Journal articles on the topic 'Aqueous flow batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aqueous flow batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Singh, Vikram, Soeun Kim, Jungtaek Kang, and Hye Ryung Byon. "Aqueous organic redox flow batteries." Nano Research 12, no. 9 (March 21, 2019): 1988–2001. http://dx.doi.org/10.1007/s12274-019-2355-2.
Full textPfanschilling, Felix Leon, Faye Cording, Jack Oliver Mitchinson, Jochen Friedl, Matthäa Verena Holland-Cunz, Barbara Schricker, Robert Fleck, Holger Wolfschmidt, and Ulrich Stimming. "Aqueous All-Polyoxometalate Redox-Flow-Batteries." ECS Meeting Abstracts MA2020-01, no. 3 (May 1, 2020): 496. http://dx.doi.org/10.1149/ma2020-013496mtgabs.
Full textLiu, Wanqiu, Wenjing Lu, Huamin Zhang, and Xianfeng Li. "Aqueous Flow Batteries: Research and Development." Chemistry - A European Journal 25, no. 7 (November 27, 2018): 1649–64. http://dx.doi.org/10.1002/chem.201802798.
Full textGerhardt, Michael R., Liuchuan Tong, Rafael Gómez-Bombarelli, Qing Chen, Michael P. Marshak, Cooper J. Galvin, Alán Aspuru-Guzik, Roy G. Gordon, and Michael J. Aziz. "Anthraquinone Derivatives in Aqueous Flow Batteries." Advanced Energy Materials 7, no. 8 (December 14, 2016): 1601488. http://dx.doi.org/10.1002/aenm.201601488.
Full textHamelet, S., T. Tzedakis, J. B. Leriche, S. Sailler, D. Larcher, P. L. Taberna, P. Simon, and J. M. Tarascon. "Non-Aqueous Li-Based Redox Flow Batteries." Journal of The Electrochemical Society 159, no. 8 (2012): A1360—A1367. http://dx.doi.org/10.1149/2.071208jes.
Full textAmbrosi, Adriano, and Richard D. Webster. "3D printing for aqueous and non-aqueous redox flow batteries." Current Opinion in Electrochemistry 20 (April 2020): 28–35. http://dx.doi.org/10.1016/j.coelec.2020.02.005.
Full textLeung, P., D. Aili, Q. Xu, A. Rodchanarowan, and A. A. Shah. "Rechargeable organic–air redox flow batteries." Sustainable Energy & Fuels 2, no. 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.
Full textWei, L., Z. X. Guo, J. Sun, X. Z. Fan, M. C. Wu, J. B. Xu, and T. S. Zhao. "A convection-enhanced flow field for aqueous redox flow batteries." International Journal of Heat and Mass Transfer 179 (November 2021): 121747. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121747.
Full textLi, Bin, and Jun Liu. "Progress and directions in low-cost redox-flow batteries for large-scale energy storage." National Science Review 4, no. 1 (January 1, 2017): 91–105. http://dx.doi.org/10.1093/nsr/nww098.
Full textKarpushkin, Evgeny A., Maria M. Klimenko, Nataliya A. Gvozdik, Keith J. Stevenson, and Vladimir G. Sergeyev. "Polyacrylonitrile-Based Membranes for Aqueous Redox-Flow Batteries." ECS Transactions 77, no. 11 (July 7, 2017): 163–71. http://dx.doi.org/10.1149/07711.0163ecst.
Full textLong, Yong, Mei Ding, and Chuankun Jia. "Application of Nanomaterials in Aqueous Redox Flow Batteries." ChemNanoMat 7, no. 7 (April 29, 2021): 699–712. http://dx.doi.org/10.1002/cnma.202100124.
Full textMukhopadhyay, Alolika, Yang Yang, Yifan Li, Yong Chen, Hongyan Li, Avi Natan, Yuanyue Liu, Daxian Cao, and Hongli Zhu. "Aqueous Flow Batteries: Mass Transfer and Reaction Kinetic Enhanced Electrode for High‐Performance Aqueous Flow Batteries (Adv. Funct. Mater. 43/2019)." Advanced Functional Materials 29, no. 43 (October 2019): 1970297. http://dx.doi.org/10.1002/adfm.201970297.
