To see the other types of publications on this topic, follow the link: Apprentissage par renforcement non supervisé.

Dissertations / Theses on the topic 'Apprentissage par renforcement non supervisé'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Apprentissage par renforcement non supervisé.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Chareyre, Maxime. "Apprentissage non-supervisé pour la découverte de propriétés d'objets par découplage entre interaction et interprétation." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0122.

Full text
Abstract:
Les robots sont de plus en plus utilisés pour réaliser des tâches dans des environnements contrôlés. Leur utilisation en milieu ouvert est cependant encore confrontée à des difficultés. L'agent robotique est en effet susceptible de rencontrer des objets dont il ignore le comportement et la fonction. Dans certains cas, il doit interagir avec ces éléments pour réaliser sa mission en les collectant ou en les déplaçant mais, sans la connaissance de leurs propriétés dynamiques il n'est pas possible de mettre en place une stratégie de résolution de la mission efficace.Dans cette thèse, nous présentons une méthode visant à apprendre à un robot autonome une stratégie d'interaction physique avec des objets inconnus, sans aucune connaissance a priori, l'objectif étant d'extraire de l'information sur un maximum de propriétés physiques de l'objet à partir des interactions observées par ses capteurs. Les méthodes existantes pour la caractérisation d'objets par interactions physiques ne répondent pas entièrement à ces critères. En effet, les interactions établies ne permettent qu'une représentation implicite de la dynamique des objets, nécessitant une supervision pour identifier leurs propriétés. D'autre part, la solution proposée s'appuie sur des scénarios peu réalistes sans agent. Notre approche se distingue de l'état de l'art en proposant une méthode générique pour l'apprentissage de l'interaction, indépendante de l'objet et de ses propriétés, et pouvant donc être découplée de la phase de leurs prédictions. Cela permet notamment de mener à un pipeline global totalement non-supervisé.Dans une première phase, nous proposons d'apprendre une stratégie d'interaction avec l'objet via une méthode d'apprentissage par renforcement non-supervisée, en utilisant un signal de motivation intrinsèque qui repose sur l'idée de maximisation des variations d'un vecteur d'état de l'objet. Le but est d'obtenir une série d'interactions contenant des informations fortement corrélées aux propriétés physiques de l'objet. Cette méthode a été testée sur un robot simulé interagissant par poussée et a permis d'identifier avec précision des propriétés telles que la masse, la forme de l'objet et les frottements.Dans une seconde phase, nous réalisons l'hypothèse que les vraies propriétés physiques définissent un espace latent explicatif des comportements de l'objet et que cet espace peut être identifié à partir des observations recueillies grâce aux interactions de l'agent. Nous mettons en place une tâche de prédiction auto-supervisée dans laquelle nous adaptons une architecture de l'état de l'art pour construire cet espace latent. Nos simulations confirment que la combinaison du modèle comportemental avec cette architecture permet de faire émerger une représentation des propriétés de l'objet dont les composantes principales s'avèrent fortement corrélées avec les propriétés physiques de l'objet.Les propriétés des objets étant extraites, l'agent peut les exploiter pour améliorer son efficacité dans des tâches impliquant ces objets. Nous concluons cette étude par une mise en avant du gain de performance de l'agent au travers d'un entraînement via l'apprentissage par renforcement sur une tâche simplifiée de repositionnement d'objet où les propriétés sont parfaitement connues.L'intégralité du travail effectué en simulation confirme l'efficacité d'une méthode novatrice visant à découvrir en autonomie les propriétés physiques d'un objet au travers d'interactions physiques d'un robot. Les perspectives d'extension de ces travaux concernent le transfert vers un robot réel en milieu encombré
Robots are increasingly used to achieve tasks in controlled environments. However, their use in open environments is still fraught with difficulties. Robotic agents are likely to encounter objects whose behaviour and function they are unaware of. In some cases, it must interact with these elements to carry out its mission by collecting or moving them, but without knowledge of their dynamic properties it is not possible to implement an effective strategy for resolving the mission.In this thesis, we present a method for teaching an autonomous robot a physical interaction strategy with unknown objects, without any a priori knowledge, the aim being to extract information about as many of the object's physical properties as possible from the interactions observed by its sensors. Existing methods for characterising objects through physical interactions do not fully satisfy these criteria. Indeed, the interactions established only provide an implicit representation of the object's dynamics, requiring supervision to identify their properties. Furthermore, the proposed solution is based on unrealistic scenarios without an agent. Our approach differs from the state of the art by proposing a generic method for learning interaction that is independent of the object and its properties, and can therefore be decoupled from the prediction phase. In particular, this leads to a completely unsupervised global pipeline.In the first phase, we propose to learn an interaction strategy with the object via an unsupervised reinforcement learning method, using an intrinsic motivation signal based on the idea of maximising variations in a state vector of the object. The aim is to obtain a set of interactions containing information that is highly correlated with the object's physical properties. This method has been tested on a simulated robot interacting by pushing and has enabled properties such as the object's mass, shape and friction to be accurately identified.In a second phase, we make the assumption that the true physical properties define a latent space that explains the object's behaviours and that this space can be identified from observations collected through the agent's interactions. We set up a self-supervised prediction task in which we adapt a state-of-the-art architecture to create this latent space. Our simulations confirm that combining the behavioural model with this architecture leads to the emergence of a representation of the object's properties whose principal components are shown to be strongly correlated with the object's physical properties.Once the properties of the objects have been extracted, the agent can use them to improve its efficiency in tasks involving these objects. We conclude this study by highlighting the performance gains achieved by the agent through training via reinforcement learning on a simplified object repositioning task where the properties are perfectly known.All the work carried out in simulation confirms the effectiveness of an innovative method aimed at autonomously discovering the physical properties of an object through the physical interactions of a robot. The prospects for extending this work involve transferring it to a real robot in a cluttered environment
APA, Harvard, Vancouver, ISO, and other styles
2

Tarbouriech, Jean. "Goal-oriented exploration for reinforcement learning." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILB014.

Full text
Abstract:
Apprendre à atteindre des buts est une compétence à acquérir à grande pertinence pratique pour des agents intelligents. Par exemple, ceci englobe de nombreux problèmes de navigation (se diriger vers telle destination), de manipulation robotique (atteindre telle position du bras robotique) ou encore certains jeux (gagner en accomplissant tel objectif). En tant qu'être vivant interagissant avec le monde, je suis constamment motivé par l'atteinte de buts, qui varient en portée et difficulté.L'Apprentissage par Renforcement (AR) est un paradigme prometteur pour formaliser et apprendre des comportements d'atteinte de buts. Un but peut être modélisé comme une configuration spécifique d'états de l'environnement qui doit être atteinte par interaction séquentielle et exploration de l'environnement inconnu. Bien que divers algorithmes en AR dit "profond" aient été proposés pour ce modèle d'apprentissage conditionné par des états buts, les méthodes existantes manquent de compréhension rigoureuse, d'efficacité d'échantillonnage et de capacités polyvalentes. Il s'avère que l'analyse théorique de l'AR conditionné par des états buts demeurait très limitée, même dans le scénario basique d'un nombre fini d'états et d'actions.Premièrement, nous nous concentrons sur le scénario supervisé, où un état but qui doit être atteint en minimisant l'espérance des coûts cumulés est fourni dans la définition du problème. Après avoir formalisé le problème d'apprentissage incrémental (ou ``online'') de ce modèle souvent appelé Plus Court Chemin Stochastique, nous introduisons deux algorithmes au regret sous-linéaire (l'un est le premier disponible dans la littérature, l'autre est quasi-optimal).Au delà d'entraîner l'agent d'AR à résoudre une seule tâche, nous aspirons ensuite qu'il apprenne de manière autonome à résoudre une grande variété de tâches, dans l'absence de toute forme de supervision en matière de récompense. Dans ce scénario non-supervisé, nous préconisons que l'agent sélectionne lui-même et cherche à atteindre ses propres états buts. Nous dérivons des garanties non-asymptotiques de cette heuristique populaire dans plusieurs cadres, chacun avec son propre objectif d'exploration et ses propres difficultés techniques. En guise d'illustration, nous proposons une analyse rigoureuse du principe algorithmique de viser des états buts "incertains", que nous ancrons également dans le cadre de l'AR profond.L'objectif et les contributions de cette thèse sont d'améliorer notre compréhension formelle de l'exploration d'états buts pour l'AR, dans les scénarios supervisés et non-supervisés. Nous espérons qu'elle peut aider à suggérer de nouvelles directions de recherche pour améliorer l'efficacité d'échantillonnage et l'interprétabilité d'algorithmes d'AR basés sur la sélection et/ou l'atteinte d'états buts dans des applications pratiques
Learning to reach goals is a competence of high practical relevance to acquire for intelligent agents. For instance, this encompasses many navigation tasks ("go to target X"), robotic manipulation ("attain position Y of the robotic arm"), or game-playing scenarios ("win the game by fulfilling objective Z"). As a living being interacting with the world, I am constantly driven by goals to reach, varying in scope and difficulty.Reinforcement Learning (RL) holds the promise to frame and learn goal-oriented behavior. Goals can be modeled as specific configurations of the environment that must be attained via sequential interaction and exploration of the unknown environment. Although various deep RL algorithms have been proposed for goal-oriented RL, existing methods often lack principled understanding, sample efficiency and general-purpose effectiveness. In fact, very limited theoretical analysis of goal-oriented RL was available, even in the basic scenario of finitely many states and actions.We first focus on a supervised scenario of goal-oriented RL, where a goal state to be reached in minimum total expected cost is provided as part of the problem definition. After formalizing the online learning problem in this setting often known as Stochastic Shortest Path (SSP), we introduce two no-regret algorithms (one is the first available in the literature, the other attains nearly optimal guarantees).Beyond training our RL agent to solve only one task, we then aspire that it learns to autonomously solve a wide variety of tasks, in the absence of any reward supervision. In this challenging unsupervised RL scenario, we advocate to "Set Your Own Goals" (SYOG), which suggests the agent to learn the ability to intrinsically select and reach its own goal states. We derive finite-time guarantees of this popular heuristic in various settings, each with its specific learning objective and technical challenges. As an illustration, we propose a rigorous analysis of the algorithmic principle of targeting "uncertain" goals which we also anchor in deep RL.The main focus and contribution of this thesis are to instigate a principled analysis of goal-oriented exploration in RL, both in the supervised and unsupervised scenarios. We hope that it helps suggest promising research directions to improve the interpretability and sample efficiency of goal-oriented RL algorithms in practical applications
APA, Harvard, Vancouver, ISO, and other styles
3

Merckling, Astrid. "Unsupervised pretraining of state representations in a rewardless environment." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS141.

Full text
Abstract:
Cette thèse vise à étendre les capacités de l'apprentissage de représentation d'état (state representation learning, SRL) afin d'aider la mise à l'échelle des algorithmes d'apprentissage par renforcement profond (deep reinforcement learning, DRL) aux tâches de contrôle continu avec des observations sensorielles à haute dimension (en particulier des images). Le SRL permet d'améliorer les performances des algorithmes de DRL en leur transmettant de meilleures entrées que celles apprises à partir de zéro avec des stratégies de bout-en-bout. Plus précisément, cette thèse aborde le problème de l'estimation d'état à la manière d'un pré-entraînement profond non supervisé de représentations d'état sans récompense. Ces représentations doivent vérifier certaines propriétés pour permettre l'application correcte du bootstrapping et d'autres mécanismes de prises de décisions communs à l'apprentissage supervisé, comme être de faible dimension et garantir la cohérence locale et la topologie (ou connectivité) de l'environnement, ce que nous chercherons à réaliser à travers les modèles pré-entraînés avec les deux algorithmes de SRL proposés dans cette thèse
This thesis seeks to extend the capabilities of state representation learning (SRL) to help scale deep reinforcement learning (DRL) algorithms to continuous control tasks with high-dimensional sensory observations (such as images). SRL allows to improve the performance of DRL by providing it with better inputs than the input embeddings learned from scratch with end-to-end strategies. Specifically, this thesis addresses the problem of performing state estimation in the manner of deep unsupervised pretraining of state representations without reward. These representations must verify certain properties to allow for the correct application of bootstrapping and other decision making mechanisms common to supervised learning, such as being low-dimensional and guaranteeing the local consistency and topology (or connectivity) of the environment, which we will seek to achieve through the models pretrained with the two SRL algorithms proposed in this thesis
APA, Harvard, Vancouver, ISO, and other styles
4

Castanet, Nicolas. "Automatic state representation and goal selection in unsupervised reinforcement learning." Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS005.

Full text
Abstract:
Au cours des dernières années, l'apprentissage par renforcement a connu un succès considérable en entrainant des agents spécialisés capables de dépasser radicalement les performances humaines dans des jeux complexes comme les échecs ou le go, ou dans des applications robotiques. Ces agents manquent souvent de polyvalence, ce qui oblige l'ingénierie humaine à concevoir leur comportement pour des tâches spécifiques avec un signal de récompense prédéfini, limitant ainsi leur capacité à faire face à de nouvelles circonstances. La spécialisation de ces agents se traduit par de faibles capacités de généralisation, ce qui les rend vulnérables à de petites variations de facteurs externes. L'un des objectifs de la recherche en intelligence artificielle est de dépasser les agents spécialisés d'aujourd'hui pour aller vers des systèmes plus généralistes pouvant s'adapter en temps réel à des facteurs externes imprévisibles et à de nouvelles tâches en aval. Ce travail va dans ce sens, en s'attaquant aux problèmes d'apprentissage par renforcement non supervisé, un cadre dans lequel les agents ne reçoivent pas de récompenses externes et doivent donc apprendre de manière autonome de nouvelles tâches tout au long de leur vie, guidés par des motivations intrinsèques. Le concept de motivation intrinsèque découle de notre compréhension de la capacité des humains à adopter certains comportements autonomes au cours de leur développement, tels que le jeu ou la curiosité. Cette capacité permet aux individus de concevoir et de résoudre leurs propres tâches, et de construire des représentations physiques et sociales de leur environnement, acquérant ainsi un ensemble ouvert de compétences tout au long de leur existence. Cette thèse s'inscrit dans l'effort de recherche visant à incorporer ces caractéristiques essentielles dans les agents artificiels, en s'appuyant sur l'apprentissage par renforcement conditionné par les buts pour concevoir des agents capables de découvrir et de maîtriser tous les buts réalisables dans des environnements complexes. Dans notre première contribution, nous étudions la sélection autonome de buts intrinsèques, car un agent polyvalent doit être capable de déterminer ses propres objectifs et l'ordre dans lequel apprendre ces objectifs pour améliorer ses performances. En tirant parti d'un modèle appris des capacités actuelles de l'agent à atteindre des buts, nous montrons que nous pouvons construire une distribution de buts optimale en fonction de leur difficulté, permettant d'échantillonner des buts dans la zone de développement proximal (ZDP) de l'agent, qui est un concept issu de la psychologie signifiant à la frontière entre ce qu'un agent sait et ce qu'il ne sait pas, constituant l'espace de connaissances qui n'est pas encore maîtrisé, mais qui a le potentiel d'être acquis. Nous démontrons que le fait de cibler la ZDP de l'agent entraîne une augmentation significative des performances pour une grande variété de tâches. Une autre compétence clé est d'extraire une représentation pertinente de l'environnement à partir des observations issues des capteurs disponibles. Nous abordons cette question dans notre deuxième contribution, en soulignant la difficulté d'apprendre une représentation correcte de l'environnement dans un cadre en ligne, où l'agent acquiert des connaissances de manière incrémentale au fur et à mesure de ses progrès. Dans ce contexte, les objectifs récemment atteints sont considérés comme des valeurs aberrantes, car il y a très peu d'occurrences de cette nouvelle compétence dans les expériences de l'agent, ce qui rend leurs représentations fragiles. Nous exploitons le cadre adversaire de l'Optimisation Distributionnellement Robuste afin que les représentations de l'agent pour de tels exemples soient fiables. Nous montrons que notre méthode conduit à un cercle vertueux, car l'apprentissage de représentations correctes pour de nouveaux objectifs favorise l'exploration de l'environnement
In the past few years, Reinforcement Learning (RL) achieved tremendous success by training specialized agents owning the ability to drastically exceed human performance in complex games like Chess or Go, or in robotics applications. These agents often lack versatility, requiring human engineering to design their behavior for specific tasks with predefined reward signal, limiting their ability to handle new circumstances. This agent's specialization results in poor generalization capabilities, which make them vulnerable to small variations of external factors and adversarial attacks. A long term objective in artificial intelligence research is to move beyond today's specialized RL agents toward more generalist systems endowed with the capability to adapt in real time to unpredictable external factors and to new downstream tasks. This work aims in this direction, tackling unsupervised reinforcement learning problems, a framework where agents are not provided with external rewards, and thus must autonomously learn new tasks throughout their lifespan, guided by intrinsic motivations. The concept of intrinsic motivation arise from our understanding of humans ability to exhibit certain self-sufficient behaviors during their development, such as playing or having curiosity. This ability allows individuals to design and solve their own tasks, and to build inner physical and social representations of their environments, acquiring an open-ended set of skills throughout their lifespan as a result. This thesis is part of the research effort to incorporate these essential features in artificial agents, leveraging goal-conditioned reinforcement learning to design agents able to discover and master every feasible goals in complex environments. In our first contribution, we investigate autonomous intrinsic goal setting, as a versatile agent should be able to determine its own goals and the order in which to learn these goals to enhance its performances. By leveraging a learned model of the agent's current goal reaching abilities, we show that we can shape an optimal difficulty goal distribution, enabling to sample goals in the Zone of Proximal Development (ZPD) of the agent, which is a psychological concept referring to the frontier between what a learner knows and what it does not, constituting the space of knowledge that is not mastered yet but have the potential to be acquired. We demonstrate that targeting the ZPD of the agent's result in a significant increase in performance for a great variety of goal-reaching tasks. Another core competence is to extract a relevant representation of what matters in the environment from observations coming from any available sensors. We address this question in our second contribution, by highlighting the difficulty to learn a correct representation of the environment in an online setting, where the agent acquires knowledge incrementally as it make progresses. In this context, recent achieved goals are outliers, as there are very few occurrences of this new skill in the agent's experiences, making their representations brittle. We leverage the adversarial setting of Distributionally Robust Optimization in order for the agent's representations of such outliers to be reliable. We show that our method leads to a virtuous circle, as learning accurate representations for new goals fosters the exploration of the environment
APA, Harvard, Vancouver, ISO, and other styles
5

Debard, Quentin. "Automatic learning of next generation human-computer interactions." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI036.

