Academic literature on the topic 'Apprentissage des équations différentielles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Apprentissage des équations différentielles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Apprentissage des équations différentielles"
Bézivin, Jean-Paul. "Fonctions multiplicatives et équations différentielles." Bulletin de la Société mathématique de France 123, no. 3 (1995): 329–49. http://dx.doi.org/10.24033/bsmf.2262.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 114 (July 1, 2015): 93–102. http://dx.doi.org/10.4000/annuaire-cdf.11879.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 115 (November 1, 2016): 109–17. http://dx.doi.org/10.4000/annuaire-cdf.12505.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 116 (June 15, 2018): 19. http://dx.doi.org/10.4000/annuaire-cdf.12780.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 108 (December 1, 2008): 87–91. http://dx.doi.org/10.4000/annuaire-cdf.128.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 111 (April 1, 2012): 91–100. http://dx.doi.org/10.4000/annuaire-cdf.1313.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 113 (April 1, 2014): 97. http://dx.doi.org/10.4000/annuaire-cdf.2284.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 109 (March 1, 2010): 93–101. http://dx.doi.org/10.4000/annuaire-cdf.231.
Full textYoccoz, Jean-Christophe. "Équations différentielles et systèmes dynamiques." L’annuaire du Collège de France, no. 112 (April 1, 2013): 101–7. http://dx.doi.org/10.4000/annuaire-cdf.685.
Full textFourré, F., and H. Barbason. "Équations différentielles déterministes en cytocinétique." Pathologie Biologie 51, no. 4 (June 2003): 225–26. http://dx.doi.org/10.1016/s0369-8114(03)00028-2.
Full textDissertations / Theses on the topic "Apprentissage des équations différentielles"
Moreno, Gordillo Julio Antonio. "Articulation des registres graphique et symbolique pour l'étude des équations différentielles avec Cabri géomètre : analyse des difficultés des étudiants et du rôle du logiciel." Grenoble 1, 2006. http://www.theses.fr/2006GRE10046.
Full textThe teaching of the differential equations privileges the aigebraic approach, in spite of the existence of the numericai and qualitative approaches. Ln the algebraic approach, the link between the symbolic and the graphic registers is indirect: it passes by the symbolic expression of the solutions. On the other hand, making the direct connection between these registers requires the mobilization ofknowledge ofvarious frameworks: functions, analytical geometry, analysis, etc. It requires reasoning on functions which one does not know the symbolic expression. The CUITent efforts to change the dominating algebraic paradigm cali upon the new technology tools. However, software programs as CABRI Géomètre allow creating contexts of browsing of graphic phenomena related to differential equations. Here we study the difficulties of CAPES 'students building links between the graphic and the symbolic registers, as weil as the contribution of the software in helping to develop these links. Ln chapter l, we review sorne reference works. Using certain theoretical tools, we clarify the problematic to articulate these registers. Then, we study the potentialities of the software in the study of differential equations. Ln chapter 2, we present the experimental device designed to check our hypotheses. We dedicate then two chapters to the study 0 the experiments carried out. Ln chapter 5, we draw an assessment from these experiments and we show the difficulties students found, as weil as the contributions of the software. Ln the conclusions, we reconsider the initial questions and the elements ofresponse, and the prospects for our work
Lazrag, Lanouar. "Intégrabilité des équations différentielles." Thesis, Lyon, École normale supérieure, 2012. http://www.theses.fr/2012ENSL0782.
Full textThis thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Full textThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Lassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Full textLassoued, Rafika. "Contributions aux équations d'évolution frac-différentielles." Thesis, La Rochelle, 2016. http://www.theses.fr/2016LAROS001/document.
Full textIn this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system
Touzet, Frédéric. "Équations différentielles admettant des solutions liouvilliennes." Rennes 1, 1995. http://www.theses.fr/1995REN10136.
Full textCluzeau, Thomas. "Algorithmique modulaire des équations différentielles linéaires." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/151400f3-08fc-4b00-9b80-2c84a3d34aa7/blobholder:0/2004LIMO0012.pdf.
