Academic literature on the topic 'Approximation numérique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Approximation numérique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Approximation numérique"
Alziary de Roquefort, B. "Jeux différentiels et approximation numérique de fonctions valeur. 2e partie : étude numérique." ESAIM: Mathematical Modelling and Numerical Analysis 25, no. 5 (1991): 535–60. http://dx.doi.org/10.1051/m2an/1991250505351.
Full textKerdid, Nabil, Hervé Le Dret, and Abdelkader Saïdi. "Approximation numérique d'un problème de membrane non linéaire." Comptes Rendus Mathematique 340, no. 1 (January 2005): 69–74. http://dx.doi.org/10.1016/j.crma.2004.11.016.
Full textCostaouec, Ronan, Claude Le Bris, and Frédéric Legoll. "Approximation numérique d'une classe de problèmes en homogénéisation stochastique." Comptes Rendus Mathematique 348, no. 1-2 (January 2010): 99–103. http://dx.doi.org/10.1016/j.crma.2009.10.027.
Full textGiusti, Marc, and Jean-Claude Yakoubsohn. "Approximation numérique de racines isolées multiples de systèmes analytiques." Annales Henri Lebesgue 3 (August 24, 2020): 901–57. http://dx.doi.org/10.5802/ahl.49.
Full textAlziary de Roquefort, B. "Jeux différentiels et approximation numérique de fonctions valeur. 1re partie : étude théorique." ESAIM: Mathematical Modelling and Numerical Analysis 25, no. 5 (1991): 517–33. http://dx.doi.org/10.1051/m2an/1991250505171.
Full textPetit, Marie-Claude, Thibaut Coulon, and Simon Bourdeau. "Le design, le développement et l’évaluation d’une simulation de gestion de projet agile avec Minecraft Education : partage d’une approche innovante en enseignement supérieur." Médiations et médiatisations, no. 15 (June 28, 2023): 197–213. http://dx.doi.org/10.52358/mm.vi15.352.
Full textBoukrouche, Abdelhani. "Estimation du Flux de Production de Chaleur d’une Réaction Chimique." Journal of Renewable Energies 2, no. 1 (June 30, 1999): 27–37. http://dx.doi.org/10.54966/jreen.v2i1.921.
Full textSergent, Philippe, Jean-Michel Tanguy, and Hassan Smaoui. "Calcul analytique et numérique des seiches et des oscillations portuaires pour des bassins de forme rectangulaire et de profondeur constante avec des digues semi-infinies parfaitement réfléchissantes." La Houille Blanche, no. 3-4 (October 2019): 117–29. http://dx.doi.org/10.1051/lhb/2019049.
Full textBénard, Pierre. "Les aspects non hydrostatiques pour Aladin, Arome et Arpège." La Météorologie, no. 112 (2021): 055. http://dx.doi.org/10.37053/lameteorologie-2021-0020.
Full textKhelifa, A., Y. Ouellet, and J. L. Robert. "Étude de la réouverture de la lagune du Havre aux Basques. II. Modélisation numérique du processus de mélange des eaux." Canadian Journal of Civil Engineering 22, no. 1 (February 1, 1995): 72–79. http://dx.doi.org/10.1139/l95-007.
Full textDissertations / Theses on the topic "Approximation numérique"
Peluchon, Simon. "Approximation numérique et modélisation de l'ablation liquide." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0739/document.
Full textDuring atmospheric re-entry phase, a spacecraft undergoes a sudden increase of the temperature due to the friction of atmospheric gases. This rise drives to a physical-chemical degradation of the thermal protective system of the object made of composite material. A composite is made of several materials with ablates differently. In this thesis, we mainly focus on the melting of an object during its re-entry phase. Therefore there are three phases: solid, liquid and gas phases. In order to simulate this phenomenon, robust numerical methods have been developed to compute a compressible multiphase flow. The coupling strategy between the solid and the fluid have also been studied. Solvers developed in the present work are based on Finite Volume Method. A splitting strategy is used to compute compressible two-phase flows using the five-equation model with viscous and heat conduction effects. The main idea of the splitting is to separate the acoustic and dissipative phenomena from the transport one. An implicit treatment of the acoustic step is performed while the transport step is solved explicitly. The overall scheme resulting from this splitting operator strategy is very robust, conservative, and preserves contact discontinuities. The boundary interface condition between the solid and the multiphase flow is enforced by mass and energy balances at the wall. The melting front is tracked explicitly using an ALE formulation of the equations. The robustness of the approach and the interest of the semi-implicit formulation are demonstrated through numerical simulations in one and two dimensions on moving curvilinear grids
Makhlof, Hasan. "Dynamique des Fluides Relativistes : Théorie et Approximation Numérique." Paris 6, 2012. http://www.theses.fr/2012PA066523.
Full textDaverdon, Florence. "Approximation numérique du système de Vlasov-Maxwell tridimensionnel." Bordeaux 1, 1992. http://www.theses.fr/1993BOR10559.