Full text
Abstract:
L’Intelligence Artificielle (IA) et les Interfaces Homme-Machine (IHM) sont deux champs de recherche avec relativement peu de travaux communs. Les spécialistes en IHM conçoivent habituellement les interfaces utilisateurs directement à partir d’observations et de mesures sur les interactions humaines, optimisant manuellement l’interface pour qu’elle corresponde au mieux aux attentes des utilisateurs. Ce processus est difficile à optimiser : l’ergonomie, l’intuitivité et la facilité d’utilisation sont autant de propriétés clé d’une interface utilisateur (IU) trop complexes pour être simplement modélisées à partir de données d’interaction. Ce constat restreint drastiquement les utilisations potentielles de l’apprentissage automatique dans ce processus de conception. A l’heure actuelle, l’apprentissage automatique dans les IHMs se cantonne majoritairement à la reconnaissance de gestes et à l’automatisation d’affichage, par exemple à des fins publicitaires ou pour suggérer une sélection. L’apprentissage automatique peut également être utilisé pour optimiser une interface utilisateur existante, mais il ne participe pour l’instant pas à concevoir de nouvelles façons d’intéragir. Notre objectif avec cette thèse est de proposer grâce à l’apprentissage automatique de nouvelles stratégies pour améliorer le processus de conception et les propriétés des IUs. Notre but est de définir de nouvelles IUs intelligentes – comprendre précises, intuitives et adaptatives – requérant un minimum d’interventions manuelles. Nous proposons une nouvelle approche à la conception d’IU : plutôt que l’utilisateur s’adapte à l’interface, nous cherchons à ce que l’utilisateur et l’interface s’adaptent mutuellement l’un à l’autre. Le but est d’une part de réduire le biais humain dans la conception de protocoles d’interactions, et d’autre part de construire des interfaces co-adaptatives capables de correspondre d’avantage aux préférences individuelles des utilisateurs. Pour ce faire, nous allons mettre à contribution les différents outils disponibles en apprentissage automatique afin d’apprendre automatiquement des comportements, des représentations et des prises de décision. Nous expérimenterons sur les interfaces tactiles pour deux raisons majeures : celles-ci sont largement utilisées et fournissent des problèmes facilement interprétables. La première partie de notre travail se focalisera sur le traitement des données tactiles et l’utilisation d’apprentissage supervisé pour la construction de classifieurs précis de gestes tactiles. La seconde partie détaillera comment l’apprentissage par renforcement peut être utilisé pour modéliser et apprendre des protocoles d’interaction en utilisant des gestes utilisateur. Enfin, nous combinerons ces modèles d’apprentissage par renforcement avec de l’apprentissage non supervisé pour définir une méthode de conception de nouveaux protocoles d’interaction ne nécessitant pas de données d’utilisation réelles
Artificial Intelligence (AI) and Human-Computer Interactions (HCIs) are two research fields with relatively few common work. HCI specialists usually design the way we interact with devices directly from observations and measures of human feedback, manually optimizing the user interface to better fit users’ expectations. This process is hard to optimize: ergonomy, intuitivity and ease of use are key features in a User Interface (UI) that are too complex to be simply modelled from interaction data. This drastically restrains the possible uses of Machine Learning (ML) in this design process. Currently, ML in HCI is mostly applied to gesture recognition and automatic display, e.g. advertisement or item suggestion. It is also used to fine tune an existing UI to better optimize it, but as of now it does not participate in designing new ways to interact with computers. Our main focus in this thesis is to use ML to develop new design strategies for overall better UIs. We want to use ML to build intelligent – understand precise, intuitive and adaptive – user interfaces using minimal handcrafting. We propose a novel approach to UI design: instead of letting the user adapt to the interface, we want the interface and the user to adapt mutually to each other. The goal is to reduce human bias in protocol definition while building co-adaptive interfaces able to further fit individual preferences. In order to do so, we will put to use the different mechanisms available in ML to automatically learn behaviors, build representations and take decisions. We will be experimenting on touch interfaces, as these interfaces are vastly used and can provide easily interpretable problems. The very first part of our work will focus on processing touch data and use supervised learning to build accurate classifiers of touch gestures. The second part will detail how Reinforcement Learning (RL) can be used to model and learn interaction protocols given user actions. Lastly, we will combine these RL models with unsupervised learning to build a setup allowing for the design of new interaction protocols without the need for real user data
APA, Harvard, Vancouver, ISO, and other styles
6

Buhot, Arnaud. "Etude de propriétés d'apprentissage supervisé et non supervisé par des méthodes de Physique Statistique." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00001642.

Full text
Abstract:
L'objet de cette thèse est l'étude de diverses propriétés d'apprentissage à partir d'exemples par des méthodes de Physique Statistique, notamment, par la méthode des répliques. Des tâches supervisées, correspondant à la classification binaire de données, ainsi que des tâches non supervisées, comme l'estimation paramétrique d'une densité de probabilité, sont considérées. Dans la première partie, une approche variationnelle permet de déterminer la performance de l'apprentissage optimal d'une direction d'anisotropie, et de déduire une fonction de coût permettant d'obtenir ces performances optimales. Dans le cas de l'apprentissage supervisé d'une tâche linéairement séparable, des simulations numériques confirmant nos résultats théoriques ont permis de déterminer les effets de taille finie. Dans le cas d'une densité de probabilité constituée de deux gaussiennes, la performance de l'apprentissage optimal présente de nombreuses transitions de phases en fonction du nombre de données. Ces résultats soulèvent une controverse entre la théorie variationnelle et l'approche bayesienne de l'apprentissage optimal. Dans la deuxième partie, nous étudions deux approches différentes de l'apprentissage de tâches de classification complexes. La première approche considérée est celle des machines à exemples supports. Nous avons étudié une famille de ces machines pour laquelle les séparateurs linéaire et quadratique sont deux cas particuliers. La capacité, les valeurs typiques de la marge et du nombre d'exemples supports, sont déterminées. La deuxième approche considérée est celle d'une machine de parité apprenant avec un algorithme incrémental. Cet algorithme construit progressivement un réseau de neurones à une couche cachée. La capacité théorique obtenue pour l'algorithme considéré est proche de celle de la machine de parité.
APA, Harvard, Vancouver, ISO, and other styles
7

Ben-Fares, Maha. "Apprentissage de représentation non supervisé de flux de données textuelles." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1316.

Full text
Abstract:
Cette thèse présente des méthodes innovantes pour le regroupement de flux de données textuelles et introduit également un système d'identification des textes générés par l'IA. Cette méthode de détection de l'IA peut être utilisée indépendamment ou comme étape de prétraitement pour filtrer les documents entrants, en supprimant le contenu généré par l'IA et en préservant l'authenticité et la validité de l'information.Plus précisément, nous développons un système de classification qui distingue entre le texte écrit par des humains et celui généré par l'IA. Pour ce faire, cette méthode utilise une stratégie de fusion hiérarchique qui intègre des représentations provenant de diverses couches du modèle BERT. En se concentrant sur les caractéristiques syntaxiques, notre modèle classifie chaque token comme étant soit Humain, soit IA, capturant efficacement des structures textuelles détaillées et assurant une performance robuste dans plusieurs langues grâce au modèle XLM-RoBERTa-Large.Dans le domaine du regroupement de flux de données, en particulier pour les données textuelles, nous introduisons d'abord une méthode appelée OTTC (Regroupement Textuel Topologique en Ligne). Cette approche exploite l'apprentissage de représentations topologiques en combinaison avec des techniques de regroupement en ligne. Elle aborde efficacement les défis du clustering de flux de données textuelles, tels que la dynamique des données, la sparsité et la malédiction de la dimensionnalité, qui sont des problèmes que les méthodes de regroupement traditionnelles peinent souvent à gérer.Pour améliorer davantage les résultats du regroupement et répondre aux limites de l'OTTC, nous proposons l'algorithme MVTStream, spécialement conçu pour les flux de données textuelles à vues multiples. Cet algorithme fonctionne en trois étapes: d'abord, il génère des représentations textuelles diverses à partir des données entrantes, traitant chaque représentation comme une vue distincte. Ensuite, il utilise des structures de micro-clusters pour un traitement en temps réel. Enfin, il utilise des méthodes d'ensemble pour agréger les clusters provenant des différentes vues et obtenir les clusters finaux
This thesis presents an innovative methods for clustering text data streams and also introduces a system for identifying AI-generated text. This AI detection method can be used independently or as a preprocessing step to filter incoming documents, by removing AI-generated content, preserving the authenticity and validity of the information.Specifically, we develop a classification system that distinguishes between human-written and AI-generated text. This method employs a hierarchical fusion strategy that integrates representations from various layers of the BERT model. By focusing on syntactic features, our model classifies each token as either Human or AI, effectively capturing detailed text structures and ensuring robust performance across multiple languages using the XLM-RoBERTa-Large model.In the field of data stream clustering, particularly for textual data, we first introduce a method called OTTC (Online Topological Text Clustering). This approach leverages topological representation learning in combination with online clustering techniques. It effectively addresses the challenges in clustering textual data streams, such as data dynamism, sparsity, and the curse of dimensionality, which are issues that traditional clustering methods often struggle to manage.To further improve clustering results and address the limitations of OTTC, we propose the MVTStream algorithm, specifically designed for multi-view text data streams. This algorithm operates in three stages: First, it generates diverse text representations of incoming data, treating each representation as a separate view. Then, it employs micro-cluster data structures for real-time processing. Finally, it utilizes ensemble methods to aggregate clusters from the various views and get the final clusters
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Hao. "Vers la ré-identification de personnes non-supervisée." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4014.

Full text
Abstract:
En tant que composant central des systèmes de vidéo-surveillance intelligents, la ré-identification de personnes (ReID) vise à rechercher une personne d'intérêt à travers des caméras qui ne se chevauchent pas. Malgré des améliorations significatives de la ReID supervisée, le processus d'annotation encombrant le rend moins évolutif dans les déploiements réels. De plus, comme les représentations d'apparence peuvent être affectées par des facteurs bruyants, tels que le niveau d'éclairage et les propriétés de la caméra, entre différents domaines, les modèles ReID de personnes subissent une baisse de performances importante en présence d'écarts de domaine. Nous sommes particulièrement intéressés par la conception d'algorithmes capables d'adapter un modèle ReID de personnes à un domaine cible sans supervision humaine. Dans un tel contexte, nous nous concentrons principalement sur la conception de méthodes d'adaptation de domaine non-supervisée et d'apprentissage de représentation non-supervisée pour le ReID de personnes.Dans cette thèse, nous explorons d'abord comment construire des représentations robustes en combinant à la fois des caractéristiques globales et locales sous la condition supervisée. Ensuite, vers un système ReID adaptatif au domaine non-supervisé, nous proposons trois méthodes non-supervisées pour la ReID de personnes, notamment 1) la distillation des connaissances enseignant-étudiant avec des structures de réseau asymétriques pour encourager la diversité des caractéristiques, 2) un cadre d'apprentissage conjoint génératif et contrastif qui génère des vues augmentées avec un réseau génératif pour l'apprentissage contrastif, et 3) explorer les relations inter-instances et concevoir des fonctions de perte conscientes des relations pour une meilleure ReID de personnes basée sur l'apprentissage contrastif.Nos méthodes ont été largement évaluées sur des benchmarks de ReID, tels que Market-1501, DukeMTMC-reID et MSMT17. Les méthodes proposées surpassent considérablement les méthodes précédentes sur les benchmarks de ReID, poussant considérablement la ReID de personnes vers des déploiements dans le monde réel
As a core component of intelligent video surveillance systems, person re-identification (ReID) targets at retrieving a person of interest across non-overlapping cameras. Despite significant improvements in supervised ReID, cumbersome annotation process makes it less scalable in real-world deployments. Moreover, as appearance representations can be affected by noisy factors, such as illumination level and camera properties, between different domains, person ReID models suffer a large performance drop in the presence of domain gaps. We are particularly interested in designing algorithms that can adapt a person ReID model to a target domain without human supervision. In such context, we mainly focus on designing unsupervised domain adaptation and unsupervised representation learning methods for person ReID.In this thesis, we first explore how to build robust representations by combining both global and local features under the supervised condition. Then, towards an unsupervised domain adaptive ReID system, we propose three unsupervised methods for person ReID, including 1) teacher-student knowledge distillation with asymmetric network structures for feature diversity encouragement, 2) joint generative and contrastive learning framework that generates augmented views with a generative adversarial network for contrastive learning, and 3) exploring inter-instance relations and designing relation-aware loss functions for better contrastive learning based person ReID.Our methods have been extensively evaluated on main-stream ReID datasets, such as Market-1501, DukeMTMC-reID and MSMT17. The proposed methods significantly outperform previous methods on the ReID datasets, significantly pushing person ReID to real-world deployments
APA, Harvard, Vancouver, ISO, and other styles
9

Dutech, Alain. "Apprentissage par Renforcement : Au delà des Processus Décisionnels de Markov (Vers la cognition incarnée)." Habilitation à diriger des recherches, Université Nancy II, 2010. http://tel.archives-ouvertes.fr/tel-00549108.

Full text
Abstract:
Ce document présente mon ``projet de recherche'' sur le thème de l'embodiment (``cognition incarnée'') au croisement des sciences cognitives, de l'intelligence artificielle et de la robotique. Plus précisément, je montre comment je compte explorer la façon dont un agent, artificiel ou biologique, élabore des représentations utiles et pertinentes de son environnement. Dans un premier temps, je positionne mes travaux en explicitant notamment les concepts de l'embodiment et de l'apprentissage par renforcement. Je m'attarde notamment sur la problématique de l'apprentissage par renforcement pour des tâches non-Markoviennes qui est une problématique commune aux différents travaux de recherche que j'ai menés au cours des treize dernières années dans des contextes mono et multi-agents, mais aussi robotique. L'analyse de ces travaux et de l'état de l'art du domaine me conforte dans l'idée que la principale difficulté pour l'agent est bien celle de trouver des représentations adaptées, utiles et pertinentes. J'argumente que l'on se retrouve face à une problématique fondamentale de la cognition, intimement liée aux problèmes de ``l'ancrage des symboles'', du ``frame problem'' et du fait ``d'être en situation'' et qu'on ne pourra y apporter des réponses que dans le cadre de l'embodiment. C'est à partir de ce constat que, dans une dernière partie, j'aborde les axes et les approches que je vais suivre pour poursuivre mes travaux en développant des techniques d'apprentissage robotique qui soient incrémentales, holistiques et motivationnelles.
APA, Harvard, Vancouver, ISO, and other styles
10

Lefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale." Phd thesis, Université Nancy II, 2012. http://tel.archives-ouvertes.fr/tel-00756687.

Full text
Abstract:
Cette thèse traite de la problématique de l'unification de différents flux d'informations modales qui peuvent provenir des senseurs d'un agent. Cette unification, inspirée des expériences psychologiques comme l'effet ventriloque, s'appuie sur la détection de corrélations, définies comme des motifs spatiaux qui apparaissent régulièrement dans les flux d'entrée. L'apprentissage de l'espace des corrélations du flux d'entrée échantillonne cet espace et généralise les échantillons appris. Cette thèse propose des principes fonctionnels pour le traitement multimodal de l'information qui ont aboutit à l'architecture connexionniste, générique, modulaire et cortico-inspirée SOMMA (Self-Organizing Maps for Multimodal Association). Dans ce modèle, le traitement de chaque modalité s'effectue au sein d'une carte corticale. L'unification multimodale de l'information est obtenue par la mise en relation réciproque de ces cartes. L'échantillonnage et la généralisation des corrélations reposent sur une auto-organisation contrainte des cartes. Ce modèle est caractérisé par un apprentissage progressif de ces propriétés fonctionnelles: les propriétés monomodales amorcent l'émergence des propriétés multimodales et, dans le même temps, l'apprentissage de certaines corrélations par chaque carte est un préalable à l'auto-organisation de ces cartes. Par ailleurs, l'utilisation d'une architecture connexionniste et d'un apprentissage continu et non supervisé fournit au modèle des propriétés de robustesse et d'adaptabilité qui sont généralement absentes des approches informatiques classiques.
APA, Harvard, Vancouver, ISO, and other styles
11

Peyrache, Jean-Philippe. "Nouvelles approches itératives avec garanties théoriques pour l'adaptation de domaine non supervisée." Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4023/document.

Full text
Abstract:
Ces dernières années, l’intérêt pour l’apprentissage automatique n’a cessé d’augmenter dans des domaines aussi variés que la reconnaissance d’images ou l’analyse de données médicales. Cependant, une limitation du cadre classique PAC a récemment été mise en avant. Elle a entraîné l’émergence d’un nouvel axe de recherche : l’Adaptation de Domaine, dans lequel on considère que les données d’apprentissage proviennent d’une distribution (dite source) différente de celle (dite cible) dont sont issues les données de test. Les premiers travaux théoriques effectués ont débouché sur la conclusion selon laquelle une bonne performance sur le test peut s’obtenir en minimisant à la fois l’erreur sur le domaine source et un terme de divergence entre les deux distributions. Trois grandes catégories d’approches s’en inspirent : par repondération, par reprojection et par auto-étiquetage. Dans ce travail de thèse, nous proposons deux contributions. La première est une approche de reprojection basée sur la théorie du boosting et s’appliquant aux données numériques. Celle-ci offre des garanties théoriques intéressantes et semble également en mesure d’obtenir de bonnes performances en généralisation. Notre seconde contribution consiste d’une part en la proposition d’un cadre permettant de combler le manque de résultats théoriques pour les méthodes d’auto-étiquetage en donnant des conditions nécessaires à la réussite de ce type d’algorithme. D’autre part, nous proposons dans ce cadre une nouvelle approche utilisant la théorie des (epsilon, gamma, tau)-bonnes fonctions de similarité afin de contourner les limitations imposées par la théorie des noyaux dans le contexte des données structurées
During the past few years, an increasing interest for Machine Learning has been encountered, in various domains like image recognition or medical data analysis. However, a limitation of the classical PAC framework has recently been highlighted. It led to the emergence of a new research axis: Domain Adaptation (DA), in which learning data are considered as coming from a distribution (the source one) different from the one (the target one) from which are generated test data. The first theoretical works concluded that a good performance on the target domain can be obtained by minimizing in the same time the source error and a divergence term between the two distributions. Three main categories of approaches are derived from this idea : by reweighting, by reprojection and by self-labeling. In this thesis work, we propose two contributions. The first one is a reprojection approach based on boosting theory and designed for numerical data. It offers interesting theoretical guarantees and also seems able to obtain good generalization performances. Our second contribution consists first in a framework filling the gap of the lack of theoretical results for self-labeling methods by introducing necessary conditions ensuring the good behavior of this kind of algorithm. On the other hand, we propose in this framework a new approach, using the theory of (epsilon, gamma, tau)- good similarity functions to go around the limitations due to the use of kernel theory in the specific context of structured data
APA, Harvard, Vancouver, ISO, and other styles
12

De, La Bourdonnaye François. "Learning sensori-motor mappings using little knowledge : application to manipulation robotics." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC037/document.

Full text
Abstract:
La thèse consiste en l'apprentissage d'une tâche complexe de robotique de manipulation en utilisant très peu d'aprioris. Plus précisément, la tâche apprise consiste à atteindre un objet avec un robot série. L'objectif est de réaliser cet apprentissage sans paramètres de calibrage des caméras, modèles géométriques directs, descripteurs faits à la main ou des démonstrations d'expert. L'apprentissage par renforcement profond est une classe d'algorithmes particulièrement intéressante dans cette optique. En effet, l'apprentissage par renforcement permet d’apprendre une compétence sensori-motrice en se passant de modèles dynamiques. Par ailleurs, l'apprentissage profond permet de se passer de descripteurs faits à la main pour la représentation d'état. Cependant, spécifier les objectifs sans supervision humaine est un défi important. Certaines solutions consistent à utiliser des signaux de récompense informatifs ou des démonstrations d'experts pour guider le robot vers les solutions. D'autres consistent à décomposer l'apprentissage. Par exemple, l'apprentissage "petit à petit" ou "du simple au compliqué" peut être utilisé. Cependant, cette stratégie nécessite la connaissance de l'objectif en termes d'état. Une autre solution est de décomposer une tâche complexe en plusieurs tâches plus simples. Néanmoins, cela n'implique pas l'absence de supervision pour les sous tâches mentionnées. D'autres approches utilisant plusieurs robots en parallèle peuvent également être utilisés mais nécessite du matériel coûteux. Pour notre approche, nous nous inspirons du comportement des êtres humains. Ces derniers généralement regardent l'objet avant de le manipuler. Ainsi, nous décomposons la tâche d'atteinte en 3 sous tâches. La première tâche consiste à apprendre à fixer un objet avec un système de deux caméras pour le localiser dans l'espace. Cette tâche est apprise avec de l'apprentissage par renforcement profond et un signal de récompense faiblement supervisé. Pour la tâche suivante, deux compétences sont apprises en parallèle : la fixation d'effecteur et une fonction de coordination main-oeil. Comme la précédente tâche, un algorithme d'apprentissage par renforcement profond est utilisé avec un signal de récompense faiblement supervisé. Le but de cette tâche est d'être capable de localiser l'effecteur du robot à partir des coordonnées articulaires. La dernière tâche utilise les compétences apprises lors des deux précédentes étapes pour apprendre au robot à atteindre un objet. Cet apprentissage utilise les mêmes aprioris que pour les tâches précédentes. En plus de la tâche d'atteinte, un predicteur d'atteignabilité d'objet est appris. La principale contribution de ces travaux est l'apprentissage d'une tâche de robotique complexe en n'utilisant que très peu de supervision
The thesis is focused on learning a complex manipulation robotics task using little knowledge. More precisely, the concerned task consists in reaching an object with a serial arm and the objective is to learn it without camera calibration parameters, forward kinematics, handcrafted features, or expert demonstrations. Deep reinforcement learning algorithms suit well to this objective. Indeed, reinforcement learning allows to learn sensori-motor mappings while dispensing with dynamics. Besides, deep learning allows to dispense with handcrafted features for the state spacerepresentation. However, it is difficult to specify the objectives of the learned task without requiring human supervision. Some solutions imply expert demonstrations or shaping rewards to guiderobots towards its objective. The latter is generally computed using forward kinematics and handcrafted visual modules. Another class of solutions consists in decomposing the complex task. Learning from easy missions can be used, but this requires the knowledge of a goal state. Decomposing the whole complex into simpler sub tasks can also be utilized (hierarchical learning) but does notnecessarily imply a lack of human supervision. Alternate approaches which use several agents in parallel to increase the probability of success can be used but are costly. In our approach,we decompose the whole reaching task into three simpler sub tasks while taking inspiration from the human behavior. Indeed, humans first look at an object before reaching it. The first learned task is an object fixation task which is aimed at localizing the object in the 3D space. This is learned using deep reinforcement learning and a weakly supervised reward function. The second task consists in learning jointly end-effector binocular fixations and a hand-eye coordination function. This is also learned using a similar set-up and is aimed at localizing the end-effector in the 3D space. The third task uses the two prior learned skills to learn to reach an object and uses the same requirements as the two prior tasks: it hardly requires supervision. In addition, without using additional priors, an object reachability predictor is learned in parallel. The main contribution of this thesis is the learning of a complex robotic task with weak supervision
APA, Harvard, Vancouver, ISO, and other styles
13

Aklil, Nassim. "Apprentissage actif sous contrainte de budget en robotique et en neurosciences computationnelles. Localisation robotique et modélisation comportementale en environnement non stationnaire." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066225/document.