Full textLi, Hongbin, Hao Fan, Mahalingam Ravivarma, Bo Hu, Yangyang Feng, and Jiangxuan Song. "A stable organic dye catholyte for long-life aqueous flow batteries." Chemical Communications 56, no. 89 (2020): 13824–27. http://dx.doi.org/10.1039/d0cc05133k.
Full textSleightholme, Alice E. S., Aaron A. Shinkle, Qinghua Liu, Yongdan Li, Charles W. Monroe, and Levi T. Thompson. "Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries." Journal of Power Sources 196, no. 13 (July 2011): 5742–45. http://dx.doi.org/10.1016/j.jpowsour.2011.02.020.
Full textSevov, Christo S., Koen H. Hendriks, and Melanie S. Sanford. "Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries." Journal of Physical Chemistry C 121, no. 44 (October 25, 2017): 24376–80. http://dx.doi.org/10.1021/acs.jpcc.7b06247.
Full textRobb, Brian H., Jason M. Farrell, and Michael P. Marshak. "Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries." Joule 3, no. 10 (October 2019): 2503–12. http://dx.doi.org/10.1016/j.joule.2019.07.002.
Full textLiu, Bin, Chunwai Tang, Tianshou Zhao, and Guocheng JIA. "Boron-Based Anolyte for Non-Aqueous Redox Flow Batteries." ECS Meeting Abstracts MA2020-01, no. 3 (May 1, 2020): 489. http://dx.doi.org/10.1149/ma2020-013489mtgabs.
Full textSchlemmer, Werner, Philipp Nothdurft, Alina Petzold, Gisbert Riess, Philipp Frühwirt, Max Schmallegger, Georg Gescheidt‐Demner, et al. "2‐Methoxyhydroquinone from Vanillin for Aqueous Redox‐Flow Batteries." Angewandte Chemie 132, no. 51 (October 8, 2020): 23143–46. http://dx.doi.org/10.1002/ange.202008253.
Full textSchlemmer, Werner, Philipp Nothdurft, Alina Petzold, Gisbert Riess, Philipp Frühwirt, Max Schmallegger, Georg Gescheidt‐Demner, et al. "2‐Methoxyhydroquinone from Vanillin for Aqueous Redox‐Flow Batteries." Angewandte Chemie International Edition 59, no. 51 (October 8, 2020): 22943–46. http://dx.doi.org/10.1002/anie.202008253.
Full textPahlevaninezhad, Maedeh, Puiki Leung, Pablo Quijano Velasco, Majid Pahlevani, Frank C. Walsh, Edward P. L. Roberts, and Carlos Ponce de Leon. "High Energy Density Non-Aqueous Organic Redox Flow Batteries." ECS Meeting Abstracts MA2020-02, no. 2 (November 23, 2020): 209. http://dx.doi.org/10.1149/ma2020-022209mtgabs.
Full textLiu, Qinghua, Alice E. S. Sleightholme, Aaron A. Shinkle, Yongdan Li, and Levi T. Thompson. "Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries." Electrochemistry Communications 11, no. 12 (December 2009): 2312–15. http://dx.doi.org/10.1016/j.elecom.2009.10.006.
Full textLiu, Qinghua, Aaron A. Shinkle, Yongdan Li, Charles W. Monroe, Levi T. Thompson, and Alice E. S. Sleightholme. "Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries." Electrochemistry Communications 12, no. 11 (November 2010): 1634–37. http://dx.doi.org/10.1016/j.elecom.2010.09.013.
Full textZhang, Jiayi. "Emerging Aqueous Flow Batteries and Perspectives on Future Development." Journal of Physics: Conference Series 1759 (January 2021): 012009. http://dx.doi.org/10.1088/1742-6596/1759/1/012009.
Full textFeng, Ruozhu, Xin Zhang, Vijayakumar Murugesan, Aaron Hollas, Ying Chen, Yuyan Shao, Eric Walter, et al. "Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries." Science 372, no. 6544 (May 20, 2021): 836–40. http://dx.doi.org/10.1126/science.abd9795.
