composable dataflow meta-model strengthens the predictability, the conciseness and the readability of application descriptions
Books on the topic "Applications; Educational; Rapid Prototyping"
Fai, Leong Kah, and Lim Chu Sing, eds. Rapid prototyping: Principles and applications. 2nd ed. New Jersey: World Scientific, 2003.
Find full textFai, Leong Kah, and Lim Chu Sing, eds. Rapid prototyping: Principles and applications. 3rd ed. New Jersey: World Scientific, 2010.
Find full textKai, Chua Chee. Rapid prototyping: Principles & applications in manufacturing. New York: J. Wiley, 1997.
Find full textS, Dimov S., ed. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling. London: Springer London, 2001.
Find full textLiou, Frank W. Rapid prototyping and engineering applications: A toolbox for prototype development. Boca Raton: CRC Press, 2008.
Find full textSlovenia) International Conference on Additive Technologies (3rd 2010 Nova Gorica. Additive layered manufacturing: Education, application and business. Edited by Drstvenšek Igor editor, Dolinšek Slavko editor, and Univerza v Mariboru. Fakulteta za strojništvo. Maribor: Faculty for Mechanical Engineering, University of Maribor, 2010.
Find full textWeiyin, Ma, ed. Rapid prototyping: Laser-based and other technologies. Boston: Kluwer Academic, 2004.
Find full textH, Fuh J. Y., and Wong Y. S, eds. Laser-induced materials and processes for rapid prototyping. Boston: Kluwer Academic Publishers, 2001.
Find full textInternational Symposium on Automotive Technology & Automation (30th 1997 Florence, Italy). Rapid prototyping in the automotive industries: Laser applications in the automotive industries. Croydon: Automotive Automation, 1997.
Find full textBook chapters on the topic "Applications; Educational; Rapid Prototyping"
Gebhardt, Andreas. "Applications." In Rapid Prototyping, 235–82. München: Carl Hanser Verlag GmbH & Co. KG, 2003. http://dx.doi.org/10.3139/9783446402690.005.
Full textUm, Dugan. "Rapid Prototyping." In Solid Modeling and Applications, 191–221. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21822-9_7.
Full textUm, Dugan. "Rapid Prototyping." In Solid Modeling and Applications, 193–229. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74594-7_7.
Full textVenuvinod, Patri K., and Weiyin Ma. "Applications of RP." In Rapid Prototyping, 329–44. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-6361-4_10.
Full textTancredi, Nazario, Stefano Alunni, and Piergiuseppe Bruno. "Rapid Prototyping." In Proceedings of 4th International Conference in Software Engineering for Defence Applications, 75–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27896-4_7.
Full textPham, D. T., and S. S. Dimov. "Applications of Rapid Prototyping Technology." In Rapid Manufacturing, 87–110. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0703-3_5.
Full textLiou, Fuewen Frank. "Product prototyping." In Rapid Prototyping and Engineering Applications, 19–84. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: CRC Press, 2019. http://dx.doi.org/10.1201/9780429029721-2.
Full textGibson, Ian. "Rapid Prototyping for Medical Applications." In Advanced Manufacturing Technology for Medical Applications, 1–14. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033983.ch1.
Full textLim, Chee Chern, Man Hing Yu, and Jesse J. Jin. "Rapid Prototyping for Web Applications." In Advances in Web-Age Information Management, 429–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27772-9_43.
Full textLiou, Fuewen Frank. "Modeling and virtual prototyping." In Rapid Prototyping and Engineering Applications, 85–137. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: CRC Press, 2019. http://dx.doi.org/10.1201/9780429029721-3.
Full textConference papers on the topic "Applications; Educational; Rapid Prototyping"
Hercog, Darko, Milan Curkovic, and Karel Jezernik. "DSP based rapid control prototyping systems for engineering education and research." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776997.
Full textHallberg, Peter, Petter Krus, and Lars Austrin. "Low Cost Demonstrator as a Mean for Rapid Product Realization With an Electric Motorcycle Application." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85231.
Full textTahboub, Karim A., Mohammad I. Albakri, and Aziz M. Arafeh. "Development of a Flexible Educational Mechatronic System Based on xPC Target." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34576.
Full textLinton Van Der Vyver, Glen, and Michael Lane. "Using the New Generation of IS Development Techniques in Effective Group Learning: A Pilot Study of a Team-Based Approach in an IT Course." In 2003 Informing Science + IT Education Conference. Informing Science Institute, 2003. http://dx.doi.org/10.28945/2715.
Full textBeck, B. Terry, and Nelson A. Pratt. "A Simple Device for Wind Tunnel Performance Testing of Small Scale Powered Propellers." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77191.
Full textDuma, Radu, Petru Dobra, Mirela Trusca, Daniel Dumitrache, and Ioan-Valentin Sita. "Rapid Control Prototyping educational toolbox for Scilab/Scicos." In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7075128.
Full textAnderson, Scott, Doug Blewett, and Meg Kilduff. "Rapid prototyping tools for telecommunications applications." In the 1992 ACM/SIGAPP Symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143559.143584.
Full textNeusser, S., B. Schonewille, L. Spaanenburg, and P. J. Spekreijse. "Rapid prototyping of neural network applications." In Aerospace Sensing, edited by Steven K. Rogers. SPIE, 1992. http://dx.doi.org/10.1117/12.140053.
Full textWałpuski, Bartłomiej, Jerzy J. Szałapak, Bartłomiej J. Podsiadły, Piotr A. Walter, and Marcin Słoma. "Rapid prototyping in printed electronics." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, edited by Ryszard S. Romaniuk and Maciej Linczuk. SPIE, 2018. http://dx.doi.org/10.1117/12.2501392.
Full textAhlers, Rolf-Juergen, and B. Knappe. "Image processing for rapid prototyping and manufacturing." In Photonics for Industrial Applications, edited by David P. Casasent. SPIE, 1994. http://dx.doi.org/10.1117/12.188905.
Full textReports on the topic "Applications; Educational; Rapid Prototyping"
Gadient, Anthony, Mark A. Richards, and Geoffrey A. Frank. Rapid-Prototyping of Application Specific Signal Processors (RASSP) Education and Facilitation. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada417705.
Full textWong, C. Channy, Dahwey Chu, and S. L. Liu. Rapid prototyping of a micro pump for microelectronic applications. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/477772.
Full textLawandy, N. M. Laser Drive Microfabrication in Glasses: Applications to Rapid Prototyping of Micro-Optics and Submicron Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada376523.
Full text