Full text
Abstract:
La prise de décision est un domaine très étudié en sciences, que ce soit en neurosciences pour comprendre les processus sous tendant la prise de décision chez les animaux, qu’en robotique pour modéliser des processus de prise de décision efficaces et rapides dans des tâches en environnement réel. En neurosciences, ce problème est résolu online avec des modèles de prises de décision séquentiels basés sur l’apprentissage par renforcement. En robotique, l’objectif premier est l’efficacité, dans le but d’être déployés en environnement réel. Cependant en robotique ce que l’on peut appeler le budget et qui concerne les limitations inhérentes au matériel, comme les temps de calculs, les actions limitées disponibles au robot ou la durée de vie de la batterie du robot, ne sont souvent pas prises en compte à l’heure actuelle. Nous nous proposons dans ce travail de thèse d’introduire la notion de budget comme contrainte explicite dans les processus d’apprentissage robotique appliqués à une tâche de localisation en mettant en place un modèle basé sur des travaux développés en apprentissage statistique qui traitent les données sous contrainte de budget, en limitant l’apport en données ou en posant une contrainte de temps plus explicite. Dans le but d’envisager un fonctionnement online de ce type d’algorithmes d’apprentissage budgétisé, nous discutons aussi certaines inspirations possibles qui pourraient être prises du côté des neurosciences computationnelles. Dans ce cadre, l’alternance entre recherche d’information pour la localisation et la décision de se déplacer pour un robot peuvent être indirectement liés à la notion de compromis exploration-exploitation. Nous présentons notre contribution à la modélisation de ce compromis chez l’animal dans une tâche non stationnaire impliquant différents niveaux d’incertitude, et faisons le lien avec les méthodes de bandits manchot
Decision-making is a highly researched field in science, be it in neuroscience to understand the processes underlying animal decision-making, or in robotics to model efficient and rapid decision-making processes in real environments. In neuroscience, this problem is resolved online with sequential decision-making models based on reinforcement learning. In robotics, the primary objective is efficiency, in order to be deployed in real environments. However, in robotics what can be called the budget and which concerns the limitations inherent to the hardware, such as computation times, limited actions available to the robot or the lifetime of the robot battery, are often not taken into account at the present time. We propose in this thesis to introduce the notion of budget as an explicit constraint in the robotic learning processes applied to a localization task by implementing a model based on work developed in statistical learning that processes data under explicit constraints, limiting the input of data or imposing a more explicit time constraint. In order to discuss an online functioning of this type of budgeted learning algorithms, we also discuss some possible inspirations that could be taken on the side of computational neuroscience. In this context, the alternation between information retrieval for location and the decision to move for a robot may be indirectly linked to the notion of exploration-exploitation compromise. We present our contribution to the modeling of this compromise in animals in a non-stationary task involving different levels of uncertainty, and we make the link with the methods of multi-armed bandits
APA, Harvard, Vancouver, ISO, and other styles
14

Lefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale." Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0106.

Full text
Abstract:
Cette thèse traite de la problématique de l'unification de différents flux d'informations modales qui peuvent provenir des senseurs d'un agent. Cette unification, inspirée des expériences psychologiques comme l'effet ventriloque, s'appuie sur la détection de corrélations, définies comme des motifs spatiauxqui apparaissent régulièrement dans les flux d'entrée. L'apprentissage de l'espace des corrélations du flux d'entrée échantillonne cet espace et généralise les échantillons appris. Cette thèse propose des principes fonctionnels pour le traitement multimodal de l'information qui ont aboutit à l'architectureconnexionniste, générique, modulaire et cortico-inspirée SOMMA (Self-Organizing Maps for Multimodal Association). Dans ce modèle, le traitement de chaque modalité s'effectue au sein d'une carte corticale. L'unification multimodale de l'information est obtenue par la mise en relation réciproque de ces cartes.L'échantillonnage et la généralisation des corrélations reposent sur une auto-organisation contrainte des cartes. Ce modèle est caractérisé par un apprentissage progressif de ces propriétés fonctionnelles : les propriétés monomodales amorcent l'émergence des propriétés multimodales et, dans le même temps, l'apprentissagede certaines corrélations par chaque carte est un préalable à l'auto-organisation de ces cartes. Par ailleurs, l'utilisation d'une architecture connexionniste et d'un apprentissage continu et non supervisé fournit au modèle des propriétés de robustesse et d'adaptabilité qui sont généralement absentes des approches informatiques classiques
This thesis focuses on unifying multiple modal data flows that may be provided by sensors of an agent. This unification, inspired by psychological experiments like the ventriloquist effect, is based on detecting correlations which are defined as temporally recurrent spatial patterns that appear in the input flows. Learning of the input flow correlations space consists on sampling this space and generalizing theselearned samples. This thesis proposed some functional paradigms for multimodal data processing, leading to the connectionist, generic, modular and cortically inspired architecture SOMMA (Self-Organizing Maps for Multimodal Association). In this model, each modal stimulus is processed in a cortical map. Interconnectionof these maps provides an unifying multimodal data processing. Sampling and generalization of correlations are based on the constrained self-organization of each map. The model is characterised by a gradual emergence of these functional properties : monomodal properties lead to the emergence of multimodal ones and learning of correlations in each map precedes self-organization of these maps.Furthermore, the use of a connectionist architecture and of on-line and unsupervised learning provides plasticity and robustness properties to the data processing in SOMMA. Classical artificial intelligence models usually miss such properties
APA, Harvard, Vancouver, ISO, and other styles
15

Maes, Francis. "Learning in Markov decision processes for structured prediction : applications to sequence labeling, tree transformation and learning for search." Paris 6, 2009. http://www.theses.fr/2009PA066500.

Full text
Abstract:
De nombreux problèmes d'apprentissage supervisé font intervenir des sorties complexes : séquences, arbres ou graphes. La prédiction de sorties structurées pose d'importants défis, liés à la nature combinatoire du problème. Dans cette thèse, je propose une nouvelle formulation basée sur le cadre des processus de décision Markoviens. Cette formulation permet d'utiliser des algorithmes d'apprentissage par renforcement pour traiter des problèmes particulièrement complexes qu'aucun algorithme n'était en mesure de résoudre jusqu'alors. La validation est effectuée sur deux tâches: l'étiquetage de séquences et la transformation d'arbres. Les résultats obtenus sur les séquences sont compétitifs avec l'état de l'art et pour certains significativement meilleurs. La transformation d'arbres est un des problèmes d'apprentissage statistique les plus complexes abordés à ce jour. Je démontre l'efficacité de l'apprentissage par renforcement pour ce problème sur cinq jeux de données de large échelle.
APA, Harvard, Vancouver, ISO, and other styles
16

Muller, Jean-Denis. "La perception structurante : apprentissage non monotone de fonctions visuelles par croissance et maturation de structures neuromimétiques." Toulouse, ENSAE, 1993. http://www.theses.fr/1993ESAE0030.

Full text
Abstract:
Il est difficile de définir un réseau neuromimétique a priori : il n’existe en effet aucune règle ni aucun théorème mathématique donnant la taille et la structure de réseau optimales pour résoudre un problème particulier. Les réseaux neuronaux biologiques résolvent ce problème en s’adaptant constamment et de façon non monotone, faisant intervenir, à des degrés divers selon la structure neuronale en jeu, l’âge du sujet et le type d’apprentissage, des principes de croissance neuronale (développement), d’adaptation d’efficacités synaptiques et d’élagage de connexions (maturation). Dans cette thèse est proposée une modélisation simple de ces processus neuronaux. Un exemple d’application de cette méthode à un problème industriel de vision est présenté. Nous décrivons en effet l’apprentissage de fonctions visuelles élémentaires par un modèle de réseau multicouche dont la structure et le mode de fonctionnement sont inspirés de ceux du cortex visuel des mammifères. Cet apprentissage est réalisé en deux phases successives. Au cours de la première phase, le réseau croît progressivement en établissant des connexions entre des structures fonctionnelles composées de neurones apprenant à détecter des caractéristiques géométriques de différents niveaux de complexité dans les images au moyen d’un algorithme d’apprentissage non supervisé. La deuxième phase consiste en une adaptation supervisée des efficacités synaptiques associée à une procédure d’élagage assurant l’augmentation graduelle des capacités de généralisation du réseau par réduction du nombre de paramètres le décrivant. Une telle technique a plusieurs intérêts : tout d’abord, elle permet le développement d’applications de reconnaissances de formes sans aucune expertise préalable, le réseau étant capable d’extraire d’images brutes les caractéristiques géométriques pertinentes pour la classification, de les fusionner pour construire le processus de décision et de modifier sa structure de façon à minimiser les risques d’erreurs de généralisation. Elle est donc particulièrement adaptée aux problèmes de vision évolutifs et / ou mal formalisés. Ensuite, son caractère permet d’envisager à terme une implémentation d’un système complet de reconnaissance de formes sur un circuit électronique. Cette technique a été appliquée à un problème de classification de défauts sur des masques servant à fabriquer des circuits à très haute densité d’intégration dans le cadre d’un projet industriel mené au Group Techniques Avancées IBM de Montpellier et impliquant plusieurs sites de la compagnie, eu Europe et aux Etats-Unis : le projet MIMS / ADC (Mask Integrated production line Management System / Automatic Defect Classification).
APA, Harvard, Vancouver, ISO, and other styles
17

Alami, Réda. "Bandits à Mémoire pour la prise de décision en environnement dynamique. Application à l'optimisation des réseaux de télécommunications." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG063.

Full text
Abstract:
Dans cette thèse de doctorat, nous étudions le problème du bandit manchot non stationnaire où le comportement de non-stationnarité de l'environnement est caractérisé par plusieurs changements brusques appelés "points de changement". Nous proposons les bandits à mémoire : une combinaison entre un algorithme pour le bandit manchot stochastique et le détecteur Bayésien de point de changement. L'analyse de ce dernier a toujours été un problème ouvert dans la communauté de la théorie statistique et de l'apprentissage séquentiel. Pour cette raison, nous dérivons une variante du détecteur Bayésien de point de changement qui est plus facile à analyser mathématiquement en termes de taux de fausses alarmes et de délai de détection (qui sont les critères les plus courants pour la détection de point de changement). Ensuite, nous introduisons le problème d'exploration décentralisée dans le cadre du bandit manchot où un ensemble de joueurs collaborent pour identifier le meilleur bras en interagissant de manière asynchrone avec le même environnement stochastique. Nous proposons une première solution générique appelée élimination décentralisée qui utilise n'importe quel algorithme d'identification du meilleur bras comme sous-programme avec la garantie que l'algorithme assure la confidentialité, avec un faible coût de communication. Enfin, nous effectuons une évaluation des stratégies de bandit manchot dans deux contextes différents de réseaux de télécommunications. Tout d'abord, dans le contexte LoRaWAN (Long Range Wide Area Network), nous proposons d'utiliser des algorithmes de bandit manchot à la place de l'algorithme par défaut qui porte le nom d’ADR (Adaptive Data Rate) afin de minimiser la consommation d'énergie et les pertes de paquets des terminaux. Ensuite, dans le contexte IEEE 802.15.4-TSCH, nous effectuons une évaluation de 9 algorithmes de bandits manchot afin de sélectionner ceux qui choisissent les canaux les plus performants, en utilisant les données collectées via la plateforme FIT IoT-LAB. L'évaluation des performances suggère que notre proposition peut améliorer considérablement le taux de livraison des paquets par rapport à la procédure TSCH par défaut, augmentant ainsi la fiabilité et l'efficacité énergétique des transmissions
In this PhD thesis, we study the non-stationary multi-armed bandit problem where the non-stationarity behavior of the environment is characterized by several abrupt changes called "change-points". We propose Memory Bandits: a combination between an algorithm for the stochastic multi-armed bandit and the Bayesian Online Change-Point Detector (BOCPD). The analysis of the latter has always been an open problem in the statistical and sequential learning theory community. For this reason, we derive a variant of the Bayesian Online Change-point detector which is easier to mathematically analyze in term of false alarm rateand detection delay (which are the most common criteria for online change-point detection). Then, we introduce the decentralized exploration problem in the multi-armed bandit paradigm where a set of players collaborate to identify the best arm by asynchronously interacting with the same stochastic environment. We propose a first generic solution called decentralized elimination: which uses any best arm identification algorithm as a subroutine with the guar-antee that the algorithm ensures privacy, with a low communication cost. Finally, we perform an evaluation of the multi-armed bandit strategies in two different context of telecommunication networks. First, in LoRaWAN (Long Range Wide Area Network) context, we propose to use multi-armed bandit algorithms instead of the default algorithm ADR (Adaptive Data Rate) in order to minimize the energy consumption and the packet losses of end-devices. Then, in a IEEE 802.15.4-TSCH context, we perform an evaluation of 9 multi-armed bandit algorithms in order to select the ones that choose high-performance channels, using data collected through the FIT IoT-LAB platform. The performance evaluation suggests that our proposal can significantly improve the packet delivery ratio compared to the default TSCH operation, thereby increasing the reliability and the energy efficiency of the transmissions
APA, Harvard, Vancouver, ISO, and other styles
18

Wacongne, Catherine. "Traitements conscient et non-conscient des régularités temporelles : Modélisation et neuroimagerie." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066290/document.

Full text
Abstract:
Que va-t-il arriver ensuite ? Les stimuli naturels ont tendance à se suivre d'une façon prédictible. De nombreux domaines de la psychologie et des neurosciences ont montré que le cerveau et le comportement des humains sont sensibles à la structure temporelle des stimuli sensoriels et sont capables de l'exploiter de multiples façons : pour prendre des décisions appropriées, encoder l'information de façon efficace, réagir plus vite aux événements prédictibles ou encore orienter l'attention vers les stimuli inattendus. Si de nombreuses aires cérébrales sont sensibles aux régularités temporelles (RT), toutes ne semblent pas traiter les mêmes types de structure temporelle. L'accès conscient aux stimuli semble jouer un rôle important dans la capacité à apprendre certains types de RT. Cette thèse explore l'organisation hiérarchique du traitement des RT et les propriétés computationnelles propres à leur traitement conscient et non conscient en combinant un travail de modélisation et des expériences de neuroimagerie en magnétoencéphalographie et électroencéphalographie (MEEG). Un premier modèle neuronal basé sur les principes du codage prédictif reproduit les principales propriétés du traitement préattentif des sons purs dans le cortex auditif indexé par le potentiel évoqué appelé négativité d'incongruence (MMN). Une seconde étude en MEEG met en évidence l'existence d'une hiérarchie de processus prédictifs dans le cortex auditif. Enfin, un second modèle explore les contraintes et les nouvelles propriétés computationnelles qui sont associées à l'accès conscient des stimuli à un système de mémoire de travail capable de maintenir indéfiniment un nombre limité d'objets
What is going to happen next? Natural stimuli tend to follow each other in a reproducible way. Multiple fields of neuroscience and psychology bring evidence that human’s brain and behavior are sensitive to the temporal structure of stimuli and are able to exploit them in multiple ways: to make appropriate decisions, encode efficiently information, react faster to predictable stimuli or orient attention towards surprising ones… Multiple brain areas show sensitivity to the temporal structure of events. However, all areas do not seem to be sensitive to the same kind of temporal regularities. Conscious access to the stimuli seems to play a key role in some of these dissociations and better understanding this role could improve the current diagnostic tools for non-communicative patients. This thesis explores the hierarchical organization of the processing of temporal regularities and the computational properties of conscious and unconscious levels of processing by combining a modeling approach with neuroimaging experiments using magnetoencephalography and electroencephalography (MEEG). First, a plausible neuronal model based on predictive coding principles reproduces the main properties of the preattentive processing of pure tones in the auditory cortex indexed by the evoked potential mismatch negativity (MMN). Second, a MEEG experiment provides evidence for a hierarchical organization of multiple predictive processes in the auditory cortex. Finally, a second model explores the new computational properties and constraints associated to the access of stimuli to a conscious space with a working memory able to maintain information for an arbitrary time but with limited capacity
APA, Harvard, Vancouver, ISO, and other styles
19

Delcourt, Alexandre. "Amélioration des détecteurs CdZnTe pour l'imagerie gamma par apprentissage." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM056.

Full text
Abstract:
L’utilisation généralisée des détecteurs à base de CZT dans l’imagerie gamma depuis certaines années pousse à l’optimisation de leurs performances afin de rester compétitif au niveau industriel. Néanmoins la présence de défauts structurels dans la maille cristalline du CZT dégrade la qualité de signaux de sortie et freine le développement de détecteurs à plus grand volume. L’objectif de cette thèse est d’utiliser des algorithmes d’optimisation et d’intelligence artificielle en s’aidant de simulations réalistes afin d’outrepasser les effets de ces défauts et d’améliorer les performances de localisation des interactions gamma dans le détecteur. Nous allons nous baser sur une méthode mathématique en 3 étapes alternative aux méthodes de caractérisation et de correction usuelles. D’abord le développement de simulations de détecteurs CZT en 3 dimensions avec possibilité d’implémenter des défauts de différentes natures pour observer leur impact sur les signaux sortants. Puis nous allons construire un réseau de neurones simple adaptable dans l’électronique afin de localiser les interactions dans le détecteur d’après des résultats de simulation. Un second réseau basé sur une méthode d’optimisation par calcul de gradient va permettre de déterminer le champ électrique et les performances de collecte d’un détecteur.La concaténation de ces 3 étapes va permettre d’apprendre par simulation les paramètres internes d’un détecteur étudié tel que le champ électrique, simulation qui va servir afin d’entraîner le réseau de neurones simple, pour finalement être utilisé sur les données expérimentales dans le but d’améliorer les performances de localisation du détecteur.Le développement de cette approche mathématique va permettre d’un côté la meilleure compréhension de la structure interne du cristal CZT et la possibilité de reproduire son comportement en simulation. Egalement les meilleures performances du détecteur pourraient se retrouver dans l’utilisation de doses de radio traceurs inférieures en imagerie, ou un temps d’exposition réduit pour les opérateurs en centrale nucléaire
Since a few years, the wide spread use of CZT-based detectors in gamma imaging drives their performance optimization to stay competitive at the industrial level. However, the presence of structural defect in the CZT crystal deteriorates the output signals quality and holds back the higher volume detectors development.The purpose of this thesis is the use of optimization and artificial intelligence algorithms using realistic simulations to override the impact of the defects and improve the localization performances of gamma interactions in the detector. We will develop a mathematical-based method in three steps as an alternative to common characterization and correction methods.First, we develop 3D CZT detector simulations enabling to implement defects with different natures to observe their impact on output signals. Then we build a simple neural network, which can be introduced in the electronics to localize the gamma interactions in the detector from simulation results. A second network based on a gradient computation method will allow determining the electric field and collection performance of a detector.The addition of these three steps will be used to learn through simulation the intern parameters of a determined detector such as the electric field. This simulation will serve to train the simple neural network and finally be used on experimental data to improve the localization performance of the detector.The development of this mathematical approach will help us having a better understanding of the intern structure of a CZT crystal being able to reproduce its behavior in simulation. In addition, the better performance of the detector might be sufficient to decrease the radiotracer dose for medical imaging or limit the exposition time of operators in a nuclear power plant
APA, Harvard, Vancouver, ISO, and other styles
20

Trenquier, Henri. "Analyse et explication par des techniques d'argumentation de modèles d'intelligence artificielle basés sur des données." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30355.