Full textTabor, Daniel P., Rafael Gómez-Bombarelli, Liuchuan Tong, Roy G. Gordon, Michael J. Aziz, and Alán Aspuru-Guzik. "Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries." Journal of Materials Chemistry A 7, no. 20 (2019): 12833–41. http://dx.doi.org/10.1039/c9ta03219c.
Full textLi, Min, Zayn Rhodes, Jaime R. Cabrera-Pardo, and Shelley D. Minteer. "Recent advancements in rational design of non-aqueous organic redox flow batteries." Sustainable Energy & Fuels 4, no. 9 (2020): 4370–89. http://dx.doi.org/10.1039/d0se00800a.
Full textLee, Wonmi, Agnesia Permatasari, and Yongchai Kwon. "Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple." Journal of Materials Chemistry C 8, no. 17 (2020): 5727–31. http://dx.doi.org/10.1039/d0tc00640h.
Full textEr, Süleyman, Changwon Suh, Michael P. Marshak, and Alán Aspuru-Guzik. "Computational design of molecules for an all-quinone redox flow battery." Chemical Science 6, no. 2 (2015): 885–93. http://dx.doi.org/10.1039/c4sc03030c.
Full textTurner, Nicholas A., Matthew B. Freeman, Harry D. Pratt, Austin E. Crockett, Daniel S. Jones, Mitchell R. Anstey, Travis M. Anderson, and Christopher M. Bejger. "Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries." Chemical Communications 56, no. 18 (2020): 2739–42. http://dx.doi.org/10.1039/c9cc08547e.
Full textRomadina, Elena I., Ivan A. Volodin, Keith J. Stevenson, and Pavel A. Troshin. "New highly soluble triarylamine-based materials as promising catholytes for redox flow batteries." Journal of Materials Chemistry A 9, no. 13 (2021): 8303–7. http://dx.doi.org/10.1039/d0ta11860e.
Full textRomadina, Elena I., Denis S. Komarov, Keith J. Stevenson, and Pavel A. Troshin. "New phenazine based anolyte material for high voltage organic redox flow batteries." Chemical Communications 57, no. 24 (2021): 2986–89. http://dx.doi.org/10.1039/d0cc07951k.
Full textHuang, Jinhua, Zheng Yang, Vijayakumar Murugesan, Eric Walter, Aaron Hollas, Baofei Pan, Rajeev S. Assary, Ilya A. Shkrob, Xiaoliang Wei, and Zhengcheng Zhang. "Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries." ACS Energy Letters 3, no. 10 (September 25, 2018): 2533–38. http://dx.doi.org/10.1021/acsenergylett.8b01550.
Full textFornari, Rocco Peter, Murat Mesta, Johan Hjelm, Tejs Vegge, and Piotr de Silva. "Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries." ACS Materials Letters 2, no. 3 (February 7, 2020): 239–46. http://dx.doi.org/10.1021/acsmaterialslett.0c00028.
Full textHamelet, S., D. Larcher, L. Dupont, and J. M. Tarascon. "Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries." Journal of The Electrochemical Society 160, no. 3 (2013): A516—A520. http://dx.doi.org/10.1149/2.002304jes.
Full textJing, Yan, Min Wu, Andrew A. Wong, Eric M. Fell, Shijian Jin, Daniel A. Pollack, Emily F. Kerr, Roy G. Gordon, and Michael J. Aziz. "In situ electrosynthesis of anthraquinone electrolytes in aqueous flow batteries." Green Chemistry 22, no. 18 (2020): 6084–92. http://dx.doi.org/10.1039/d0gc02236e.
Full textZhao, Zhiling, Baosen Zhang, Briana R. Schrage, Christopher J. Ziegler, and Aliaksei Boika. "Investigations Into Aqueous Redox Flow Batteries Based on Ferrocene Bisulfonate." ACS Applied Energy Materials 3, no. 10 (October 15, 2020): 10270–77. http://dx.doi.org/10.1021/acsaem.0c02259.
Full textSmall, Leo J., Harry D. Pratt, and Travis M. Anderson. "Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries." Journal of The Electrochemical Society 166, no. 12 (2019): A2536—A2542. http://dx.doi.org/10.1149/2.0681912jes.
