Books on the topic 'Approximation of derivatives of functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Approximation of derivatives of functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Temli͡akov, V. N. Approximation of functions with bounded mixed derivative. American Mathematical Society, 1989.
Find full textAlyukov, Sergey. Approximation of piecewise linear and generalized functions. INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2104876.
Full textNürnberger, Günther. Approximation by Spline Functions. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61342-5.
Full textTemli͡akov, V. N. Approximation of periodic functions. Nova Science Publishers, 1993.
Find full textTemli︠a︡kov, V. N. Approximation of periodic functions. Nova Science Publishers, 1993.
Find full textMashreghi, Javad. Derivatives of Inner Functions. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5611-7.
Full textPetrushev, P. P. Rational approximation of real functions. Cambridge University Press, 1987.
Find full textStepanet͡s, A. I. Classification and approximation of periodic functions. Kluwer Academic Publishers, 1995.
Find full textTrigub, Roald M., and Eduard S. Bellinsky. Fourier Analysis and Approximation of Functions. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2876-2.
Full textSingh, S. P., ed. Approximation Theory, Spline Functions and Applications. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2634-2.
Full textStepanets, Alexander I. Classification and Approximation of Periodic Functions. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0115-8.
Full textDanmarks tekniske højskole. Numerisk institut., ed. Minimization of non-linear approximation functions. Institute for Numerical Analysis, Technical University of Denmark, 1985.
Find full textS, Belinsky Eduard, ed. Fourier analysis and approximation of functions. Kluwer Academic Publishers, 2004.
Find full text1937-, Singh S. P., and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Approximation theory, spline functions, and applications. Kluwer Academic Publishers, 1992.
Find full textGuzman, Alberto. Derivatives and Integrals of Multivariable Functions. Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0035-2.
Full text1947-, Guzman Alberto. Derivatives and integrals of multivariable functions. Birkhauser, 2003.
Find full text1948-, Nürnberger G., Schmidt Jochen W, and Walz Guido, eds. Multivariate approximation and splines. Birkhäuser, 1997.
Find full textBrent, R. P. Algorithms for minimization without derivatives. Dover Publications, 2002.
Find full textBucur, Ileana, and Gavriil Paltineanu. Topics in Uniform Approximation of Continuous Functions. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48412-5.
Full textRivlin, Theodore J. An introduction to the approximation of functions. Dover Publications, 2003.
Find full textK, Chui C., Schumaker Larry L. 1939-, and Utreras Florencio I, eds. Topics in multivariate approximation. Academic Press, 1987.
Find full textKitahara, Kazuaki. Spaces of approximating functions with Haar-like conditions. Springer-Verlag, 1994.
Find full textMilovanović, Gradimir V., and Michael Th Rassias, eds. Analytic Number Theory, Approximation Theory, and Special Functions. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0258-3.
Full textA, Shevchuk Igor, ed. Theory of uniform approximation of functions by polynomials. Walter De Gruyter, 2008.
Find full textMcCormick, S. Thomas. Easy with difficulty objective functions for Max cut. Indian Institute of Management, 2002.
Find full textMurty, Vijaya Kumar. Non-vanishing of L-functions and their derivatives. Dept. of Mathematics, University of Toronto, 1989.
Find full textAnikin, V. S. Differalʹnye priblizhenii͡a︡ funkt͡s︡iĭ. Izd-vo "Fan" Uzbekskoĭ SSR, 1988.
Find full textNémeth, Géza. Mathematical approximation of special functions: Ten papers on Chebyshev expansions. Nova Science Publishers, 1992.
Find full textNaisse, J. P. L' approximation analytique: Vers une théorie empirique constructive et finie. Editions de l'Université de Bruxelles, 1992.
Find full textMitrinović, D. S., J. E. Pečarić, and A. M. Fink. Inequalities Involving Functions and Their Integrals and Derivatives. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7.
Full textE, Pečarić J., and Fink A. M. 1932-, eds. Inequalities involving functions and their integrals and derivatives. Kluwer Academic Publishers, 1991.
Find full textHoring, Norman J. Morgenstern. Non-Equilibrium Green’s Functions: Variational Relations and Approximations for Particle Interactions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0009.
Full textProlla, Joao B. Approximation of Vector Valued Functions. Elsevier Science & Technology Books, 2011.
Find full textApproximation of Continuously Differentiable Functions. Elsevier, 1986. http://dx.doi.org/10.1016/s0304-0208(08)x7079-3.
Full textPetrushev, P. P., and Vasil Atanasov Popov. Rational Approximation of Real Functions. Cambridge University Press, 1988.
Find full textPetrushev, P. P., and Vasil Atanasov Popov. Rational Approximation of Real Functions. Cambridge University Press, 2013.
Find full textLlavona, J. G. Approximation of Continuously Differentiable Functions. Elsevier Science & Technology Books, 1986.
Find full textPetrushev, P. P., and Vasil Atanasov Popov. Rational Approximation of Real Functions. University of Cambridge ESOL Examinations, 2011.
Find full textBurry, J. H. W., B. Watson, and Singh S. P. Approximation Theory and Spline Functions. Springer, 2012.
Find full textFox, Raymond. The Use of Self. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780190616144.001.0001.
Full text