Full text
Abstract:
La classification est une tâche très courante dans le domaine de l'apprentissage automatique et les modèles d'apprentissage automatique créés pour accomplir cette tâche tendent à atteindre une précision comparable à celle des humains, au détriment de leur transparence. L'apparition de ces systèmes intelligents dans le quotidien du public a créée un besoin d'explicabilité. Les explications abductives sont l'un des types d'explications les plus populaires qui sont fournies dans le but d'expliquer le comportement de modèles d'apprentissage complexes, parfois considérés comme des boîtes noires. Elles mettent en évidence les caractéristiques qui sont suffisantes pour que le modèle prédise une certaine classe. Dans la littérature, elles sont générées en explorant l'ensemble de l'espace des caractéristiques, ce qui n'est pas raisonnable en pratique. Cette thèse aborde ce problème en introduisant des fonctions d'explication qui génèrent des explications abductives à partir d'un échantillon arbitraire d'instances. Elle montre que de telles fonctions doivent être définies avec beaucoup de soin car elles ne peuvent pas satisfaire simultanément deux propriétés souhaitables, à savoir l'existence d'explications pour chaque décision individuelle (success) et l'exactitude des explications (coherence). Cette thèse fournit une collection de fonctions d'explication paramétrées basées sur l'argumentation, chacune satisfaisant l'une des ces deux propriétés. De plus, elle étudie leurs propriétés formelles ainsi que leur comportement expérimental sur différents ensembles de données
Classification is a very common task in Machine Learning (ML) and the ML models created to perform this task tend to reach human comparable accuracy, at the cost of transparency. The surge of such AI-based systems in the public's daily life has created a need for explainability. Abductive explanations are one of the most popular types of explanations that are provided for the purpose of explaining the behavior of complex ML models sometimes considered as black-boxes. They highlight feature-values that are sufficient for the model to make a prediction. In the literature, they are generated by exploring the whole feature space, which is unreasonable in practice. This thesis tackles this problem by introducing explanation functions that generate abductive explanations from a sample of instances. It shows that such functions should be defined with great care since they cannot satisfy two desirable properties at the same time, namely existence of explanations for every individual decision (success) and correctness of explanations (coherence). This thesis provides a parameterized family of argumentation-based explanation functions, each of which satisfies one of the two properties. It studies their formal properties and their experimental behaviour on different datasets
APA, Harvard, Vancouver, ISO, and other styles
21

Khacef, Yacine. "Surveillance avancée du trafic routier par détection acoustique distribuée et apprentissage profond." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5070.

Full text
Abstract:
La gestion du trafic urbain est un enjeu crucial pour les villes du monde entier, en raison de l'augmentation continue du nombre de véhicules. Les méthodes classiques, telles que les caméras et les boucles de détection, s'avèrent souvent inadaptées à cause de leurs coûts élevés, de la faible résolution des capteurs, et des enjeux de protection de la vie privée. Récemment, la technologie de détection acoustique distribuée (DAS) a émergé comme une solution innovante pour la surveillance du trafic. En convertissant des câbles de fibre optique en un réseau de capteurs de vibration, la technologie DAS capte les déformations générées par les véhicules avec une haute résolution spatio-temporelle, offrant ainsi une alternative rentable et respectueuse de la vie privée. Dans cette thèse, nous développons plusieurs modèles et méthodes pour une surveillance complète du trafic à l'aide de la technologie DAS, en nous concentrant sur quatre axes : la détection des véhicules, l'estimation de la vitesse, le comptage et la classification. Nous introduisons d'abord un modèle d'alignement des données DAS auto-supervisé, permettant d'extraire des informations cruciales sur le trafic grâce à l'alignement temporel des données recueillies en divers points de mesure. Ce modèle intègre un module d'apprentissage profond et un bloc de déformation temporelle non uniforme, capable de gérer des conditions de circulation complexes et d'aligner les données DAS avec précision. Nous proposons ensuite une méthode pour la détection des véhicules et l'estimation de leur vitesse, basé sur le modèle d'alignement. La détection est formulée selon le cadre du test de rapport de vraisemblance généralisé (GLRT), permettant de localiser et de détecter les véhicules de manière fiable. L'estimation de la vitesse est réalisée sur les véhicules détectés, et nos résultats sont validés avec des capteurs dédiés. Notre méthode affiche une précision supérieure, avec une erreur inférieure à kmph{3}, surpassant de 80% les méthodes traditionnelles d'alignement temporel telles que la déformation temporelle dynamique (DTW), tout en étant 16 fois plus rapide, ce qui permet une application en temps réel. Nous développons également de nouvelles méthodes de comptage et de classification des véhicules en exploitant la technologie DAS. Une première solution, basée uniquement sur la détection des véhicules, est efficace pour le comptage des camions mais montre des limites pour le comptage des voitures en trafic dense. Pour y remédier, nous proposons un modèle d'apprentissage profond supervisé pour le comptage, entraîné sur une section spécifique de la route, utilisant les résultats du comptage de la première méthode et des étiquettes à faible résolution temporelle. Une technique de transfert de caractéristiques permet d'étendre ce modèle à d'autres segments routiers, démontrant ainsi son adaptabilité. En conclusion, cette thèse propose une solution robuste et scalable pour la surveillance du trafic à l'aide de la technologie DAS, assurant à la fois une haute précision et une exécution en temps réel. Cette approche ouvre la voie à l'extraction de diverses informations critiques, telles que la détection d'accidents, et peut être étendue à d'autres modes de transport, comme les tramways ou les trains, illustrant ainsi son large potentiel d'application
Urban traffic management poses a significant challenge for cities worldwide, intensified by the growing number of vehicles on road infrastructures. Traditional methods, such as cameras and loop detectors, are often suboptimal due to their high deployment and maintenance costs, limited sensing resolution, and privacy concerns. Recently, Distributed Acoustic Sensing (DAS) technology has emerged as a promising solution for traffic monitoring. By transforming standard fiber-optic telecommunication cables into an array of vibration sensors, DAS captures vehicle-induced subsurface deformation with high spatio-temporal resolution, providing a cost-effective and privacy-preserving alternative.In this thesis, we propose several models and frameworks for comprehensive traffic monitoring using DAS technology, focusing on four key aspects: vehicle detection, speed estimation, counting, and classification. First, we introduce a self-supervised DAS data alignment model that temporally aligns the recorded DAS data across multiple measurement points, enabling the extraction of the traffic information. Our model integrates a deep learning module with a non-uniform time warping block, making it capable of handling challenging traffic conditions and accurately aligning DAS data.Next, we present a vehicle detection and speed estimation framework built on the alignment model. Vehicle detection is formulated within the Generalized Likelihood Ratio Test (GLRT) framework, allowing for reliable detection and localization of vehicles. Speed estimation is achieved over the detected vehicles using the warps from the alignment model, and the results are validated against dedicated sensors. Our method achieves a mean error of less than kmph{3}, outperforming traditional time series alignment methods like Dynamic Time Warping (DTW) by nearly 80%. Furthermore, our model's computing time is 16 times faster than DTW, enabling real-time performance.Lastly, we introduce new vehicle counting and classification methods that leverage the DAS technology. We present a first solution, based solely on vehicle detection results, which is effective for truck counting but shows limitations in cars counting under high-traffic conditions. To address these limitations, we develop a second approach for vehicle counting using a supervised deep learning model trained on a specific road section, using the vehicle counting results of the first method and low-time-resolution labels from dedicated sensors. Through an optimal transport-based feature mapping technique, we extend the model to other road segments, demonstrating its scalability and adaptability. Using the first truck counting method along with the deep learning-based vehicle counting model results in a comprehensive vehicle counting and classification solution.Overall, this thesis presents a robust and scalable framework for road traffic monitoring using DAS technology, delivering both high accuracy and real-time performance. The framework paves the way for extracting a wide range of other crucial traffic information, such as accident detection. Moreover, this approach can be generalized to various road configurations and extended to other transportation modes, such as tramways and trains, demonstrating its broader applicability
APA, Harvard, Vancouver, ISO, and other styles
22

Laumônier, Julien. "Méthodes d'apprentissage de la coordination multiagent : application au transport intelligent." Doctoral thesis, Université Laval, 2008. http://hdl.handle.net/20.500.11794/20000.

Full text
Abstract:
Les problèmes de prise de décisions séquentielles multiagents sont difficiles à résoudre surtout lorsque les agents n'observent pas parfaitement l'état de Y environnement. Les approches existantes pour résoudre ces problèmes utilisent souvent des approximations de la fonction de valeur ou se basent sur la structure pour simplifier la résolution. Dans cette thèse, nous proposons d'approximer un problème de décisions séquentielles multiagent à observation limitée, modélisé par un processus décisionnel markovien décentralisé (DEC-MDP) en utilisant deux hypothèses sur la structure du problème. La première hypothèse porte sur la structure de comportement optimal et suppose qu'il est possible d'approximer la politique optimale d'un agent en connaissant seulement les actions optimales au niveau d'un petit nombre de situations auxquelles l'agent peut faire face dans son environnement. La seconde hypothèse porte, quant à elle, sur la structure organisationnelle des agents et suppose que plus les agents sont éloignés les uns des autres, moins ils ont besoin de se coordonner. Ces deux hypothèses nous amènent à proposer deux approches d'approximation. La première approche, nommée Supervised Policy Reinforcement Learning, combine l'apprentissage par renforcement et l'apprentissage supervisé pour généraliser la politique optimale d'un agent. La second approche se base, quant à elle, sur la structure organisationnelle des agents pour apprendre une politique multiagent dans des problèmes où l'observation est limitée. Pour cela, nous présentons un modèle, le D O F - D E C - M DP (Distance-Observable Factored Decentralized Markov Décision Process) qui définit une distance d'observation pour les agents. A partir de ce modèle, nous proposons des bornes sur le gain de récompense que permet l'augmentation de la distance d'observation. Les résultats empiriques obtenus sur des problèmes classiques d'apprentissage par renforcement monoagents et multiagents montrent que nos approches d'approximation sont capables d'apprendre des politiques proches de l'optimale. Enfin, nous avons testé nos approches sur un problème de coordination de véhicules en proposant une méthode de synchronisation d'agents via la communication dans un cadre à observation limitée.
APA, Harvard, Vancouver, ISO, and other styles
23

Najar, Anis. "Shaping robot behaviour with unlabeled human instructions." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066152.

Full text
Abstract:
La plupart des systèmes d'apprentissage interactifs actuels s'appuient sur des protocoles prédéfinis qui peuvent être contraignants pour l'utilisateur. Cette thèse aborde le problème de l'interprétation des instructions, afin de relâcher la contrainte de prédéterminer leurs significations. Nous proposons un système permettant à un humain de guider l'apprentissage d'un robot, à travers des instructions non labellisées. Notre approche consiste à ancrer la signification des signaux instructifs dans le processus d'apprentissage de la tâche et à les utiliser simultanément pour guider l'apprentissage. Cette approche offre plus de liberté à l'humain dans le choix des signaux qu'il peut utiliser, et permet de réduire les efforts d'ingénierie en supprimant la nécessité d'encoder la signification de chaque signal instructif.Nous implémentons notre système sous la forme d'une architecture modulaire, appelée TICS, qui permet de combiner différentes sources d'information: une fonction de récompense, du feedback évaluatif et des instructions non labellisées. Cela offre une plus grande souplesse dans l'apprentissage, en permettant à l'utilisateur de choisir entre différents modes d'apprentissage. Nous proposons plusieurs méthodes pour interpréter les instructions, et une nouvelle méthode pour combiner les feedbacks évaluatifs avec une fonction de récompense prédéfinie.Nous évaluons notre système à travers une série d'expériences, réalisées à la fois en simulation et avec de vrais robots. Les résultats expérimentaux démontrent l'efficacité de notre système pour accélérer le processus d'apprentissage et pour réduire le nombre d'interactions avec l'utilisateur
Most of current interactive learning systems rely on predefined protocols that constrain the interaction with the user. Relaxing the constraints of interaction protocols can therefore improve the usability of these systems.This thesis tackles the question of interpreting human instructions, in order to relax the constraints about predetermining their meanings. We propose a framework that enables a human teacher to shape a robot behaviour, by interactively providing it with unlabeled instructions. Our approach consists in grounding the meaning of instruction signals in the task learning process, and using them simultaneously for guiding the latter. This approach has a two-fold advantage. First, it provides more freedom to the teacher in choosing his preferred signals. Second, it reduces the required engineering efforts, by removing the necessity to encode the meaning of each instruction signal. We implement our framework as a modular architecture, named TICS, that offers the possibility to combine different information sources: a predefined reward function, evaluative feedback and unlabeled instructions. This allows for more flexibility in the teaching process, by enabling the teacher to switch between different learning modes. Particularly, we propose several methods for interpreting instructions, and a new method for combining evaluative feedback with a predefined reward function. We evaluate our framework through a series of experiments, performed both in simulation and with real robots. The experimental results demonstrate the effectiveness of our framework in accelerating the task learning process, and in reducing the number of required interactions with the teacher
APA, Harvard, Vancouver, ISO, and other styles
24

Monnet, Jean-matthieu. "Caractérisation des forêts de montagne par scanner laser aéroporté : estimation de paramètres de peuplement par régression SVM et apprentissage non supervisé pour la détection de sommets." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00652698.

Full text
Abstract:
De nombreux travaux ont montré le potentiel de la télédétection parscanner laser aéroporté pour caractériser les massifs forestiers.Cependant, l'application aux forêts complexes de montagne reste encorepeu documentée. On se propose donc de tester les deux principalesméthodes permettant d'extraire des paramètres forestiers sur desdonnées acquises en zone montagneuse et de les adapter aux contraintesspéci fiques à cet environnement. En particulier on évaluera d'unepart l'apport conjoint de la régression à vecteurs de support et de laréduction de dimension pour l'estimation de paramètres de peuplement,et d'autre part l'intérêt d'un apprentissage non supervisé pour ladétection d'arbres.
APA, Harvard, Vancouver, ISO, and other styles
25

Monnet, Jean-Matthieu. "Caractérisation des forêts de montagne par scanner laser aéroporté : estimation de paramètres de peuplement par régression SVM et apprentissage non supervisé pour la détection de sommets." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT056/document.

Full text
Abstract:
De nombreux travaux ont montré le potentiel de la télédétection parscanner laser aéroporté pour caractériser les massifs forestiers.Cependant, l'application aux forêts complexes de montagne reste encorepeu documentée. On se propose donc de tester les deux principalesméthodes permettant d'extraire des paramètres forestiers sur desdonnées acquises en zone montagneuse et de les adapter aux contraintesspéci fiques à cet environnement. En particulier on évaluera d'unepart l'apport conjoint de la régression à vecteurs de support et de laréduction de dimension pour l'estimation de paramètres de peuplement,et d'autre part l'intérêt d'un apprentissage non supervisé pour ladétection d'arbres
Numerous studies have shown the potential of airborne laser scanningfor the mapping of forest resources. However, the application of thisremote sensing technique to complex forests encountered in mountainousareas requires further investigation. In this thesis, the two mainmethods used to derive forest information are tested with airbornelaser scanning data acquired in the French Alps, and adapted to theconstraints of mountainous environments. In particular,a framework for unsupervised training of treetop detection isproposed, and the performance of support vector regression combinedwith dimension reduction for forest stand parameters estimation isevaluated
APA, Harvard, Vancouver, ISO, and other styles
26

Najar, Anis. "Shaping robot behaviour with unlabeled human instructions." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066152.

Full text
Abstract:
La plupart des systèmes d'apprentissage interactifs actuels s'appuient sur des protocoles prédéfinis qui peuvent être contraignants pour l'utilisateur. Cette thèse aborde le problème de l'interprétation des instructions, afin de relâcher la contrainte de prédéterminer leurs significations. Nous proposons un système permettant à un humain de guider l'apprentissage d'un robot, à travers des instructions non labellisées. Notre approche consiste à ancrer la signification des signaux instructifs dans le processus d'apprentissage de la tâche et à les utiliser simultanément pour guider l'apprentissage. Cette approche offre plus de liberté à l'humain dans le choix des signaux qu'il peut utiliser, et permet de réduire les efforts d'ingénierie en supprimant la nécessité d'encoder la signification de chaque signal instructif.Nous implémentons notre système sous la forme d'une architecture modulaire, appelée TICS, qui permet de combiner différentes sources d'information: une fonction de récompense, du feedback évaluatif et des instructions non labellisées. Cela offre une plus grande souplesse dans l'apprentissage, en permettant à l'utilisateur de choisir entre différents modes d'apprentissage. Nous proposons plusieurs méthodes pour interpréter les instructions, et une nouvelle méthode pour combiner les feedbacks évaluatifs avec une fonction de récompense prédéfinie.Nous évaluons notre système à travers une série d'expériences, réalisées à la fois en simulation et avec de vrais robots. Les résultats expérimentaux démontrent l'efficacité de notre système pour accélérer le processus d'apprentissage et pour réduire le nombre d'interactions avec l'utilisateur
Most of current interactive learning systems rely on predefined protocols that constrain the interaction with the user. Relaxing the constraints of interaction protocols can therefore improve the usability of these systems.This thesis tackles the question of interpreting human instructions, in order to relax the constraints about predetermining their meanings. We propose a framework that enables a human teacher to shape a robot behaviour, by interactively providing it with unlabeled instructions. Our approach consists in grounding the meaning of instruction signals in the task learning process, and using them simultaneously for guiding the latter. This approach has a two-fold advantage. First, it provides more freedom to the teacher in choosing his preferred signals. Second, it reduces the required engineering efforts, by removing the necessity to encode the meaning of each instruction signal. We implement our framework as a modular architecture, named TICS, that offers the possibility to combine different information sources: a predefined reward function, evaluative feedback and unlabeled instructions. This allows for more flexibility in the teaching process, by enabling the teacher to switch between different learning modes. Particularly, we propose several methods for interpreting instructions, and a new method for combining evaluative feedback with a predefined reward function. We evaluate our framework through a series of experiments, performed both in simulation and with real robots. The experimental results demonstrate the effectiveness of our framework in accelerating the task learning process, and in reducing the number of required interactions with the teacher
APA, Harvard, Vancouver, ISO, and other styles
27

Sahasrabudhe, Mihir. "Unsupervised and weakly supervised deep learning methods for computer vision and medical imaging." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC010.

Full text
Abstract:
Les premières contributions de cette thèse (Chapter 2 et Chapitre 3) sont des modèles appelés Deforming Autoencoder (DAE) et Lifting Autoencoder (LAE), utilisés pour l'apprentissage non-supervisé de l'alignement 2-D dense d'images d'une classe donnée, et à partir de cela, pour apprendre un modèle tridimensionnel de l'objet. Ces modèles sont capable d'identifer des espaces canoniques pour représenter de différent caractéristiques de l'objet, à savoir, l'apparence des objets dans l'espace canonique, la déformation dense associée permettant de retrouver l'image réelle à partir de cette apparence, et pour le cas des visages humains, le modèle 3-D propre au visage de la personne considérée, son expression faciale, et l'angle de vue de la caméra. De plus, nous illustrons l'application de DAE à d'autres domaines, à savoir, l'alignement d'IRM de poumons et d'images satellites. Dans le Chapitre 4, nous nous concentrons sur une problématique lié au cancer du sang-diagnostique d'hyperlymphocytosis. Nous proposons un modèle convolutif pour encoder les images appartenant à un patient, suivi par la concaténation de l'information contenue dans toutes les images. Nos résultats montrent que les modèles proposés sont de performances comparables à celles des biologistes, et peuvent dont les aider dans l'élaboration de leur diagnostique
The first two contributions of this thesis (Chapter 2 and 3) are models for unsupervised 2D alignment and learning 3D object surfaces, called Deforming Autoencoders (DAE) and Lifting Autoencoders (LAE). These models are capable of identifying canonical space in order to represent different object properties, for example, appearance in a canonical space, deformation associated with this appearance that maps it to the image space, and for human faces, a 3D model for a face, its facial expression, and the angle of the camera. We further illustrate applications of models to other domains_ alignment of lung MRI images in medical image analysis, and alignment of satellite images for remote sensing imagery. In Chapter 4, we concentrate on a problem in medical image analysis_ diagnosis of lymphocytosis. We propose a convolutional network to encode images of blood smears obtained from a patient, followed by an aggregation operation to gather information from all images in order to represent them in one feature vector which is used to determine the diagnosis. Our results show that the performance of the proposed models is at-par with biologists and can therefore augment their diagnosis
APA, Harvard, Vancouver, ISO, and other styles
28

Saporta, Antoine. "Domain Adaptation for Urban Scene Segmentation." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS115.