Full textLiu, Yahua, Yuanyuan Li, Peipei Zuo, Qianru Chen, Gonggen Tang, Pan Sun, Zhengjin Yang, and Tongwen Xu. "Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries." ChemSusChem 13, no. 9 (March 19, 2020): 2245–49. http://dx.doi.org/10.1002/cssc.202000381.
Full textHwang, Byunghyun, Min-Sik Park, and Ketack Kim. "Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries." ChemSusChem 8, no. 2 (November 26, 2014): 310–14. http://dx.doi.org/10.1002/cssc.201403021.
Full textShinkle, Aaron A., Alice E. S. Sleightholme, Levi T. Thompson, and Charles W. Monroe. "Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries." Journal of Applied Electrochemistry 41, no. 10 (June 8, 2011): 1191–99. http://dx.doi.org/10.1007/s10800-011-0314-z.
Full textGentil, Solène, Danick Reynard, and Hubert H. Girault. "Aqueous organic and redox-mediated redox flow batteries: a review." Current Opinion in Electrochemistry 21 (June 2020): 7–13. http://dx.doi.org/10.1016/j.coelec.2019.12.006.
Full textYao, Yiwen, He Xu, Zhongzhen Tian, Jing Zhang, Fuxu Zhan, Mei Yan, and Chuankun Jia. "Simple-Synthesized Sulfonated Ferrocene Ammonium for Aqueous Redox Flow Batteries." ACS Applied Energy Materials 4, no. 8 (July 27, 2021): 8052–58. http://dx.doi.org/10.1021/acsaem.1c01363.
Full textWu, Min, Roy Gordon, and Michael J. Aziz. "Development of Extremely Stable Anthraquinone Negolytes for Aqueous Flow Batteries." ECS Meeting Abstracts MA2021-01, no. 3 (May 30, 2021): 213. http://dx.doi.org/10.1149/ma2021-013213mtgabs.
Full textHu, Shuzhi, Liwen Wang, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huang, Peng Luo, Yufeng Liu, Zhiyong Fu, and Zhenxing Liang. "Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries." Energy Material Advances 2021 (August 14, 2021): 1–8. http://dx.doi.org/10.34133/2021/9795237.
Full textHuang, Jinhua, Liang Su, Jeffrey A. Kowalski, John L. Barton, Magali Ferrandon, Anthony K. Burrell, Fikile R. Brushett, and Lu Zhang. "A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries." Journal of Materials Chemistry A 3, no. 29 (2015): 14971–76. http://dx.doi.org/10.1039/c5ta02380g.
Full textKim, Jae-Hun, Seungbo Ryu, Sandip Maurya, Ju-Young Lee, Ki-Won Sung, Jae-Suk Lee, and Seung-Hyeon Moon. "Fabrication of a composite anion exchange membrane with aligned ion channels for a high-performance non-aqueous vanadium redox flow battery." RSC Advances 10, no. 9 (2020): 5010–25. http://dx.doi.org/10.1039/c9ra08616a.
Full textDeller, Zachary, Lathe A. Jones, and Subashani Maniam. "Aqueous redox flow batteries: How ‘green’ are the redox active materials?" Green Chemistry 23, no. 14 (2021): 4955–79. http://dx.doi.org/10.1039/d1gc01333e.
Full textSun, C. N., M. M. Mench, and T. A. Zawodzinski. "High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents." Electrochimica Acta 237 (May 2017): 199–206. http://dx.doi.org/10.1016/j.electacta.2017.03.132.
Full textYe, Ruijie, Dirk Henkensmeier, and Ruiyong Chen. "Imidazolium cation enabled reversibility of a hydroquinone derivative for designing aqueous redox electrolytes." Sustainable Energy & Fuels 4, no. 6 (2020): 2998–3005. http://dx.doi.org/10.1039/d0se00409j.
Full textMedabalmi, Veerababu, Mahesh Sundararajan, Vikram Singh, Mu-Hyun Baik, and Hye Ryung Byon. "Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries." Journal of Materials Chemistry A 8, no. 22 (2020): 11218–23. http://dx.doi.org/10.1039/d0ta01160f.
Full text