Full textModular methods lead to very efficient algorithms in many areas of computer algebra and particularly for the study of algebraic equations. The goal of this thesis is to show how these modular techniques can be adapted to the differential case and allow to create new algorithms (or to improve existing algorithms) for linear differential equations. The first part deals with the factorisation of differential operators in positive characteristic. The "miracle" in characteristic p is that the problem reduces to linear algebra. Using this fact, we develop algorithm for factoring differential systems. We give the complexity of the distinct steps of this algorithm. Finally, we generalize it to the setting of partial differential systems. The topic of the second part is making Beke's algorithm to compute the exponential solutions of linear differential equations more efficient. This algorithms suffers from two drawbacks : a combinatorial problem and a field problem. We show that combining local "geometric" data (the generalized exponents) and modular "arithmetic" data (the eigenvalues of the p-curvature) allows to decrease the number of combinations usually considered by the algorithm and to reduce the degree of the algebraic extensions of the base field needed to compute the exponential solutions. In the third part, we prove that a similar approach applies to the same problem for difference equations. In the last section, we develop a fully modular algorithm for computing the polynomial solutions of linear differential equations in characteristic zero. We evaluate the relevance of the modular informations that can be obtained for this problem. We give and compare the complexity of our algorithm and that of the existing ones. Finally, thanks to experimental comparisons, we exhibit a class of differential equations for which our modular approach is more relevant than existing algorithms. Most of our algorithms have been implemented in the computer algebra system Maple
Souriau, Rémi. "machine learning for modeling dynamic stochastic systems : application to adaptive control on deep-brain stimulation." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG004.
Full textThe past recent years have been marked by the emergence of a large amount of database in many fields like health. The creation of many databases paves the way to new applications. Properties of data are sometimes complex (non linearity, dynamic, high dimensions) and require to perform machine learning models. Belong existing machine learning models, artificial neural network got a large success since the last decades. The success of these models lies on the non linearity behavior of neurons, the use of latent units and the flexibility of these models to adapt to many different problems. Boltzmann machines presented in this thesis are a family of generative neural networks. Introduced by Hinton in the 80's, this family have got a large interest at the beginning of the 21st century and new extensions are regularly proposed.This thesis is divided into two parts. A first part exploring Boltzmann machines and their applications. In this thesis the unsupervised learning of intracranial electroencephalogram signals on rats with Parkinson's disease for the control of the symptoms is studied.Boltzmann machines gave birth to Diffusion networks which are also generative model based on the learning of a stochastic differential equation for dynamic and stochastic data. This model is studied again in this thesis and a new training algorithm is proposed. Its use is tested on toy data as well as on real database
Di, Vizio Lucia. "Etude arithmétique des équations aux q-différences et des équations différentielles." Paris 6, 2000. http://www.theses.fr/2000PA066501.
Full textWone, Oumar. "Théorie des invariants des équations différentielles : équations d’Abel et de Riccati." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14481/document.
Full textAbstract
Books on the topic "Apprentissage des équations différentielles"
C, DiPrima Richard, ed. Équations différentielles. Montréal: Chenelière / McGraw-Hill, 2002.
Find full textPetrovskii, I. G. Théorie des équations différentielles ordinaires et des équations intégrales. Moscou: Mir, 1988.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Les Ulis, France: EDP Science, 2006.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Grenoble: Presses universitaires de Grenoble, 1996.
Find full textDemailly, Jean-Pierre. Analyse numérique et équations différentielles. Grenoble: Presses universitaires de Grenoble, 1991.
Find full textYOCCOZ, J. C. Cours de topologie, calcul différentiel, équations différentielles. Orsay (91): Orsay Plus, 1990.
Find full textM, Aroca José, and Société mathématique de France, eds. Équations différentielles et singularités: En l'honneur de J.M. Aroca. Paris, France: Socíeté mathématique de France, 2009.
Find full textBenzoni-Gavage, Sylvie. Calcul différentiel et équations différentielles: Cours et exercices corrigés. Paris: Dunod, 2010.
Find full textDifferential equations: An introducton to basic concepts, results and applications. Singapore: World Scientific, 2004.
Find full textBook chapters on the topic "Apprentissage des équations différentielles"
Jedrzejewski, Franck. "Équations différentielles stochastiques." In Modèles aléatoires et physique probabiliste, 287–306. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-99308-4_13.
Full textCépa, Emmanuel. "Équations différentielles stochastiques multivoques." In Lecture Notes in Mathematics, 86–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0094202.
Full text"Équations différentielles ordinaires." In Mathématiques & Applications, 101–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34016-5_6.
Full text"8 ÉQUATIONS DIFFÉRENTIELLES." In Mathématiques et statistique pour les sciences de la nature, 293–316. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0898-4-010.
Full text"8 ÉQUATIONS DIFFÉRENTIELLES." In Mathématiques et statistique pour les sciences de la nature, 293–316. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0898-4.c010.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6-006.
Full text"14. Équations différentielles linéaires." In Eléments d'analyse réelle, 381–416. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2378-9-015.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 119–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3-006.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 107–36. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6.c006.
Full text"V Équations différentielles ordinaires." In Analyse complexe et équations différentielles, 119–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3.c006.
Full text