Full text
Abstract:
Cette thèse attaque certains des verrous scientifiques des systèmes de perception à base de réseaux de neurones des véhicules autonomes. Une classe d'outils abordée dans cette thèse pour limiter les besoins de données étiquetées est celle de l'adaptation de domaine. Celle-ci permet la généralisation à des données dites cibles qui partagent des structures avec les données annotées dites sources permettant la supervision mais qui suivent néanmoins une distribution statistique différente. D'abord, nous étudions l'introduction d'information privilégiée dans les données sources, par exemple des annotations de profondeur. La stratégie proposée BerMuDA appuie son adaptation de domaine sur une représentation multimodale obtenue par fusion bilinéaire, modélisant des interactions complexes entre segmentation et profondeur. Ensuite, nous examinons les stratégies d'auto-apprentissage en adaptation de domaine, reposant sur la sélection de prédictions sur les données cibles non étiquetées, servant de pseudo-étiquettes. Nous proposons deux nouveaux critères de sélection: d'abord, un critère entropique avec ESL; puis, avec ConDA, utilisant une estimation de la probabilité de la vraie classe. Enfin, l'extension des scénarios d'adaptation à plusieurs domaines cibles ainsi que dans un cadre d'apprentissage continu est proposée. Deux approches sont présentées pour étendre les méthodes adversaires traditionnelles à l'adaptation de domaine multi-cible: Multi-Dis. et MTKT. Dans un cadre d'apprentissage continu, les domaines cibles sont découverts séquentiellement et sans répétition. L'approche proposée CTKT adapte MTKT à ce nouveau problème pour lutter contre l'oubli catastrophique
This thesis tackles some of the scientific locks of perception systems based on neural networks for autonomous vehicles. This dissertation discusses domain adaptation, a class of tools aiming at minimizing the need for labeled data. Domain adaptation allows generalization to so-called target data that share structures with the labeled so-called source data allowing supervision but nevertheless following a different statistical distribution. First, we study the introduction of privileged information in the source data, for instance, depth labels. The proposed strategy, BerMuDA, bases its domain adaptation on a multimodal representation obtained by bilinear fusion, modeling complex interactions between segmentation and depth. Next, we examine self-supervised learning strategies in domain adaptation, relying on selecting predictions on the unlabeled target data, serving as pseudo-labels. We propose two new selection criteria: first, an entropic criterion with ESL; then, with ConDA, using an estimate of the true class probability. Finally, the extension of adaptation scenarios to several target domains as well as in a continual learning framework is proposed. Two approaches are presented to extend traditional adversarial methods to multi-target domain adaptation: Multi-Dis. and MTKT. In a continual learning setting for which the target domains are discovered sequentially and without rehearsal, the proposed CTKT approach adapts MTKT to this new problem to tackle catastrophic forgetting
APA, Harvard, Vancouver, ISO, and other styles
29

Doan, Tien Tai. "Réalisation d’une aide au diagnostic en orthodontie par apprentissage profond." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG033.

Full text
Abstract:
L'analyse et le diagnostic précis à partir d'images dentaires sont un facteur essentiel de la réussite des traitements orthodontiques. De nombreux procédés de traitement d'image ont été proposés pour résoudre ce problème. Cependant, ces études fonctionnent principalement sur de petits ensembles de données de radiographies dans des conditions de laboratoire et ne sont pas vraiment applicables en tant que produits ou services complets. Dans cette thèse, nous construisons des modèles d'apprentissage profond pour diagnostiquer des problèmes dentaires tels que la gingivite et les dents chevauchées à l'aide de photos prises par de téléphones portables. Nous étudions les couches cachées de ces modèles pour trouver les forces et les limites de chaque méthode. Nous proposons un pipeline complet intégrant le prétraitement des images, l'apprentissage du modèle et le post-traitement des résultats pour créer un processus d'analyse complet prêt à être mis en production en situation réel. Afin d'améliorer la fiabilité des modèles, nous avons étudié différentes méthodes d'augmentation des données, en particulier les méthodes d'adaptation de domaine en utilisant des approche de transfert d'images, à la fois supervisée et non supervisée, et obtenons des résultats prometteurs. Les approches de transformation d'images sont également utilisés pour simplifier le choix des appareils orthodontiques par les patients en leur montrant à quoi pourraient ressembler leurs dents pendant le traitement. Nos méthodes permettent de générées des images réalistes et en haute définition. Nous proposons également un nouveau modèle de transformation d'image non supervisé qui peut manipuler les caractéristiques de l'image sans nécessiter d'annotation supplémentaire. Notre modèle surpasse les techniques de pointe sur plusieurs applications de transformation d'images et est également étendu pour les problèmes de « few-shot learning »
Accurate processing and diagnosis of dental images is an essential factor determining the success of orthodontic treatment. Many image processing methods have been proposed to address this problem. Those studies mainly work on small datasets of radiographs under laboratory conditions and are not highly applicable as complete products or services. In this thesis, we train deep learning models to diagnose dental problems such as gingivitis and crowded teeth using mobile phones' images. We study feature layers of these models to find the strengths and limitations of each method. Besides training deep learning models, we also embed each of them in a pipeline, including preprocessing and post-processing steps, to create a complete product. For the lack of training data problem, we studied a variety of methods for data augmentation, especially domain adaptation methods using image-to-image translation models, both supervised and unsupervised, and obtain promising results. Image translation networks are also used to simplifying patients' choice of orthodontic appliances by showing them how their teeth could look like during treatment. Generated images have are realistic and in high resolution. Researching further into unsupervised image translation neural networks, we propose an unsupervised imageto- image translation model which can manipulate features of objects in the image without requiring additional annotation. Our model outperforms state-of-the-art techniques on multiple image translation applications and is also extended for few-shot learning problems
APA, Harvard, Vancouver, ISO, and other styles
30

Dubois, Amaury. "Optimisation et apprentissage de modèles biologiques : application à lirrigation [sic l'irrigation] de pomme de terre." Thesis, Littoral, 2020. http://www.theses.fr/2020DUNK0560.

Full text
Abstract:
Le sujet de la thèse porte sur une des thématiques du LISIC : la modélisation et la simulation de systèmes complexes, ainsi que sur l'optimisation et l'apprentissage automatique pour l'agronomie. Les objectifs de la thèse sont de répondre aux questions de pilotage de l'irrigation de la culture de pomme de terre par le développement d'outils d'aide à la décision à destination des exploitants agricoles. Le choix de cette culture est motivé par sa part importante dans la région des Hauts-de-France. Le manuscrit s'articule en 3 parties. La première partie traite de l'optimisation continue mutlimodale dans un contexte de boîte noire. Il en suit une présentation d'une méthodologie d'étalonnage automatique de paramètres de modèle biologique grâce à une reformulation en un problème d'optimisation continue mono-objectif multimodale de type boîte noire. La pertinence de l'utilisation de l'analyse inverse comme méthodologie de paramétrage automatique de modèles de grandes dimensions est ensuite démontrée. La deuxième partie présente 2 nouveaux algorithmes UCB Random with Decreasing Step-size et UCT Random with Decreasing Step-size. Ce sont des algorithmes d'optimisation continue multimodale boîte noire dont le choix de la position initiale des individus est assisté par un algorithmes d'apprentissage par renforcement. Les résultats montrent que ces algorithmes possèdent de meilleures performances que les algorithmes état de l'art Quasi Random with Decreasing Step-size. Enfin, la dernière partie est focalisée sur les principes et les méthodes d'apprentissage automatique (machine learning). Une reformulation du problème de la prédiction à une semaine de la teneur en eau dans le sol en un problème d'apprentissage supervisé a permis le développement d'un nouvel outil d'aide à la décision pour répondre à la problématique du pilotage des cultures
The subject of this PhD concerns one of the LISIC themes : modelling and simulation of complex systems, as well as optimization and automatic learning for agronomy. The objectives of the thesis are to answer the questions of irrigation management of the potato crop and the development of decision support tools for farmers. The choice of this crop is motivated by its important share in the Haut-de-France region. The manuscript is divided into 3 parts. The first part deals with continuous multimodal optimization in a black box context. This is followed by a presentation of a methodology for the automatic calibration of biological model parameters through reformulation into a black box multimodal optimization problem. The relevance of the use of inverse analysis as a methodology for automatic parameterisation of large models in then demonstrated. The second part presents 2 new algorithms, UCB Random with Decreasing Step-size and UCT Random with Decreasing Step-size. Thes algorithms are designed for continuous multimodal black-box optimization whose choice of the position of the initial local search is assisted by a reinforcement learning algorithms. The results show that these algorithms have better performance than (Quasi) Random with Decreasing Step-size algorithms. Finally, the last part focuses on machine learning principles and methods. A reformulation of the problem of predicting soil water content at one-week intervals into a supervised learning problem has enabled the development of a new decision support tool to respond to the problem of crop management
APA, Harvard, Vancouver, ISO, and other styles
31

Bounhar, Abdelaziz. "Information theory and reinforcement learning of mixed covert and non-covert wireless networks." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAT005.

Full text
Abstract:
Bien que les algorithmes de cryptographie garantissent la sécurité des données transmises, ils s'avèrent souvent inadaptés pour les dispositifs de l'Internet des objets (IoT) en raison de leurs capacités de traitement limitées et de leur autonomie restreinte. Face à ces défis, les techniques de sécurité couche physique, notamment les communications furtives, se présentent comme une solution prometteuse pour sécuriser les communications des IoT. Malgré son fort potentiel, la recherche actuelle sur les communications furtives s'est majoritairement concentrée sur des systèmes exclusivement composés d'utilisateurs furtifs. Cette thèse comble ce gap en explorant les limites fondamentales des systèmes de communication réunissant ces deux types d'utilisateurs, et démontre quand et comment les utilisateurs non furtifs peuvent contribuer à l'amélioration des communications furtives. De surcroît, nous précisons le taux exact de clé secrète nécessaire pour assurer une communication furtive à un débit donné, enrichissant ainsi les résultats antérieurs sur les configurations à utilisateur unique et à utilisateurs multiples. Dans un autre volet de cette thèse, nous examinons l'approche cœur des systèmes de communication modernes, qui sont davantage plus axés sur la sémantique et les objectifs. Nous identifiant les schémas de codage optimaux qui respectent cette exigence. Ces résultats théoriques sont validés par des techniques d'apprentissage profond, montrant que la communication sémantique furtive est garantie uniquement lorsque les contraintes théoriques établies sont respectées. Enfin, nous élargissons notre champ de recherche aux configurations incluant des utilisateurs furtifs et non furtifs dans des réseaux à accès multiple non orthogonal dans un canal à bruit blanc additif gaussien. En exploitant l'apprentissage par renforcement, nous développons des politiques d'allocation de ressources efficaces, optimisant les performances dans ces environnements complexes, tout en prenant en compte des contraintes réelles telles que l'information imparfaite sur l'état des canaux et les limitations énergétiques
While cryptographic methods offer security, they are often impractical for Internet of Things (IoT) devices due to their limited computational resources and battery life. In light of these challenges, physical layer security techniques, particularly covert communication, seems to be an adequate solution for securing IoT communications. Existing research on covert communication has predominantly focused on systems with solely covert users. This thesis addresses this gap and pioneers the characterization of the information-theoretic fundamental limits of communication systems involving both covert and non-covert users, demonstrating how and when non-covert users can enhance covert communication. It also advances previous findings on the single and multi-users setup by characterizing the exact secret-key rate needed to communicate at a given covert data rate.In another line of work, we address the central approach to modern semantic and goal-oriented communication systems. Specifically, we address the joint source-channel coding problem under a covertness constraints, identifying optimal coding schemes that meet the covertness requirement. These theoretical insights are validated through deep learning techniques, showing that covert semantic communication is only guaranteed when the established theoretical constraints are met. Lastly, to further enrich our research, we extend our work to setups that encompass both covert and non-covert users operating using Non-Orthogonal Multiple Access in an Additive White Gaussian Noise channel. By leveraging reinforcement learning techniques, we develop efficient resource allocation policies that effectively optimize performance in these intricate environments, accounting for real-world constraints such as imperfect channel state information and energy limitations
APA, Harvard, Vancouver, ISO, and other styles
32

Hedjazi, Lyamine. "Outil d'aide au diagnostic du cancer à partir d'extraction d'informations issues de bases de données et d'analyses par biopuces." Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1391/.

Full text
Abstract:
Le cancer est l'une des causes les plus fréquentes de décès dans le monde. Actuellement, le cancer du sein est le plus répandu dans les cancers féminins. Malgré les avancées significatives faites ces dernières décennies en vue d'améliorer la gestion du cancer, des outils plus précis sont toujours nécessaires pour aider les oncologues à choisir le traitement nécessaire à des fins de guérison ou de prévention de récidive tout en réduisant les effets néfastes des ces traitements ainsi que leurs coûts élevés. Ce travail porte sur l'utilisation de techniques d'apprentissage automatique pour développer de tels outils de gestion du cancer du sein. Les facteurs cliniques, tels que l'âge du patient et les variables histo-pathologiques, constituent encore la base quotidienne de prise de décision pour la gestion du cancer du sein. Cependant, avec l'émergence de la technologie à haut débit, le profil d'expression génique suscite un intérêt croissant pour construire des outils plus précis de prédiction du cancer du sein. Néanmoins, plusieurs challenges doivent être relevés pour le développement de tels outils, principalement: (1) la dimensionnalité des données issues de la technologie des puces, (2) le faible rapport signal sur bruit dans la mesure de biopuces, (3) l'incertitude d'appartenance des patients aux différents groupes du cancer, et (4) l'hétérogénéité des données présentes habituellement dans les bases de données cliniques. Dans ce travail, nous proposons quelques approches pour surmonter de manière appropriée de tels challenges. Une première approche aborde le problème de haute dimensionnalité des données en utilisant les capacités d'apprentissage dit normé l1 pour la conception d'un algorithme de sélection de variables intégré à la méthode SVM (machines à vecteurs supports), algorithme basé sur une technique de gradient. Une deuxième approche permet de gérer simultanément tous les problèmes, en particulier l'intégration de plusieurs sources de données (cliniques, puces à ADN,. . . ) pour construire des outils prédictifs plus précis. Pour cela, un principe unifié est proposé pour surmonter le problème de l'hétérogénéité des données. Pour tenir compte de l'incertitude d'appartenance et augmenter l'interprétabilité du modèle, ce principe est proposé dans le cadre de la logique floue. Par ailleurs, afin d'atténuer le problème du bruit de niveau élevé, une approche symbolique est proposée suggérant l'utilisation de la représentation par intervalle pour modéliser les mesures bruitées. Nous avons conçu en particulier, basée sur ce principe, une approche floue supervisée de pondération de variables. Le processus de pondération repose essentiellement sur la définition d'une marge d'appartenance pour chaque échantillon. Il optimise une fonction objective basée sur la marge d'appartenance afin d'éviter la recherche combinatoire. Une extension de cette approche au cas non supervisé est effectuée pour développer un algorithme de regroupement automatique basé sur la pondération des règles floues. L'efficacité de toutes les approches a été évaluée par des études expérimentales extensives, et comparée avec des méthodes bien connues de l'état de l'art. Enfin, un dernier travail est consacré à des applications des approches proposées dans le domaine du cancer du sein. En particulier, des modèles prédictifs et pronostiques ont été extraits à partir des données de puces à ADN et/ou des données cliniques, et leurs performances comparées avec celles d'approches génétiques et cliniques existantes
Cancer is one of the most common causes of death in the world. Currently, breast cancer is the most frequent in female cancers. Although the significant improvement made last decades in cancer management, an accurate cancer management is still needed to help physicians take the necessary treatment decisions and thereby reducing its related adverse effects as well as its expensive medical costs. This work addresses the use of machine learning techniques to develop such tools of breast cancer management. Clinical factors, such as patient age and histo-pathological variables, are still the basis of day-to-day decision for cancer management. However, with the emergence of high throughput technology, gene expression profiling is gaining increasing attention to build more accurate predictive tools for breast cancer. Nevertheless, several challenges have to be faced for the development of such tools mainly (1) high dimensionality of data issued from microarray technology; (2) low signal-to-noise ratio in microarray measurement; (3) membership uncertainty of patients to cancer groups; and (4) heterogeneous (or mixed-type) data present usually in clinical datasets. In this work we propose some approaches to deal appropriately with such challenges. A first approach addresses the problem of high data dimensionality by taking use of l1 learning capabilities to design an embedded feature selection algorithm for SVM (l1 SVM) based on a gradient descent technique. The main idea is to transform the initial constrained convex optimization problem into an unconstrained one through the use of an approximated loss function. A second approach handles simultaneously all challenges and therefore allows the integration of several data sources (clinical, microarray. . . ) to build more accurate predictive tools. In this order a unified principle to deal with the data heterogeneity problem is proposed. This principle is based on the mapping of different types of data from initially heterogeneous spaces into a common space through an adequacy measure. To take into account membership uncertainty and increase model interpretability, this principle is proposed within a fuzzy logic framework. Besides, in order to alleviate the problem of high level noise, a symbolic approach is proposed suggesting the use of interval representation to model the noisy measurements. Since all data are mapped into a common space, they can be processed in a unified way whatever its initial type for different data analysis purposes. We particularly designed, based on this principle, a supervised fuzzy feature weighting approach. The weighting process is mainly based on the definition of a membership margin for each sample. It optimizes then a membership-margin based objective function using classical optimization approach to avoid combinatorial search. An extension of this approach to the unsupervised case is performed to develop a weighted fuzzy rule-based clustering algorithm. The effectiveness of all approaches has been assessed through extensive experimental studies and compared with well-know state-of-the-art methods. Finally, some breast cancer applications have been performed based on the proposed approaches. In particular, predictive and prognostic models were derived based on microarray and/or clinical data and compared with genetic and clinical based approaches
APA, Harvard, Vancouver, ISO, and other styles
33

Hedjazi, Lyamine. "Outil d'aide au diagnostic du cancer à partir d'extraction d'informations issues de bases de données et d'analyses par biopuces." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00657959.

Full text
Abstract:
Le cancer est l'une des causes les plus fréquentes de décès dans le monde. Actuellement, le cancer du sein est le plus répandu dans les cancers féminins. Malgré les avancées significatives faites ces dernières décennies en vue d'améliorer la gestion du cancer, des outils plus précis sont toujours nécessaires pour aider les oncologues à choisir le traitement nécessaire à des fins de guérison ou de prévention de récidive tout en réduisant les effets néfastes des ces traitements ainsi que leurs coûts élevés. Ce travail porte sur l'utilisation de techniques d'apprentissage automatique pour développer de tels outils de gestion du cancer du sein. Les facteurs cliniques, tels que l'âge du patient et les variables histo-pathologiques, constituent encore la base quotidienne de prise de décision pour la gestion du cancer du sein. Cependant, avec l'émergence de la technologie à haut débit, le profil d'expression génique suscite un intérêt croissant pour construire des outils plus précis de prédiction du cancer du sein. Néanmoins, plusieurs challenges doivent être relevés pour le développement de tels outils, principalement: (1) la dimensionnalité des données issues de la technologie des puces, (2) le faible rapport signal sur bruit dans la mesure de biopuces, (3) l'incertitude d'appartenance des patients aux différents groupes du cancer, et (4) l'hétérogénéité des données présentes habituellement dans les bases de données cliniques. Dans ce travail, nous proposons quelques approches pour surmonter de manière appropriée de tels challenges. Une première approche aborde le problème de haute dimensionnalité des données en utilisant les capacités d'apprentissage dit normé ℓ1 pour la conception d'un algorithme de sélection de variables intégré à la méthode SVM (machines à vecteurs supports), algorithme basé sur une technique de gradient. Une deuxième approche permet de gérer simultanément tous les problèmes, en particulier l'intégration de plusieurs sources de données (cliniques, pu ces à ADN, ...) pour construire des outils prédictifs plus précis. Pour cela, un principe unifié est proposé pour surmonter le problème de l'hétérogénéité des données. Pour tenir compte de l'incertitude d'appartenance et augmenter l'interprétabilité du modèle, ce principe est proposé dans le cadre de la logique floue. Par ailleurs, afin d'atténuer le problème du bruit de niveau élevé, une approche symbolique est proposée suggérant l'utilisation de la représentation par intervalle pour modéliser les mesures bruitées. Nous avons conçu en particulier, basée sur ce principe, une approche floue supervisée de pondération de variables. Le processus de pondération repose essentiellement sur la définition d'une marge d'appartenance pour chaque échantillon. Il optimise une fonction objective basée sur la marge d'appartenance afin d'éviter la recherche combinatoire. Une extension de cette approche au cas non supervisé est effectuée pour développer un algorithme de regroupement automatique basé sur la pondération des règles floues. L'efficacité de toutes les approches a été évaluée par des études expérimentales extensives, et comparée avec des méthodes bien connues de l'état de l'art. Enfin, un dernier travail est consacré à des applications des approches proposées dans le domaine du cancer du sein. En particulier, des modèles prédictifs et pronostiques ont été extraits à partir des données de puces à ADN et/ou des données cliniques, et leurs performances comparées avec celles d'approches génétiques et cliniques existantes.
APA, Harvard, Vancouver, ISO, and other styles
34

Pavão, Adrien. "Methodology for Design and Analysis of Machine Learning Competitions." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG088.