Full textDaverdon, Florence. "Approximation numérique du système de Vlasov-Maxwell tridimensionnel." Bordeaux 1, 1992. http://www.theses.fr/1992BOR10677.
Full textBoucinha, Luca. "Réduction de modèle a priori par séparation de variables espace-temps : Application en dynamique transitoire." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0118/document.
Full textNumerical simulation of physical phenomena has become an indispensable part of the mechanical engineer's toolbox. Robust and flexible tools, based on classical approximation methods, are now commonly used in industry. However, these tools require lots of computational resources to solve complex problems. Even if such resources are more and more affordable thanks to the remarkable progress in computer industry, it is now necessary to propose innovative approximation methods in order to better exploit the impressive amount of computational resources that are todays available. Reduced order modeling techniques are presented as ideal candidates to address this issue. Among these, methods based on the construction of low rank separated approximations have been shown to be very efficient to approach solutions of a wide variety of problems, reducing computational costs by several orders of magnitude. Nonetheless, efficiency of these methods significantly depends on the considered problem. In this manuscript, we propose to evaluate interest of space-time separated representations to approach solutions of academical transient dynamic problems. We first define the best space-time separated approximation (with respect to a minimization problem) of a given solution of a transient problem. The construction of this approximation being based on the hypothesis that the problem's solution is known (a posteriori method), the following of the manuscript is dedicated to the construction of such an approximation without any other knowledge on the reference solution than the operators of the space-time problem from which it is solution (a priori method). We then introduce a generic formalism, based on the tensor product structure of the operators of the space-time problem, in a multi-field framework. Next, this formalism is used to develop a generic solver that builds a separated approximation of a transient problem's solution, with the help of the Proper Generalized Decomposition (PGD). A state of art of existing algorithms is done, and efficiency of classical definitions of PGD to approach solutions of several academical transient dynamic problems is evaluated. Numerical results highlight the lack of optimality of the more robust PGD. Therefore, a new PGD definition, recently introduced in literature, is applied to solution of an elastodynamic problem in a multi-field framework. This new definition is based on minimization of an ideal residual norm and allows to find a very good approximation of the best approximation of a given rank, without having to calculate more space-time modes than needed
Toulouse, Sophie. "Approximation polynomiale : optima locaux et rapport differentiel." Paris 9, 2001. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2001PA090007.
Full textBoyer, Franck. "Modélisation, Analyse et Approximation numérique en mécanique des fluides." Habilitation à diriger des recherches, Université de Provence - Aix-Marseille I, 2006. http://tel.archives-ouvertes.fr/tel-00104532.
Full textUne première partie du travail concerne l'étude de modèles dits à interface diffuse pour les écoulements incompressibles multiphasiques. Après une étude assez précise du cadre diphasique, on propose la généralisation au cadre triphasique, ce qui nécessite d'introduire la notion importante de consistance des modèles. Des résultats numériques confirment la pertinence des modèles proposés. Ensuite, on s'intéresse au modèle plus classique de Navier-Stokes non-homogène incompressible pour lequel on établit le caractère bien posé du problème pour des conditions aux limites ouvertes non-linéaires en sortie d'un écoulement. Une brique essentielle de ce travail est l'étude détaillée du problème de traces pour l'équation de transport associée à un champ de vitesse peu régulier. Ce travail, dont l'intérêt dépasse le cadre applicatif décrit ci-dessus, fait l'objet d'un chapitre à part entière.
Dans une seconde partie, on s'intéresse à l'approximation numérique par des méthodes de volumes finis des solutions de problèmes elliptiques non-linéaires monotones (du type p-laplacien). Un premier chapitre décrit un certain nombre de résultats obtenus dans le contexte de maillages cartésiens. Un second chapitre est consacré à l'étude d'un cadre géométrique plus général par le biais de méthodes dites en dualité discrète. Une attention particulière est portée au cas où les coefficients du problème présentent des discontinuités spatiales, ce qui mène à des problèmes de transmission non-linéaire entre deux milieux.
Le mémoire s'achève par la description de quelques travaux connexes, d'une part sur une classe de schémas VF pour les équations elliptiques linéaires adaptés à des maillages non orthogonaux, et d'autre sur l'étude numérique de problèmes elliptiques couplés 2D/1D issus de la description asymptotique d'écoulements dans des milieux poreux fracturés.
Nicod, Johann. "Approximation numérique par chaos de Wiener de quelques EDPS." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1129/document.