Full text
Abstract:
Nous développons et étudions une méthodologie systématique et unifiée pour organiser et utiliser les compétitions scientifiques dans la recherche, en particulier dans le domaine de l'apprentissage automatique (intelligence artificielle basée sur les données). De nos jours, les compétitions deviennent de plus en plus populaires en tant qu'outil pédagogique et comme moyen de repousser les limites de l'état de l'art en engageant des scientifiques de tous âges, à l'intérieur ou à l'extérieur du milieu universitaire. On peut y voir une forme de science citoyenne. Cette forme de contribution communautaire à la science pourrait contribuer à la recherche reproductible et démocratiser l'intelligence artificielle. Toutefois, si la distinction entre organisateurs et participants peut atténuer certains biais, il existe un risque que des biais dans la sélection des données, les métriques d'évaluation, et d'autres éléments de conception expérimentale compromettent l'intégrité des résultats et amplifient l'influence du hasard. Dans les cas extrêmes, les résultats pourraient être inutiles, voire préjudiciables à la communauté scientifique et, en conséquence, à la société dans son ensemble. Notre objectif est d'inscrire l'organisation de compétitions scientifiques dans un cadre rigoureux et d'offrir à la communauté des recommandations éclairées. Conjointement avec l'effort de développement des outils d'organisation de compétitions que nous développons dans le cadre du projet CodaLab, nous visons à fournir une contribution utile à la communauté. Cette thèse comprend des contributions théoriques s'appuyant sur la conception expérimentale, les statistiques et la théorie des jeux, ainsi que des résultats empiriques pratiques résultant de l'analyse des données de compétitions passées
We develop and study a systematic and unified methodology to organize and use scientific challenges in research, particularly in the domain of machine learning (data-driven artificial intelligence). As of today, challenges are becoming more and more popular as a pedagogic tool and as a means of pushing the state-of-the-art by engaging scientists of all ages, within or outside academia. This can be thought of as a form of citizen science. There is the promise that this form of community involvement in science might contribute to reproducible research and democratize artificial intelligence. However, while the distinction between organizers and participants may mitigate certain biases, there exists a risk that biases in data selection, scoring metrics, and other experimental design elements could compromise the integrity of the outcomes and amplify the influence of randomness. In extreme cases, the results could range from being useless to detrimental for the scientific community and, ultimately, society at large. Our objective is to structure challenge organization within a rigorous framework and offer the community insightful guidelines. In conjunction with the tools of challenge organization that we are developing as part of the CodaLab project, we aim to provide a valuable contribution to the community. This thesis includes theoretical fundamental contributions drawing on experimental design, statistics and game theory, and practical empirical findings resulting from the analysis of data from previous challenges
APA, Harvard, Vancouver, ISO, and other styles
35

Kara, Sandra. "Unsupervised object discovery in images and video data." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG019.

Full text
Abstract:
Cette thèse explore les méthodes d'apprentissage auto-supervisé pour la localisation d'objets, communément appelées « Object Discovery ». La localisation d'objets dans les images et les vidéos est un élément essentiel des tâches de vision par ordinateur telles que la détection, la ré-identification, le suivi, etc. Les algorithmes supervisés actuels peuvent localiser (et classifier) les objets avec précision, mais ils sont coûteux en raison de la nécessité de données annotées. Le processus d'étiquetage est généralement répété pour chaque nouvelle donnée ou catégorie d'intérêt, limitant ainsi leur évolutivité. De plus, les approches sémantiquement spécialisées nécessitent une connaissance préalable des classes cibles, restreignant leur utilisation aux objets connus. La découverte d'objets vise à pallier ces limitations en étant plus générique. La première contribution de la thèse s'est concentrée sur la modalité image, en étudiant comment les caractéristiques des modèles transformers de vision auto-supervisés peuvent servir d'indices pour la découverte d'objets multiples. Afin de localiser les objets dans leur définition la plus large, nous avons étendu notre étude aux données vidéo, en exploitant les indices de mouvement et en ciblant la localisation d'objets capables de se déplacer. Nous avons introduit la modélisation de l'arrière-plan et la distillation de connaissances dans la découverte d'objets pour résoudre le problème de la sur-segmentation de l'arrière-plan dans les méthodes existantes, et pour réintégrer les objets statiques, améliorant ainsi de manière significative le rapport signal/bruit dans les prédictions. Reconnaissant les limites des données à modalité unique, nous avons incorporé des données 3D à travers un apprentissage par distillation de connaissances cross-modale. L'échange de connaissances entre les domaines 2D et 3D a permis d'améliorer l'alignement des régions d'objets entre les deux modalités, rendant possible l'utilisation de la cohérence multi-modale comme critère de confiance
This thesis explores self-supervised learning methods for object localization, commonly known as Object Discovery. Object localization in images and videos is an essential component of computer vision tasks such as detection, re-identification, tracking etc. Current supervised algorithms can localize (and classify) objects accurately but are costly due to the need for annotated data. The process of labeling is typically repeated for each new data or category of interest, limiting their scalability. Additionally, the semantically specialized approaches require prior knowledge of the target classes, restricting their use to known objects. Object Discovery aims to address these limitations by being more generic. The first contribution of this thesis focused on the image modality, investigating how features from self-supervised vision transformers can serve as cues for multi-object discovery. To localize objects in their broadest definition, we extended our focus to video data, leveraging motion cues and targeting the localization of objects that can move. We introduced background modeling and knowledge distillation in object discovery to tackle the background over-segmentation issue in existing object discovery methods and to reintegrate static objects, significantly improving the signal-to-noise ratio in predictions. Recognizing the limitations of single-modality data, we incorporated 3D data through a cross-modal distillation framework. The knowledge exchange between 2D and 3D domains improved alignment on object regions between the two modalities, enabling the use of multi-modal consistency as a confidence criterion
APA, Harvard, Vancouver, ISO, and other styles
36

Akakzia, Ahmed. "Teaching Predicate-based Autotelic Agents." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS415.pdf.

Full text
Abstract:
Dans la quête de concevoir des machines incarnées qui explorent leurs environnements en autonomie, découvrent des nouveaux comportements et apprennent des répertoires non-bornés de compétences, l'intelligence artificielle s'est longuement inspirée des domaines de psychologie du développement et des sciences cognitives qui étudient la capacité remarquable des humains à apprendre tout au long de leur vie. Ceci a donné naissance au domaine de la robotique du développement qui a pour but de concevoir des agents artificiels autonomes capables d'auto-organiser leurs trajectoires d'apprentissage en se basant sur leurs motivations intrinsèques. Ce domaine combine les processus d'exploration de but intrinsèquement motivés (IMGEPs) et l'apprentissage par renforcement (RL). Cette combinaison est connue sous le nom d'apprentissage par renforcement autotélique, où des agents autotéliques sont intrinsèquement motivés pour représenter, organiser et apprendre leurs propres buts. Naturellement, ces agents doivent démontrer de bonnes capacités d'exploration puisqu'ils ont besoin de découvrir physiquement les buts pour pouvoir les apprendre. Malheureusement, découvrir des comportements intéressants peut être compliqué, surtout dans les environnements d'exploration difficile où les signaux de récompenses sont parcimonieux, déceptifs ou contradictoires. Dans ces scénarios, la situation physique des agents semble insuffisante. Heureusement, la recherche en psychologie du développement et les sciences de l'éducation soulignent le rôle important des signaux socio-culturels dans le développement des enfants humains. Cette situation sociale améliore les capacités d'exploration des enfants, leur créativité et leur développement. Cependant, l'apprentissage par renforcement profond considère l'apprentissage social comme une imposition d'instructions aux agents, ce qui les prive de leur autonomie. Dans ce document, nous introduisons les agents autotéliques enseignables, une nouvelle famille de machines autonomes qui peuvent apprendre à la fois toutes seules et à travers des signaux sociaux externes. Nous formalisons cette famille en tant que processus d'exploration de but hybride (HGEPs), où les agents autotéliques sont augmentés d'un mécanisme d'internalisation leur permettant de rejouer les signaux sociaux et d'un sélecteur de source de buts pour demander activement de l'aide sociale. Ce document est organisé en deux parties. Dans la première partie, nous nous concentrons sur la conception d'agents autotéliques enseignables et nous essayons d'implémenter des propriétés qui faciliteraient l'interaction sociale. Notamment, nous introduisons les agents autotéliques basés sur les prédicats, une nouvelle famille d'agents autotéliques qui représentent leurs buts en utilisant des prédicats binaires spatiaux. Nous montrons que l'espace de représentation sémantique sous-jacent joue le rôle de pivot entre la représentation sensorimotrice et le langage, permettant un découplage entre l'apprentissage sensorimoteur et l'ancrage du langage. Nous étudions également la conception des politiques et des fonctions valeurs état-action et nous soutenons que la combinaison des réseaux de neurones graphiques (GNNs) et des buts en prédicats relationnels permet l'utilisation de schémas computationnels légers qui transfèrent bien entre les tâches. Dans la deuxième partie, nous formalisons les interactions sociales en tant que processus d'exploration de buts. Nous introduisons Help Me Explore (HME), un nouveau protocole d'interaction sociale où un partenaire social expert guide progressivement l'agent au-delà de sa zone de développement proximale (ZPD). L'agent choisit activement de lancer des requêtes à son partenaire social dès qu'il estime qu'il ne progresse plus sur les buts qu'il connait déjà. Il finit éventuellement par internaliser ces signaux sociaux, devient moins dépendant envers son partenaire social et arrive à maximiser son contrôle de son espace de buts
As part of the quest for designing embodied machines that autonomously explore their environments, discover new behaviors and acquire open-ended repertoire of skills, artificial intelligence has been taking long looks at the inspiring fields of developmental psychology and cognitive sciences which investigate the remarkable continuous and unbounded learning of humans. This gave birth to the field of developmental robotics which aims at designing autonomous artificial agents capable of self-organizing their own learning trajectories based on their intrinsic motivations. It bakes the developmental framework of intrinsically motivated goal exploration processes (IMGEPs) into reinforcement learning (RL). This combination has been recently introduced as autotelic reinforcement learning, where autotelic agents are intrinsically motivated to self-represent, self-organize and autonomously learn about their own goals. Naturally, such agents need to be endowed with good exploration capabilities as they need to first physically encounter a certain goal in order to take ownership of and learn about it. Unfortunately, discovering interesting behavior is usually tricky, especially in hard exploration setups where the rewarding signals are parsimonious, deceptive or adversarial. In such scenarios, the agents’ physical situatedness-in the Piagetian sense of the term-seems insufficient. Luckily, research in developmental psychology and education sciences have been praising the remarkable role of socio-cultural signals in the development of human children. This social situatedness-in the Vygotskyan sense of the term-enhances the toddlers’ exploration capabilities, creativity and development. However, deep \rl considers social interactions as dictating instructions to the agents, depriving them from their autonomy. This research introduces \textit{teachable autotelic agents}, a novel family of autonomous machines that can learn both alone and from external social signals. We formalize such a family as a hybrid goal exploration process (HGEPs), where autotelic agents are endowed with an internalization mechanism to rehearse social signals and with a goal source selector to actively query for social guidance. The present manuscript is organized in two parts. In the first part, we focus on the design of teachable autotelic agents and attempt to leverage the most important properties that would later serve the social interaction. Namely, we introduce predicate-based autotelic agents, a novel family of autotelic agents that represent their goals using spatial binary predicates. These insights were based on the Mandlerian view on the prelinguistic concept acquisition suggesting that toddlers are endowed with some innate mechanisms enabling them to translate spatio-temporal information into an iconic static form. We show that the underlying semantic representation plays a pivotal role between raw sensory inputs and language inputs, enabling the decoupling of sensorimotor learning and language grounding. We also investigate the design of such agents' policies and state-action value functions, and argue that combining Graph Neural Networks (GNNs) with relational predicates provides a light computational scheme to transfer efficiently between skills. In the second part, we formalize social interactions as a goal exploration process. We introduce Help Me Explore (HME), a novel social interaction protocol where an expert social partner progressively guides the learning agent beyond its zone of proximal development (ZPD). The agent actively selects to query its social partner whenever it estimates that it is not progressing enough alone. It eventually internalizes the social signals, becomes less dependent on its social partner and maximizes its control over its goal space
APA, Harvard, Vancouver, ISO, and other styles
37

Lucas, Thomas. "Modèles génératifs profonds : sur-généralisation et abandon de mode." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM049.

Full text
Abstract:
Cette dissertation explore le sujet des modèles génératifs appliqués aux images naturelles.Cette tâche consiste a modéliser la distribution des données observées, et peut permettre de générer des données artificielles semblables aux données d'origine, où de compresser des images.Les modèles à variable latentes, qui sont au cœur de cette thèse, cherchent a résumer les principaux facteurs de variation d'une image en une variable qui peut être manipulée.En particulier, nos contributions sont basées sur deux modèles génératifs a variable latentes: le modèle génératif adversarial (GAN) et l' encodeur variationel (VAE).Récemment, les GAN ont significativement amélioré la qualité des images générées par des modèles profonds, générant des images très convaincantes.Malheureusement ces modèles ont du mal à modéliser tous les modes de la distribution d'origine, ie ils ne couvrent pas les données dans toute leur variabilité.A l'inverse, les modèles basés sur le maximum de vraisemblance tels que les VAEs couvrent typiquement toute la variabilité des données, et en offrent une mesure objective.Mais ces modèles produisent des échantillons de qualité visuelle inférieure, qui sont plus facilement distingués de vrais images.Le travail présenté dans cette thèse a pour but d'obtenir le meilleur des deux mondes: des échantillons de bonne qualité tout en modélisant tout le support de la distribution.La première contribution de ce manuscrit est un modèle génératif profond qui encode la structure globale des images dans une variable latente, basé sur le VAE, et utilise un modèle autoregressif pour modéliser les détails de bas niveau.Nous proposons une procédure d'entrainement qui utilise une fonction de perte auxiliaire pour contrôler quelle information est capturée par la variable latent et quelle information est laissée à un décodeur autoregressif.Au contraire des précédentes approches pour construire des modèles hybrides de ce genre, notre modèle de nécessite pas de contraindre la capacité du décodeur autoregressif pour empêcher des modèles dégénérés qui ignorent la variable latente.La deuxième contribution est bâtie sur le modèle du GAN standard, qui utilise un discriminateur pour guider le modèle génératif.Le discriminateur évalue généralement la qualité d'échantillons individuels, ce qui rend la tache d'évaluer la variabilité des données difficile.A la place, nous proposons de fournir au discriminateur des ensembles de données, ou batches, qui mélangent des vraies images et des images générées.Nous l'entrainons à prédire le ratio de vrais et de faux éléments dans l'ensemble.Ces batches servent d'approximation de la vrai distribution des images générées et permettent au discriminateur d'approximer des statistiques sur leur distributionLes lacunes mutuelles des VAEs et des GANs peuvent, en principe, être réglées en entrainant des modèles hybrides qui utilisent les deux types d'objectif.Dans notre troisième contribution, nous montrons que les hypothèses paramétriques habituelles faites par les VAE produisent un conflit entre les deux, menant à des performances décevantes pour les modèles hybrides.Nous proposons une solution basée sur des modèles profonds inversibles, qui entraine un espace de features dans lequel les hypothèses habituelles peuvent être faites sans poser problème.Notre approche fourni des évaluations e vraisemblance dans l'espace des images tout en étant capable de tirer profit de l'entrainement adversaire.Elle obtient des échantillons de qualité équivalente au modèle pleinement adversaires tout en améliorant les scores de maximum de vraisemblance au moment de la publication, ce qui constitue une amélioration significative
This dissertation explores the topic of generative modelling of natural images,which is the task of fitting a data generating distribution.Such models can be used to generate artificial data resembling the true data, or to compress images.Latent variable models, which are at the core of our contributions, seek to capture the main factors of variations of an image into a variable that can be manipulated.In particular we build on two successful latent variable generative models, the generative adversarial network (GAN) and Variational autoencoder (VAE) models.Recently GANs significantly improved the quality of images generated by deep models, obtaining very compelling samples.Unfortunately these models struggle to capture all the modes of the original distribution, ie they do not cover the full variability of the dataset.Conversely, likelihood based models such as VAEs typically cover the full variety of the data well and provide an objective measure of coverage.However these models produce samples of inferior visual quality that are more easily distinguished from real ones.The work presented in this thesis strives for the best of both worlds: to obtain compelling samples while modelling the full support of the distribution.To achieve that, we focus on i) the optimisation problems used and ii) practical model limitations that hinder performance.The first contribution of this manuscript is a deep generative model that encodes global image structure into latent variables, built on the VAE, and autoregressively models low level detail.We propose a training procedure relying on an auxiliary loss function to control what information is captured by the latent variables and what information is left to an autoregressive decoder.Unlike previous approaches to such hybrid models, ours does not need to restrict the capacity of the autoregressive decoder to prevent degenerate models that ignore the latent variables.The second contribution builds on the standard GAN model, which trains a discriminator network to provide feedback to a generative network.The discriminator usually assesses the quality of individual samples, which makes it hard to evaluate the variability of the data.Instead we propose to feed the discriminator with emph{batches} that mix both true and fake samples, and train it to predict the ratio of true samples in the batch.These batches work as approximations of the distribution of generated images and allows the discriminator to approximate distributional statistics.We introduce an architecture that is well suited to solve this problem efficiently,and show experimentally that our approach reduces mode collapse in GANs on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets.The mutual shortcomings of VAEs and GANs can in principle be addressed by training hybrid models that use both types of objective.In our third contribution, we show that usual parametric assumptions made in VAEs induce a conflict between them, leading to lackluster performance of hybrid models.We propose a solution based on deep invertible transformations, that trains a feature space in which usual assumptions can be made without harm.Our approach provides likelihood computations in image space while being able to take advantage of adversarial training.It obtains GAN-like samples that are competitive with fully adversarial models while improving likelihood scores over existing hybrid models at the time of publication, which is a significant advancement
APA, Harvard, Vancouver, ISO, and other styles
38

Chahla, Charbel. "Non-linear feature extraction for object re-identification in cameras networks." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0023.

Full text
Abstract:
La réplication du système visuel utilisé par le cerveau pour traiter l'information est un domaine de grand intérêt. Cette thèse se situe dans le cadre d'un système automatisé capable d'analyser les traits du visage lorsqu'une personne est proche des caméras et suivre son identité lorsque ces traits ne sont plus traçables. La première partie est consacrée aux procédures d'estimation de pose de visage pour les utiliser dans les scénarios de reconnaissance faciale. Nous avons proposé une nouvelle méthode basée sur une représentation sparse et on l'a appelé Sparse Label sensible Local Preserving Projections. Dans un environnement incontrôlé, la ré-identification de personne reposant sur des données biométriques n'est pas réalisable. Par contre, les caractéristiques basées sur l'apparence des personnes peuvent être exploitées plus efficacement. Dans ce contexte, nous proposons une nouvelle approche pour la ré-identification dans un réseau de caméras non chevauchantes. Pour fournir une mesure de similarité, chaque image est décrite par un vecteur de similarité avec une collection de prototypes. La robustesse de l'algorithme est améliorée en proposant la procédure Color Categorisation. Dans la dernière partie de cette thèse, nous proposons une architecture Siamese de deux réseaux neuronaux convolutionnels (CNN), chaque CNN étant réduit à seulement onze couches. Cette architecture permet à une machine d'être alimentée directement avec des données brutes pour faire la classification
Replicating the visual system that the brain uses to process the information is an area of substantial interest. This thesis is situated in the context of a fully automated system capable of analyzing facial features when the target is near the cameras, and tracking his identity when his facial features are no more traceable. The first part of this thesis is devoted to face pose estimation procedures to be used in face recognition scenarios. We proposed a new label-sensitive embedding based on a sparse representation called Sparse Label sensitive Locality Preserving Projections. In an uncontrolled environment observed by cameras from an unknown distance, person re-identification relying upon conventional biometrics such as face recognition is not feasible. Instead, visual features based on the appearance of people can be exploited more reliably. In this context, we propose a new embedding scheme for single-shot person re-identification under non overlapping target cameras. Each person is described as a vector of kernel similarities to a collection of prototype person images. The robustness of the algorithm is improved by proposing the Color Categorization procedure. In the last part of this thesis, we propose a Siamese architecture of two Convolutional Neural Networks (CNN), with each CNN reduced to only eleven layers. This architecture allows a machine to be fed directly with raw data and to automatically discover the representations needed for classification
APA, Harvard, Vancouver, ISO, and other styles
39

Ho, Vinh Thanh. "Techniques avancées d'apprentissage automatique basées sur la programmation DC et DCA." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0289/document.

Full text
Abstract:
Dans cette thèse, nous développons certaines techniques avancées d'apprentissage automatique dans le cadre de l'apprentissage en ligne et de l'apprentissage par renforcement (« reinforcement learning » en anglais -- RL). L'épine dorsale de nos approches est la programmation DC (Difference of Convex functions) et DCA (DC Algorithm), et leur version en ligne, qui sont reconnues comme de outils puissants d'optimisation non convexe, non différentiable. Cette thèse se compose de deux parties : la première partie étudie certaines techniques d'apprentissage automatique en mode en ligne et la deuxième partie concerne le RL en mode batch et mode en ligne. La première partie comprend deux chapitres correspondant à la classification en ligne (chapitre 2) et la prédiction avec des conseils d'experts (chapitre 3). Ces deux chapitres mentionnent une approche unifiée d'approximation DC pour différents problèmes d'optimisation en ligne dont les fonctions objectives sont des fonctions de perte 0-1. Nous étudions comment développer des algorithmes DCA en ligne efficaces en termes d'aspects théoriques et computationnels. La deuxième partie se compose de quatre chapitres (chapitres 4, 5, 6, 7). Après une brève introduction du RL et ses travaux connexes au chapitre 4, le chapitre 5 vise à fournir des techniques efficaces du RL en mode batch basées sur la programmation DC et DCA. Nous considérons quatre différentes formulations d'optimisation DC en RL pour lesquelles des algorithmes correspondants basés sur DCA sont développés. Nous traitons les problèmes clés de DCA et montrons l'efficacité de ces algorithmes au moyen de diverses expériences. En poursuivant cette étude, au chapitre 6, nous développons les techniques du RL basées sur DCA en mode en ligne et proposons leurs versions alternatives. Comme application, nous abordons le problème du plus court chemin stochastique (« stochastic shortest path » en anglais -- SSP) au chapitre 7. Nous étudions une classe particulière de problèmes de SSP qui peut être reformulée comme une formulation de minimisation de cardinalité et une formulation du RL. La première formulation implique la norme zéro et les variables binaires. Nous proposons un algorithme basé sur DCA en exploitant une approche d'approximation DC de la norme zéro et une technique de pénalité exacte pour les variables binaires. Pour la deuxième formulation, nous utilisons un algorithme batch RL basé sur DCA. Tous les algorithmes proposés sont testés sur des réseaux routiers artificiels
In this dissertation, we develop some advanced machine learning techniques in the framework of online learning and reinforcement learning (RL). The backbones of our approaches are DC (Difference of Convex functions) programming and DCA (DC Algorithm), and their online version that are best known as powerful nonsmooth, nonconvex optimization tools. This dissertation is composed of two parts: the first part studies some online machine learning techniques and the second part concerns RL in both batch and online modes. The first part includes two chapters corresponding to online classification (Chapter 2) and prediction with expert advice (Chapter 3). These two chapters mention a unified DC approximation approach to different online learning algorithms where the observed objective functions are 0-1 loss functions. We thoroughly study how to develop efficient online DCA algorithms in terms of theoretical and computational aspects. The second part consists of four chapters (Chapters 4, 5, 6, 7). After a brief introduction of RL and its related works in Chapter 4, Chapter 5 aims to provide effective RL techniques in batch mode based on DC programming and DCA. In particular, we first consider four different DC optimization formulations for which corresponding attractive DCA-based algorithms are developed, then carefully address the key issues of DCA, and finally, show the computational efficiency of these algorithms through various experiments. Continuing this study, in Chapter 6 we develop DCA-based RL techniques in online mode and propose their alternating versions. As an application, we tackle the stochastic shortest path (SSP) problem in Chapter 7. Especially, a particular class of SSP problems can be reformulated in two directions as a cardinality minimization formulation and an RL formulation. Firstly, the cardinality formulation involves the zero-norm in objective and the binary variables. We propose a DCA-based algorithm by exploiting a DC approximation approach for the zero-norm and an exact penalty technique for the binary variables. Secondly, we make use of the aforementioned DCA-based batch RL algorithm. All proposed algorithms are tested on some artificial road networks
APA, Harvard, Vancouver, ISO, and other styles
40

Kannan, Hariprasad. "Quelques applications de l’optimisation numérique aux problèmes d’inférence et d’apprentissage." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC067/document.

Full text
Abstract:
Les relaxations en problème d’optimisation linéaire jouent un rôle central en inférence du maximum a posteriori (map) dans les champs aléatoires de Markov discrets. Nous étudions ici les avantages offerts par les méthodes de Newton pour résoudre efficacement le problème dual (au sens de Lagrange) d’une reformulation lisse du problème. Nous comparons ces dernières aux méthodes de premier ordre, à la fois en terme de vitesse de convergence et de robustesse au mauvais conditionnement du problème. Nous exposons donc un cadre général pour l’apprentissage non-supervisé basé sur le transport optimal et les régularisations parcimonieuses. Nous exhibons notamment une approche prometteuse pour résoudre le problème de la préimage dans l’acp à noyau. Du point de vue de l’optimisation, nous décrivons le calcul du gradient d’une version lisse de la norme p de Schatten et comment cette dernière peut être utilisée dans un schéma de majoration-minimisation
Numerical optimization and machine learning have had a fruitful relationship, from the perspective of both theory and application. In this thesis, we present an application oriented take on some inference and learning problems. Linear programming relaxations are central to maximum a posteriori (MAP) inference in discrete Markov Random Fields (MRFs). Especially, inference in higher-order MRFs presents challenges in terms of efficiency, scalability and solution quality. In this thesis, we study the benefit of using Newton methods to efficiently optimize the Lagrangian dual of a smooth version of the problem. We investigate their ability to achieve superior convergence behavior and to better handle the ill-conditioned nature of the formulation, as compared to first order methods. We show that it is indeed possible to obtain an efficient trust region Newton method, which uses the true Hessian, for a broad range of MAP inference problems. Given the specific opportunities and challenges in the MAP inference formulation, we present details concerning (i) efficient computation of the Hessian and Hessian-vector products, (ii) a strategy to damp the Newton step that aids efficient and correct optimization, (iii) steps to improve the efficiency of the conjugate gradient method through a truncation rule and a pre-conditioner. We also demonstrate through numerical experiments how a quasi-Newton method could be a good choice for MAP inference in large graphs. MAP inference based on a smooth formulation, could greatly benefit from efficient sum-product computation, which is required for computing the gradient and the Hessian. We show a way to perform sum-product computation for trees with sparse clique potentials. This result could be readily used by other algorithms, also. We show results demonstrating the usefulness of our approach using higher-order MRFs. Then, we discuss potential research topics regarding tightening the LP relaxation and parallel algorithms for MAP inference.Unsupervised learning is an important topic in machine learning and it could potentially help high dimensional problems like inference in graphical models. We show a general framework for unsupervised learning based on optimal transport and sparse regularization. Optimal transport presents interesting challenges from an optimization point of view with its simplex constraints on the rows and columns of the transport plan. We show one way to formulate efficient optimization problems inspired by optimal transport. This could be done by imposing only one set of the simplex constraints and by imposing structure on the transport plan through sparse regularization. We show how unsupervised learning algorithms like exemplar clustering, center based clustering and kernel PCA could fit into this framework based on different forms of regularization. We especially demonstrate a promising approach to address the pre-image problem in kernel PCA. Several methods have been proposed over the years, which generally assume certain types of kernels or have too many hyper-parameters or make restrictive approximations of the underlying geometry. We present a more general method, with only one hyper-parameter to tune and with some interesting geometric properties. From an optimization point of view, we show how to compute the gradient of a smooth version of the Schatten p-norm and how it can be used within a majorization-minimization scheme. Finally, we present results from our various experiments
APA, Harvard, Vancouver, ISO, and other styles
41

Monnier, Tom. "Unsupervised image analysis by synthesis." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0037.

Full text
Abstract:
Le but de cette thèse est de développer des approches d'intelligence artificielle (IA) pour analyser des collections d'images sans annotations. Des avancées dans ce domaine sont prometteuses pour des applications à fort impact reliées à la 3D (e.g., reconstruire une scène avec des composantes 3D manipulables pour les films d'animation ou les jeux vidéos) où annoter des exemples pour entrainer l'IA est difficile, et aussi pour des applications plus spécifiques (e.g., analyser l'évolution des charactères dans des documents du 12ème siècle) où employer des efforts conséquents pour annoter de larges bases de données pose question. L'idée centrale de cette dissertation est de construire des IA qui apprennent l'analyse d'une collection d'images en synthétisant ces mêmes images. Apprendre des modèles d'analyse par synthèse est difficile car cela nécessite la conception d'un système de génération d'images apprenable qui exhibite explicitement l'analyse voulue. Pour atteindre notre but, nous présentons trois contributions clés.La première contribution de cette thèse est une nouvelle approche conceptuelle à la modélisation de catégorie. Nous proposons de représenter la catégorie d'une image, d'un objet 2D ou d'une forme 3D, avec un prototype qui est transformé via appprentissage profond pour modéliser les différentes instances au sein de la catégorie. Plus spécifiquement, nous introduisons des transformations paramétriques concrètes (e.g., des déformations géométriques ou des variations de couleurs) et utilisons des réseaux de neurones pour prédire les paramètres de transformations nécessaires pour instancier le prototype pour une image donnée. Nous démontrons l'efficacité de cette idée en regroupant des images et reconstruisant des objets 3D à part d'images d'une seule vue de l'objet. Nous obtenons des performances égales aux meilleures méthodes qui utilisent des représentations d'image ad-hoc ou des annotations.La deuxième contribution est une nouvelle manière de découvrir des éléments dans une collection d'images. Nous proposons de représenter une collection d'images par un ensemble d'éléments apprennables, composés pour synthétiser les images et optimisés par descente de gradient. Nous démontrons l'efficacité de cette idée en découvrant des éléments 2D reliées à des objets sémantiques représentés dans la collection d'images. Notre approche a des performances semblables aux meilleures méthodes qui synthétisent les images par réseaux de neurones, et est plus interprétable. Nous démontrons aussi son efficacité en découvrant des éléments 3D reliées à des formes primitives étant donnée une collection d'images illustrant une scène via différents points de vue. Comparé aux travaux précédents calculant des primitives dans des nuages de points 3D, nous obtenons des résultats qualitatifs et quantitatifs supérieurs.La troisième contribution est plus technique et consiste en une nouvelle formulation pour calculer le rendu differentiable d'un mesh. Plus spécifiquement, nous formulons le rendu différentiable d'un mesh 3D comme l'alpha composition des faces du mesh par ordre de profondeur croissante. Comparée aux travaux précédents, cette formulation est clé pour apprendre des meshes 3D sans utiliser des annotations représentant les régions d'objet. En outre, cette formulation nous permet de facilement introduire la possibilité d'apprendre des meshes transparents, que nous modélisons pour représenter une scène comme une composition d'un nombre variable de meshes
The goal of this thesis is to develop machine learning approaches to analyze collections of images without annotations. Advances in this area hold particular promises for high-impact 3D-related applications (e.g., reconstructing a real-world scene with 3D actionable components for animation movies or video games) where annotating examples to teach the machines is difficult, as well as more micro applications related to specific needs (e.g., analyzing the character evolution from 12th century documents) where spending significant effort on annotating large-scale database is debatable. The central idea of this dissertation is to build machines that learn to analyze an image collection by synthesizing the images in the collection. Learning analysis models by synthesis is difficult because it requires the design of a learnable image generation system that explicitly exhibits the desired analysis output. To achieve our goal, we present three key contributions.The first contribution of this thesis is a new conceptual approach to category modeling. We propose to represent the category of an image, a 2D object or a 3D shape, with a prototype that is transformed using deep learning to model the different instances within the category. Specifically, we design meaningful parametric transformations (e.g., geometric deformations or colorimetric variations) and use neural networks to predict the transformation parameters necessary to instantiate the prototype for a given image. We demonstrate the effectiveness of this idea to cluster images and reconstruct 3D objects from single-view images. We obtain performances on par with the best state-of-the-art methods which leverage handcrafted features or annotations.The second contribution is a new way to discover elements in a collection of images. We propose to represent an image collection by a set of learnable elements composed together to synthesize the images and optimized by gradient descent. We first demonstrate the effectiveness of this idea by discovering 2D elements related to semantic objects represented by a large image collection. Our approach have performances similar to the best concurrent methods which synthesize images with neural networks, and ours comes with better interpretability. We also showcase the capability of this idea by discovering 3D elements related to simple primitive shapes given as input a collection of images depicting a scene from multiple viewpoints. Compared to prior works finding primitives in 3D point clouds, we showcase much better qualitative and quantitative performances.The third contribution is more technical and consist in a new formulation to compute differentiable mesh rendering. Specifically, we formulate the differentiable rendering of a 3D mesh as the alpha compositing of the mesh faces in an increasing depth order. Compared to prior works, this formulation is key to enable us to learn 3D meshes without requiring object region annotations. In addition, it allows us to seamlessly introduce the possibility to learn transparent meshes, which we design to model a scene as a composition of a variable number of meshes
APA, Harvard, Vancouver, ISO, and other styles
42

Zhukov, Dimitri. "Learning to localize goal-oriented actions with weak supervision." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE105.

Full text
Abstract:
Le but de cette thèse est de développer des méthodes pour la compréhension automatique des vidéos d'instructions, qui démontrent des tâches humaines, comme, par exemple, faire une omelette ou accrocher une peinture. Nous proposons, d’abord, une méthode d'apprentissage des actions seulement à partir d'un script pour chaque tâche, au lieu des annotations manuelles. Notre modèle permet de réduire la quantité de données d'entraînement, en partageant l’information entre les tâches. Nous évaluons notre approche sur un nouveau jeu de données, CrossTask. Nous présentons, ensuite, une méthode non supervisée pour isoler les actions, liée à une tâche de leur contexte. Finalement, nous proposons une approche pour associer des instructions textuelles avec des objets correspondants dans la scène 3D, reconstruite à partir des vidéos
The goal of this thesis is to develop methods for automatic understanding of video content. We focus on instructional videos that demonstrate how to perform complex tasks, such as making an omelette or hanging a picture. First, we investigate learning visual models for the steps of tasks, using only a list of steps for each task, instead of costly and time consuming human annotations. Our model allows us to share the information between the tasks on the substep level, effectively multiplying the amount of available training data. We demonstrate the benefits of our method on a newly collected dataset of instructional videos, CrossTask. Next, we present a method for isolating taskrelated actions from the surrounding background, that doesn’t rely on human supervision. Finally, we learn to associate natural language instructions with the corresponding objects within the 3D scene, reconstructed from the videos
APA, Harvard, Vancouver, ISO, and other styles
43

Ho, Vinh Thanh. "Techniques avancées d'apprentissage automatique basées sur la programmation DC et DCA." Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0289.

Full text
Abstract:
Dans cette thèse, nous développons certaines techniques avancées d'apprentissage automatique dans le cadre de l'apprentissage en ligne et de l'apprentissage par renforcement (« reinforcement learning » en anglais -- RL). L'épine dorsale de nos approches est la programmation DC (Difference of Convex functions) et DCA (DC Algorithm), et leur version en ligne, qui sont reconnues comme de outils puissants d'optimisation non convexe, non différentiable. Cette thèse se compose de deux parties : la première partie étudie certaines techniques d'apprentissage automatique en mode en ligne et la deuxième partie concerne le RL en mode batch et mode en ligne. La première partie comprend deux chapitres correspondant à la classification en ligne (chapitre 2) et la prédiction avec des conseils d'experts (chapitre 3). Ces deux chapitres mentionnent une approche unifiée d'approximation DC pour différents problèmes d'optimisation en ligne dont les fonctions objectives sont des fonctions de perte 0-1. Nous étudions comment développer des algorithmes DCA en ligne efficaces en termes d'aspects théoriques et computationnels. La deuxième partie se compose de quatre chapitres (chapitres 4, 5, 6, 7). Après une brève introduction du RL et ses travaux connexes au chapitre 4, le chapitre 5 vise à fournir des techniques efficaces du RL en mode batch basées sur la programmation DC et DCA. Nous considérons quatre différentes formulations d'optimisation DC en RL pour lesquelles des algorithmes correspondants basés sur DCA sont développés. Nous traitons les problèmes clés de DCA et montrons l'efficacité de ces algorithmes au moyen de diverses expériences. En poursuivant cette étude, au chapitre 6, nous développons les techniques du RL basées sur DCA en mode en ligne et proposons leurs versions alternatives. Comme application, nous abordons le problème du plus court chemin stochastique (« stochastic shortest path » en anglais -- SSP) au chapitre 7. Nous étudions une classe particulière de problèmes de SSP qui peut être reformulée comme une formulation de minimisation de cardinalité et une formulation du RL. La première formulation implique la norme zéro et les variables binaires. Nous proposons un algorithme basé sur DCA en exploitant une approche d'approximation DC de la norme zéro et une technique de pénalité exacte pour les variables binaires. Pour la deuxième formulation, nous utilisons un algorithme batch RL basé sur DCA. Tous les algorithmes proposés sont testés sur des réseaux routiers artificiels
In this dissertation, we develop some advanced machine learning techniques in the framework of online learning and reinforcement learning (RL). The backbones of our approaches are DC (Difference of Convex functions) programming and DCA (DC Algorithm), and their online version that are best known as powerful nonsmooth, nonconvex optimization tools. This dissertation is composed of two parts: the first part studies some online machine learning techniques and the second part concerns RL in both batch and online modes. The first part includes two chapters corresponding to online classification (Chapter 2) and prediction with expert advice (Chapter 3). These two chapters mention a unified DC approximation approach to different online learning algorithms where the observed objective functions are 0-1 loss functions. We thoroughly study how to develop efficient online DCA algorithms in terms of theoretical and computational aspects. The second part consists of four chapters (Chapters 4, 5, 6, 7). After a brief introduction of RL and its related works in Chapter 4, Chapter 5 aims to provide effective RL techniques in batch mode based on DC programming and DCA. In particular, we first consider four different DC optimization formulations for which corresponding attractive DCA-based algorithms are developed, then carefully address the key issues of DCA, and finally, show the computational efficiency of these algorithms through various experiments. Continuing this study, in Chapter 6 we develop DCA-based RL techniques in online mode and propose their alternating versions. As an application, we tackle the stochastic shortest path (SSP) problem in Chapter 7. Especially, a particular class of SSP problems can be reformulated in two directions as a cardinality minimization formulation and an RL formulation. Firstly, the cardinality formulation involves the zero-norm in objective and the binary variables. We propose a DCA-based algorithm by exploiting a DC approximation approach for the zero-norm and an exact penalty technique for the binary variables. Secondly, we make use of the aforementioned DCA-based batch RL algorithm. All proposed algorithms are tested on some artificial road networks
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Yuxin. "Apprentissage interactif de mots et d'objets pour un robot humanoïde." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY003.