Full textIn this thesis, we will be interested by the numerical approximation of SPDEs. Such equations can be seen as generalization of deterministic PDEs whose coefficients have been perturbed in order to take into account incertainties. Usually those incertainties are only known through their statistical properties. This kind of data could be included into the coefficients of the PDE or can be modelized through an infinite dimensional diffusion term in the second member. The main purpose of the numerical investigations concerning SPDEs is the estimation of the joint probability distribution of its solution, and practically the estimation of some moments or some event's probabilities. The discretization of the noise's information in the small scales implies a large number of additionnal parameters and yields, in general, problems. The first and most popular method used usually is the Monte Carlo method. It relies upon the simulation of a large number of trajectories of the noise followed by the numerical integration of the associated SPDE's solution. Its main advantage is its simplicity and its capacity to be parallelized. Nevertheless, its main drawback is the rather slow convergence due to the unit cost of numerical integration of each trajectory which depend on the deterministic method used, the problem's dimension. Also the convergence can be slowed down because of the large variance of the statistical moments we want to estimate. A second approach consists in the chaos expansion of the coefficients based on a reference measure (Wiener's mesure e.g.). It will be the main purpose of this thesis. We will describe how such an expansion can be made possible in the SPDEs' framework, through the examples of the KdV and Burgers stochastic equations, in order to obtain statistical moments of the solutions but also in order to reduce wariance within a Monte Carlo method
Dotti, Sylvain. "Approximation numérique de lois de conservation hyperboliques stochastiques scalaires." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0568/document.
Full textIn this thesis, we study a scalar hyperbolic conservation law of order one, with stochastic source term and non-linear flux. The source term can be seen as the superposition of an infinity of Gaussian noises depending on the conserved quantity. We give a definition of solution of this stochastic partial differential equation (SPDE) with an intermediate point of view between that of the analyst (non regularsolution in space, introduction of an additional kinetic variable) and that of the probabilist (right continuous with left limits in time stochastic process solution). Uniqueness of the solution is proved thanks to a doubling of variables à la Kruzkov. We study the stability of the conservation law, in order to give a general theorem where the conditions of existence of a solution and conditions of convergence of a sequence of approximate solutions towards the solution of the conservation law are given. This study is done thanks to probabilistic tools : representation of martingales in the form of stochastic integrals, existence of a probability space on which the convergence of probability measures is equivalent to the almost sure convergence of random variables.To finish the study, we prove the existence of a solution thanks to the properties of the approximation of the SPDE given by an explicit in time Finite Volumes numerical scheme, then the convergence of this approximation towards the solution of the SPDE. The tools used are those of the numerical analysis, especially those of the Finite Volume Method, and those of the stochastic calculs (probabilistic tools)
Le, Floch Philippe. "Contributions a l'etude theorique et a l'approximation de systemes hyperboliques non lineaires : application aux equations de la dynamique des gaz." ePalaiseau, Ecole polytechnique, 1988. http://www.theses.fr/1988EPXXX001.
Full textBooks on the topic "Approximation numérique"
Abdelmalek, Nabih N. Numerical linear approximation in C. Boca Raton: CRC Press, 2008.
Find full textNovak, Erich. Deterministic and stochastic error bounds in numerical analysis. Berlin: Springer-Verlag, 1988.
Find full textQuarteroni, Alfio. Numerical approximation of partial differential equations. 2nd ed. Berlin: Springer, 1997.
Find full textMalek, William A., and Nabih N. Abdelmalek. Numerical Linear Approximation in C. Taylor & Francis Group, 2019.
Find full textAbdelmalek, Nabih, and William A. Malek. Numerical Linear Approximation in C. Taylor & Francis Group, 2008.
Find full textAbdelmalek, Nabih. Numerical Linear Approximation in C. Taylor & Francis Group, 2008.
Find full textAbdelmalek, Nabih, and William A. Malek. Numerical Linear Approximation in C. Taylor & Francis Group, 2008.
Find full textBook chapters on the topic "Approximation numérique"
Quarteroni, Alfio, Paola Gervasio, and Fausto Saleri. "Approximation numérique des problèmes." In Calcul Scientifique, 261–308. Milano: Springer Milan, 2010. http://dx.doi.org/10.1007/978-88-470-1676-7_8.
Full textLions, J. L. "Approximation NuméRique des InéQuations DéVolution." In Constructive Aspects of Functional Analysis, 293–361. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10984-3_3.
Full textReimer, M. "Nonproduct Interpolation and Approximation." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 249–60. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_19.
Full textMicchelli, Charles A. "Monosplines and Moment Preserving Spline Approximation." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, 130–39. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6398-8_13.
Full textBrudnyi, Yu A. "Adaptive Approximation of Functions with Singularities." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 1–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_1.
Full textPowell, M. J. D. "Univariate Multiquadric Approximation: Reproduction of Linear Polynomials." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 227–40. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_17.
Full textZwick, D. "The Obstacle Problem and Best Superharmonic Approximation." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 313–24. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_24.
Full textFranke, R. "Approximation of Scattered Data for Meteorological Applications." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 107–20. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_7.
Full textGatteschi, Luigi. "Uniform Approximation of Christoffel Numbers for Jacobi Weight." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, 49–59. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6398-8_5.
Full textHamann, U., and G. Wildenhain. "Approximation by Solutions of Elliptic Boundary Value Problems." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, 131–39. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-5685-0_9.
Full text