Full text
Abstract:
Les applications futures de la robotique, en particulier pour des robots de service à la personne, exigeront des capacités d’adaptation continue à l'environnement, et notamment la capacité à reconnaître des nouveaux objets et apprendre des nouveaux mots via l'interaction avec les humains. Bien qu'ayant fait d'énormes progrès en utilisant l'apprentissage automatique, les méthodes actuelles de vision par ordinateur pour la détection et la représentation des objets reposent fortement sur de très bonnes bases de données d’entrainement et des supervisions d'apprentissage idéales. En revanche, les enfants de deux ans ont une capacité impressionnante à apprendre à reconnaître des nouveaux objets et en même temps d'apprendre les noms des objets lors de l'interaction avec les adultes et sans supervision précise. Par conséquent, suivant l'approche de le robotique développementale, nous développons dans la thèse des approches d'apprentissage pour les objets, en associant leurs noms et leurs caractéristiques correspondantes, inspirées par les capacités des enfants, en particulier l'interaction ambiguë avec l’homme en s’inspirant de l'interaction qui a lieu entre les enfants et les parents.L'idée générale est d’utiliser l'apprentissage cross-situationnel (cherchant les points communs entre différentes présentations d’un objet ou d’une caractéristique) et la découverte de concepts multi-modaux basée sur deux approches de découverte de thèmes latents: la Factorisation en Natrices Non-Négatives (NMF) et l'Allocation de Dirichlet latente (LDA). Sur la base de descripteurs de vision et des entrées audio / vocale, les approches proposées vont découvrir les régularités sous-jacentes dans le flux de données brutes afin de parvenir à produire des ensembles de mots et leur signification visuelle associée (p.ex le nom d’un objet et sa forme, ou un adjectif de couleur et sa correspondance dans les images). Nous avons développé une approche complète basée sur ces algorithmes et comparé leur comportements face à deux sources d'incertitudes: ambiguïtés de références, dans des situations où plusieurs mots sont donnés qui décrivent des caractéristiques d'objets multiples; et les ambiguïtés linguistiques, dans des situations où les mots-clés que nous avons l'intention d'apprendre sont intégrés dans des phrases complètes. Cette thèse souligne les solutions algorithmiques requises pour pouvoir effectuer un apprentissage efficace de ces associations de mot-référent à partir de données acquises dans une configuration d'acquisition simplifiée mais réaliste qui a permis d'effectuer des simulations étendues et des expériences préliminaires dans des vraies interactions homme-robot. Nous avons également apporté des solutions pour l'estimation automatique du nombre de thèmes pour les NMF et LDA.Nous avons finalement proposé deux stratégies d'apprentissage actives: la Sélection par l'Erreur de Reconstruction Maximale (MRES) et l'Exploration Basée sur la Confiance (CBE), afin d'améliorer la qualité et la vitesse de l'apprentissage incrémental en laissant les algorithmes choisir les échantillons d'apprentissage suivants. Nous avons comparé les comportements produits par ces algorithmes et montré leurs points communs et leurs différences avec ceux des humains dans des situations d'apprentissage similaires
Future applications of robotics, especially personal service robots, will require continuous adaptability to the environment, and particularly the ability to recognize new objects and learn new words through interaction with humans. Though having made tremendous progress by using machine learning, current computational models for object detection and representation still rely heavily on good training data and ideal learning supervision. In contrast, two year old children have an impressive ability to learn to recognize new objects and at the same time to learn the object names during interaction with adults and without precise supervision. Therefore, following the developmental robotics approach, we develop in the thesis learning approaches for objects, associating their names and corresponding features, inspired by the infants' capabilities, in particular, the ambiguous interaction with humans, inspired by the interaction that occurs between children and parents.The general idea is to use cross-situational learning (finding the common points between different presentations of an object or a feature) and to implement multi-modal concept discovery based on two latent topic discovery approaches : Non Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA). Based on vision descriptors and sound/voice inputs, the proposed approaches will find the underlying regularities in the raw dataflow to produce sets of words and their associated visual meanings (eg. the name of an object and its shape, or a color adjective and its correspondence in images). We developed a complete approach based on these algorithms and compared their behavior in front of two sources of uncertainties: referential ambiguities, in situations where multiple words are given that describe multiple objects features; and linguistic ambiguities, in situations where keywords we intend to learn are merged in complete sentences. This thesis highlights the algorithmic solutions required to be able to perform efficient learning of these word-referent associations from data acquired in a simplified but realistic acquisition setup that made it possible to perform extensive simulations and preliminary experiments in real human-robot interactions. We also gave solutions for the automatic estimation of the number of topics for both NMF and LDA.We finally proposed two active learning strategies, Maximum Reconstruction Error Based Selection (MRES) and Confidence Based Exploration (CBE), to improve the quality and speed of incremental learning by letting the algorithms choose the next learning samples. We compared the behaviors produced by these algorithms and show their common points and differences with those of humans in similar learning situations
APA, Harvard, Vancouver, ISO, and other styles
45

Pascal, Barbara. "Estimation régularisée d'attributs fractals par minimisation convexe pour la segmentation de textures : formulations variationnelles conjointes, algorithmes proximaux rapides et sélection non supervisée des paramètres de régularisation; Applications à l'étude du frottement solide et de la microfluidique des écoulements multiphasiques." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN042.

Full text
Abstract:
Cette thèse propose plusieurs procédures pour la segmentation de textures auto-similaires s'appuyant sur deux attributs fractals : l'exposant de Hölder, quantifiant la régularité locale d'une texture, et la variance locale. Un modèle de textures fractales homogènes par morceaux est construit, accompagné d'une procédure de synthèse, fournissant des images composées d'un assemblage de textures fractales d'attributs fixés et de segmentation connue, utilisées pour évaluer les performances des méthodes proposées.Une première méthode, reposant sur la régularisation par Variation Totale d'une estimée brute de la régularité locale, est illustrée, et augmentée d'une étape de post-traitement par seuillage itératif fournissant ainsi une segmentation. Après avoir pointé les limites de cette approche, deux méthodes de segmentation, à contours « libres » ou « co-localisés », sont construites, prenant conjointement en compte la régularité et la variance locales.Ces deux procédures sont formulés comme des problèmes de minimisation de fonctionnelles convexes non lisses.Nous montrons que les fonctionnelles à pénalisations « libre » et « co-localisée » sont toutes deux fortement convexes, et calculons leur module de forte-convexité.Plusieurs schémas de minimisation sont dérivés, et leurs vitesses de convergence sont comparées.Les performances de segmentation des différentes méthodes sont quantifiées sur un large panel de données synthétiques, dans des configurations de difficulté croissante, ainsi que sur des images réelles et comparées aux méthodes de l’état-de-l'art, tels que les réseaux de neurones convolutionnels.Une application à la segmentation d'images provenant d'expériences sur les écoulements multiphasiques en milieu poreux est présentée.Une stratégie, dérivée de l'estimateur SURE de l'erreur quadratique, est mise en oeuvre pour le réglage automatique des hyperparamètres impliqués dans la construction des fonctionnelles à pénalisations « libre » et « co-localisée »
In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We show that the two functionals, with "free" and "co-located" penalizations, are both strongly-convex. and compute their respective strong convexity moduli.Several minimization schemes are derived, and their convergence speed are compared.The segmentation performance of the different methods are evaluated over a large amount of synthetic data in configurations of increasing difficulty, as well as on real world images, and compared to state-of-the-art procedures, including convolutional neural networks.An application for the segmentation of multiphasic flow through a porous medium experiment images is presented.Finally, a strategy for automated selection of the hyperparameters of the "free" and "co-located" functionals is built, inspired from the SURE estimator of the quadratic risk
APA, Harvard, Vancouver, ISO, and other styles
46

Faucheux, Lilith. "Learning from incomplete biomedical data : guiding the partition toward prognostic information." Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5242.

Full text
Abstract:
Cette thèse porte sur l'apprentissage de partitions dans un contexte de données incomplètes. Deux développements méthodologiques sont présentés, ainsi que des applications dans le domaine biomédical. La première méthode développée permet, en présence de données incomplètes, un apprentissage de partitions non supervisé. Deux types de données incomplètes ont été considérés : des données manquantes et des données censurées à gauche (dont la valeur est « inférieure à un seuil de détection »). La problématique des données incomplètes a été prise en compte par imputation multiple (MI). Pour permettre une imputation adaptée au type de données incomplètes de chaque variable la méthode par équations chainées (MICE) a été utilisée. L’apprentissage de partitions non supervisé a ensuite été effectuée sur chaque jeu de données imputé. Pour finir, les partitions obtenues ont été combinées à l’aide d’un clustering par consensus. La deuxième méthode, semi-supervisée, a été développée pour permettre de surcroît l’utilisation d’une composante supervisée, à savoir le délai de survie, tout en permettant l’application à des données incomplètes. Cette méthode a ainsi permis d’identifier des profils de patients qui se distinguent d'une part selon la structure de groupes qui se dégage des données et d'autre part, selon le pronostic des patients. Cette méthode utilise l’optimisation multi-objectifs de Pareto. L’adaptation aux données incomplètes a été traitée de manière similaire au développement précédent, par imputation multiple et clustering par consensus. Enfin, deux propositions d'applications sont incluses. Elles concernent d'une part la composante immunologique du microenvironnement tumoral dans le cancer du sein, et d'autre part l’infection COVID-19 dans le contexte d’une maladie hématologique
The topic of this thesis is partition learning analyses in the context of incomplete data. Two methodological development are presented, with two medical and biomedical applications. The first methodological development concerns the implementation of unsupervised partition learning in the presence of incomplete data. Two types of incomplete data were considered: missing data and left-censored data (that is, values “lower than some detection threshold"), and handled through multiple imputation (MI) framework. Multivariate imputation by chained equation (MICE) was used to perform tailored imputations for each type of incomplete data. Then, for each imputed dataset, unsupervised learning was performed, with a data-based selected number of clusters. Last, a consensus clustering algorithm was used to pool the partitions, as an alternative to Rubin's rules. The second methodological development concerns the implementation of semisupervised partition learning in an incomplete dataset, to combine data structure and patient survival. This aimed at identifying patient profiles that relate both to differences in the group structure extracted from the data, and in the patients' prognosis. The supervised (prognostic value) and unsupervised (group structure) objectives were combined through Pareto multi-objective optimization. Missing data were handled, as above, through MI, with Rubin's rules used to combine the supervised and unsupervised objectives across the imputations, and the optimal partitions pooled using consensus clustering. Two applications are provided, one on the immunological landscape of the breast tumor microenvironment and another on the COVID-19 infection in the context of a hematological disease
APA, Harvard, Vancouver, ISO, and other styles
47

Bakri, Sihem. "Towards enforcing network slicing in 5G networks." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS067.

Full text
Abstract:
Les architectures de réseaux sans fil actuelles, de type « une taille pour tous », ne peuvent pas prendre en charge ces critères de services hétérogènes de nouvelle génération 5G. Par conséquent, la recherche autour de la 5G vise à fournir des architectures et des mécanismes plus adéquats pour répondre à ce besoin. L'architecture 5G est conçue pour répondre aux exigences variées et contradictoires des services, en termes de latence, de bande passante et de fiabilité, qui ne peuvent être assurées par la même infrastructure du réseau. Dans ce contexte, le découpage du réseau fourni par la virtualisation du réseau permet de diviser l'infrastructure en différentes tranches, chaque tranche est adaptée aux besoins spécifiques des services, où elle permet à différents services (comme l'automobile, l'Internet des objets...) d'être fournis par différentes instances de la tranche du réseau. Les chercheurs ont défini trois grandes classes de services de découpage en réseau, qui sont: enhanced Mobile BroadBand (eMBB), massive Machine Type Communication (mMTC), and ultra-Reliable and Low-Latency Communication (uRLLC). L'un des principaux défis du déploiement des tranches de réseau est le découpage du réseau d'accès radio (RAN). En effet, la gestion des ressources RAN et leur partage entre les tranches de réseau est une tâche particulièrement difficile. Cette thèse propose des solutions qui visent à améliorer les performances du réseau et d'introduire de la flexibilité et une plus grande utilisation des ressources du réseau, en fournissant de manière précise et dynamique aux tranches de réseau activées les quantités de ressources appropriées pour répondre à leurs divers besoins
The current architecture “one size fits all” of 4G network cannot support the next-generation 5G heterogeneous services criteria. Therefore, research around 5G aims to provide more adequate architectures and mechanisms to deal with this purpose. The 5G architecture is envisioned to accommodate the diverse and conflicting demands of services in terms of latency, bandwidth, and reliability, which cannot be sustained by the same network infrastructure. In this context, network slicing provided by network virtualization allows the infrastructure to be divided into different slices. Each slice is tailored to meet specific service requirements allowing different services (such as automotive, Internet of Things, etc.) to be provided by different network slice instances. Each of these instances consists of a set of virtual network functions that run on the same infrastructure with specially adapted orchestration. Three main service classes of network slicing have been defined by the researchers as follows: Enhanced Mobile Broadband (eMBB), massive Machine Type Communication (mMTC), and ultra-Reliable and Low-Latency Communication (uRLLC). One of the main challenges when it comes to deploying Network Slices is slicing the Radio Access Network (RAN). Indeed, managing RAN resources and sharing them among Network Slices is an increasingly difficult task, which needs to be properly designed. This thesis proposes solutions that aim to improve network performance, and introduce flexibility and greater utilization of network resources by accurately and dynamically provisioning the activated network slices with the appropriate amounts of resources to meet their diverse requirements
APA, Harvard, Vancouver, ISO, and other styles
48

Velcin, Julien. "Extraction automatique de stéréotypes à partir de données symboliques et lacunaires." Paris 6, 2005. http://www.theses.fr/2005PA066465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Oudjail, Veïs. "Réseaux de neurones impulsionnels appliqués à la vision par ordinateur." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILB048.

Full text
Abstract:
Les réseaux de neurones artificiels (RNA) sont devenus des techniques incontournables en vision par ordinateur, cette tendance ayant débuté lors du challenge ImageNet de 2012. Cependant, ce succès s'accompagne d'un coût humain non-négligeable pour l'étiquetage manuel des données, très important dans l'apprentissage des modèles et d'un coût énergétique élevé causé par le besoin de ressources de calcul importantes. Les réseaux de neurones impulsionnels (Spiking Neural Network, SNN) apportent des solutions à ces problématiques. C'est une classe particulière des RNAs, proche du modèle biologique, dans lequel les neurones communiquent de manière asynchrone en représentant l'information via des impulsions (spikes). L'apprentissage des SNN peu reposer sur une règle non supervisée : la STDP. Elle module les poids synaptiques en fonction des corrélations temporelles locales constatées entre les impulsions entrantes et sortantes. Différentes architectures matérielles ont été conçues dans le but d'exploiter les propriétés des SNN (asynchronie, opération éparse et locale, etc.) afin de concevoir des solutions peu énergivores, certaines divisant le coût de plusieurs ordres de grandeur. Les SNNs gagnent en popularité et il y a un intérêt croissant à les appliquer à la vision. Des travaux récents montrent que les SNNs acquièrent en maturité en étant compétitifs par rapport à l'état de l'art sur des datasets d'images "simples" tels que MNIST (chiffres manuscrits) mais pas sur des datasets plus complexes. Cependant, les SNNs peuvent potentiellement se démarquer des RNAs dans le traitement de vidéos. La première raison est que ces modèles intègrent une dimension temporelle en plus. La deuxième raison est qu'ils se prêtent bien à l'utilisation des caméras événementielles. Ce sont des capteurs bio-inspirés qui perçoivent les contrastes temporels d'une scène, autrement dit, ils sont sensibles au mouvement. Chaque pixel peut détecter une variation lumineuse (positive ou négative), ce qui déclenche un événement. Coupler ces caméras aux puces neuromorphiques permet de créer des systèmes de vision totalement asynchrones et massivement parallélisés. L'objectif de cette thèse est d'exploiter les capacités offertes par les SNNs dans le traitement vidéo. Afin d'explorer le potentiel offert par les SNNs, nous nous sommes intéressés à l'analyse du mouvement et plus particulièrement à l'estimation de la direction du mouvement. Le but est de développer un modèle capable d'apprendre incrémentalement, sans supervision et avec peu d'exemples, à extraire des caractéristiques spatio-temporelles. Nous avons donc effectué plusieurs études examinant les différents points mentionnés à l'aide de jeux de données événementielles synthétiques. Nous montrons que le réglage des paramètres des SNNs est essentiel pour que le modèle soit capable d'extraire des caractéristiques utiles. Nous montrons aussi que le modèle est capable d'apprendre de manière incrémentale en lui présentant des classes inédites sans détérioration des performances sur les classes maîtrisées. Pour finir, nous évoquerons certaines limites, notamment sur l'apprentissage des poids en suggérant la possibilité d'apprendre plutôt les délais, encore peu exploités et qui pourrait marquer davantage la rupture face aux RNAs
Artificial neural networks (ANN) have become a must-have technique in computer vision, a trend that started during the 2012 ImageNet challenge. However, this success comes with a non-negligible human cost for manual data labeling, very important in model learning, and a high energy cost caused by the need for large computational resources. Spiking Neural Networks (SNN) provide solutions to these problems. It is a particular class of ANNs, close to the biological model, in which neurons communicate asynchronously by representing information through spikes. The learning of SNNs can rely on an unsupervised rule: the STDP. It modulates the synaptic weights according to the local temporal correlations observed between the incoming and outgoing spikes. Different hardware architectures have been designed to exploit the properties of SNNs (asynchrony, sparse and local operation, etc.) in order to design low-power solutions, some of them dividing the cost by several orders of magnitude. SNNs are gaining popularity and there is growing interest in applying them to vision. Recent work shows that SNNs are maturing by being competitive with the state of the art on "simple" image datasets such as MNIST (handwritten numbers) but not on more complex datasets. However, SNNs can potentially stand out from ANNs in video processing. The first reason is that these models incorporate an additional temporal dimension. The second reason is that they lend themselves well to the use of event-driven cameras. They are bio-inspired sensors that perceive temporal contrasts in a scene, in other words, they are sensitive to motion. Each pixel can detect a light variation (positive or negative), which triggers an event. Coupling these cameras to neuromorphic chips allows the creation of totally asynchronous and massively parallelized vision systems. The objective of this thesis is to exploit the capabilities offered by SNNs in video processing. In order to explore the potential offered by SNNs, we are interested in motion analysis and more particularly in motion direction estimation. The goal is to develop a model capable of learning incrementally, without supervision and with few examples, to extract spatiotemporal features. We have therefore performed several studies examining the different points mentioned using synthetic event datasets. We show that the tuning of the SNN parameters is essential for the model to be able to extract useful features. We also show that the model is able to learn incrementally by presenting it with new classes without deteriorating the performance on the mastered classes. Finally, we discuss some limitations, especially on the weight learning, suggesting the possibility of more delay learning, which are still not very well exploited and which could mark a break with ANNs
APA, Harvard, Vancouver, ISO, and other styles
50

Cler, Gauthier. "Horizontal Side Channel Attacks on Noisy Traces." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS010.

Full text
Abstract:
Récemment, l'utilisation de réseaux de neurones dans le cadre des attaques par canaux auxiliaires de type profilées sur systèmes ouverts a démontré son efficacité jusqu'à presque remplacer les techniques précédemment utilisées. Néanmoins, lorsqu'il n'est pas possible d'avoir accès à un système ouvert et lorsque les attaques dites verticales ne sont pas envisageables, la principale option restante est de mettre en oeuvre des attaques horizontales. C'est généralement le cas pour des implémentations d'algorithmes de cryptographie asymétrique (RSA, ECC). Les attaques horizontales existantes s'appuient sur des techniques de classification ou clustering issues du monde des statistiques. Même s'il a été apporté l'efficacité de ces techniques dans certaines circonstances, en pratique le taux de succès d'attaques basés sur ces techniques reste tout de même relativement faible, en particulier dans le cas d'environements avec la présence de hauts niveaux de bruits. Il existe toutefois une autre catégorie de réseaux de neurones dit à apprentissage non-supervisé, pour lesquels l'accès à un système ouvert n'est pas nécessaire. Il s'agit alors de déterminer si ce type de réseau peut être utilisé dans le contexte des attaques par canaux auxiliaire et, le cas échéant, si le gain par rapport aux techniques d'attaques déjà utilisées est suffisant. L'objectif de ces travaux est donc de valider cette idée en identifiant et en proposant une ou plusieurs topologies de réseaux de neurones adaptées aux attaques horizontales par clustering et d'en vérifier l'efficacité sur l'implémentation d'algorithmes cryptographiques asymétrique. De plus, une méthodologie alternative pour la sélection univariée de points d'intérêts basée sur des méthodes statistique est proposée, ainsi qu'une nouvelle métrique pour la quantification de fuite et l'exploitabilité des points sélectionnés. Les résultats obtenus montrent une amélioration des taux de succès obtenus par rapport aux méthodes proposées dans l'état de l'art
Recently introduced to the field of side channel analysis, neural networks have showed to be a powerful and relevant alternative to template attacks. However, their applicability is limited to profiled attack context, as supervised training is needed in order to build a relevant generalized model. When profiling on an open device is not possible, and vertical attacks cannot be applied, the only left possible approach is horizontal attacks. While several contributions have been made for tackling horizontal attacks on asymmetric cryptography algorithms implementations such as RSA or elliptic curve cryptography, their performance remains low and their applicability hard in real life scenario with the presence of high noise. Still, another neural network family known as unsupervised learning neural networks exists, which would not require an open device access and. It must be known if these networks unsupervised learning paradigm and their associated topology can be applied to the context of side-channel attacks and if such is the case, whether or not they can provide better results than traditional methods. Thus, In this work, several approaches are considered to improve clustering based horizontal side channel attacks efficiency. A novel methodology based on statistical analysis is also introduced for univariate points of interest selection. Additionally, an alternative metric for quantifying points of interest exploitability in a clustering attack is proposed and compared to commonly used metrics. The proposed methods allow providing significant improvement over state of the art attacks performance and giving a better explainability of obtained results
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography