To see the other types of publications on this topic, follow the link: Aqueous flow batteries.

Journal articles on the topic 'Aqueous flow batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Aqueous flow batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Singh, Vikram, Soeun Kim, Jungtaek Kang, and Hye Ryung Byon. "Aqueous organic redox flow batteries." Nano Research 12, no. 9 (March 21, 2019): 1988–2001. http://dx.doi.org/10.1007/s12274-019-2355-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pfanschilling, Felix Leon, Faye Cording, Jack Oliver Mitchinson, Jochen Friedl, Matthäa Verena Holland-Cunz, Barbara Schricker, Robert Fleck, Holger Wolfschmidt, and Ulrich Stimming. "Aqueous All-Polyoxometalate Redox-Flow-Batteries." ECS Meeting Abstracts MA2020-01, no. 3 (May 1, 2020): 496. http://dx.doi.org/10.1149/ma2020-013496mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Wanqiu, Wenjing Lu, Huamin Zhang, and Xianfeng Li. "Aqueous Flow Batteries: Research and Development." Chemistry - A European Journal 25, no. 7 (November 27, 2018): 1649–64. http://dx.doi.org/10.1002/chem.201802798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerhardt, Michael R., Liuchuan Tong, Rafael Gómez-Bombarelli, Qing Chen, Michael P. Marshak, Cooper J. Galvin, Alán Aspuru-Guzik, Roy G. Gordon, and Michael J. Aziz. "Anthraquinone Derivatives in Aqueous Flow Batteries." Advanced Energy Materials 7, no. 8 (December 14, 2016): 1601488. http://dx.doi.org/10.1002/aenm.201601488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamelet, S., T. Tzedakis, J. B. Leriche, S. Sailler, D. Larcher, P. L. Taberna, P. Simon, and J. M. Tarascon. "Non-Aqueous Li-Based Redox Flow Batteries." Journal of The Electrochemical Society 159, no. 8 (2012): A1360—A1367. http://dx.doi.org/10.1149/2.071208jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ambrosi, Adriano, and Richard D. Webster. "3D printing for aqueous and non-aqueous redox flow batteries." Current Opinion in Electrochemistry 20 (April 2020): 28–35. http://dx.doi.org/10.1016/j.coelec.2020.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leung, P., D. Aili, Q. Xu, A. Rodchanarowan, and A. A. Shah. "Rechargeable organic–air redox flow batteries." Sustainable Energy & Fuels 2, no. 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, L., Z. X. Guo, J. Sun, X. Z. Fan, M. C. Wu, J. B. Xu, and T. S. Zhao. "A convection-enhanced flow field for aqueous redox flow batteries." International Journal of Heat and Mass Transfer 179 (November 2021): 121747. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Bin, and Jun Liu. "Progress and directions in low-cost redox-flow batteries for large-scale energy storage." National Science Review 4, no. 1 (January 1, 2017): 91–105. http://dx.doi.org/10.1093/nsr/nww098.

Full text
Abstract:
Abstract Compared to lithium-ion batteries, redox-flow batteries have attracted widespread attention for long-duration, large-scale energy-storage applications. This review focuses on current and future directions to address one of the most significant challenges in energy storage: reducing the cost of redox-flow battery systems. A high priority is developing aqueous systems with low-cost materials and high-solubility redox chemistries. Highly water-soluble inorganic redox couples are important for developing technologies that can provide high energy densities and low-cost storage. There is also great potential to rationally design organic redox molecules and fine-tune their properties for both aqueous and non-aqueous systems. While many new concepts begin to blur the boundary between traditional batteries and redox-flow batteries, breakthroughs in identifying/developing membranes and separators and in controlling side reactions on electrode surfaces also are needed.
APA, Harvard, Vancouver, ISO, and other styles
10

Karpushkin, Evgeny A., Maria M. Klimenko, Nataliya A. Gvozdik, Keith J. Stevenson, and Vladimir G. Sergeyev. "Polyacrylonitrile-Based Membranes for Aqueous Redox-Flow Batteries." ECS Transactions 77, no. 11 (July 7, 2017): 163–71. http://dx.doi.org/10.1149/07711.0163ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Long, Yong, Mei Ding, and Chuankun Jia. "Application of Nanomaterials in Aqueous Redox Flow Batteries." ChemNanoMat 7, no. 7 (April 29, 2021): 699–712. http://dx.doi.org/10.1002/cnma.202100124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mukhopadhyay, Alolika, Yang Yang, Yifan Li, Yong Chen, Hongyan Li, Avi Natan, Yuanyue Liu, Daxian Cao, and Hongli Zhu. "Aqueous Flow Batteries: Mass Transfer and Reaction Kinetic Enhanced Electrode for High‐Performance Aqueous Flow Batteries (Adv. Funct. Mater. 43/2019)." Advanced Functional Materials 29, no. 43 (October 2019): 1970297. http://dx.doi.org/10.1002/adfm.201970297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Hongbin, Hao Fan, Mahalingam Ravivarma, Bo Hu, Yangyang Feng, and Jiangxuan Song. "A stable organic dye catholyte for long-life aqueous flow batteries." Chemical Communications 56, no. 89 (2020): 13824–27. http://dx.doi.org/10.1039/d0cc05133k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sleightholme, Alice E. S., Aaron A. Shinkle, Qinghua Liu, Yongdan Li, Charles W. Monroe, and Levi T. Thompson. "Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries." Journal of Power Sources 196, no. 13 (July 2011): 5742–45. http://dx.doi.org/10.1016/j.jpowsour.2011.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sevov, Christo S., Koen H. Hendriks, and Melanie S. Sanford. "Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries." Journal of Physical Chemistry C 121, no. 44 (October 25, 2017): 24376–80. http://dx.doi.org/10.1021/acs.jpcc.7b06247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Robb, Brian H., Jason M. Farrell, and Michael P. Marshak. "Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries." Joule 3, no. 10 (October 2019): 2503–12. http://dx.doi.org/10.1016/j.joule.2019.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Bin, Chunwai Tang, Tianshou Zhao, and Guocheng JIA. "Boron-Based Anolyte for Non-Aqueous Redox Flow Batteries." ECS Meeting Abstracts MA2020-01, no. 3 (May 1, 2020): 489. http://dx.doi.org/10.1149/ma2020-013489mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schlemmer, Werner, Philipp Nothdurft, Alina Petzold, Gisbert Riess, Philipp Frühwirt, Max Schmallegger, Georg Gescheidt‐Demner, et al. "2‐Methoxyhydroquinone from Vanillin for Aqueous Redox‐Flow Batteries." Angewandte Chemie 132, no. 51 (October 8, 2020): 23143–46. http://dx.doi.org/10.1002/ange.202008253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schlemmer, Werner, Philipp Nothdurft, Alina Petzold, Gisbert Riess, Philipp Frühwirt, Max Schmallegger, Georg Gescheidt‐Demner, et al. "2‐Methoxyhydroquinone from Vanillin for Aqueous Redox‐Flow Batteries." Angewandte Chemie International Edition 59, no. 51 (October 8, 2020): 22943–46. http://dx.doi.org/10.1002/anie.202008253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pahlevaninezhad, Maedeh, Puiki Leung, Pablo Quijano Velasco, Majid Pahlevani, Frank C. Walsh, Edward P. L. Roberts, and Carlos Ponce de Leon. "High Energy Density Non-Aqueous Organic Redox Flow Batteries." ECS Meeting Abstracts MA2020-02, no. 2 (November 23, 2020): 209. http://dx.doi.org/10.1149/ma2020-022209mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Qinghua, Alice E. S. Sleightholme, Aaron A. Shinkle, Yongdan Li, and Levi T. Thompson. "Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries." Electrochemistry Communications 11, no. 12 (December 2009): 2312–15. http://dx.doi.org/10.1016/j.elecom.2009.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Qinghua, Aaron A. Shinkle, Yongdan Li, Charles W. Monroe, Levi T. Thompson, and Alice E. S. Sleightholme. "Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries." Electrochemistry Communications 12, no. 11 (November 2010): 1634–37. http://dx.doi.org/10.1016/j.elecom.2010.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Jiayi. "Emerging Aqueous Flow Batteries and Perspectives on Future Development." Journal of Physics: Conference Series 1759 (January 2021): 012009. http://dx.doi.org/10.1088/1742-6596/1759/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Feng, Ruozhu, Xin Zhang, Vijayakumar Murugesan, Aaron Hollas, Ying Chen, Yuyan Shao, Eric Walter, et al. "Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries." Science 372, no. 6544 (May 20, 2021): 836–40. http://dx.doi.org/10.1126/science.abd9795.

Full text
Abstract:
Aqueous redox flow batteries with organic active materials offer an environmentally benign, tunable, and safe route to large-scale energy storage. Development has been limited to a small palette of organics that are aqueous soluble and tend to display the necessary redox reversibility within the water stability window. We show how molecular engineering of fluorenone enables the alcohol electro-oxidation needed for reversible ketone hydrogenation and dehydrogenation at room temperature without the use of a catalyst. Flow batteries based on these fluorenone derivative anolytes operate efficiently and exhibit stable long-term cycling at ambient and mildly increased temperatures in a nondemanding environment. These results expand the palette to include reversible ketone to alcohol conversion but also suggest the potential for identifying other atypical organic redox couple candidates.
APA, Harvard, Vancouver, ISO, and other styles
25

Tabor, Daniel P., Rafael Gómez-Bombarelli, Liuchuan Tong, Roy G. Gordon, Michael J. Aziz, and Alán Aspuru-Guzik. "Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries." Journal of Materials Chemistry A 7, no. 20 (2019): 12833–41. http://dx.doi.org/10.1039/c9ta03219c.

Full text
Abstract:
The stability limits of quinones, molecules that show promise as redox-active electrolytes in aqueous flow batteries, are explored for a range of backbone and substituent combinations with high-throughput virtual screening.
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Min, Zayn Rhodes, Jaime R. Cabrera-Pardo, and Shelley D. Minteer. "Recent advancements in rational design of non-aqueous organic redox flow batteries." Sustainable Energy & Fuels 4, no. 9 (2020): 4370–89. http://dx.doi.org/10.1039/d0se00800a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Wonmi, Agnesia Permatasari, and Yongchai Kwon. "Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple." Journal of Materials Chemistry C 8, no. 17 (2020): 5727–31. http://dx.doi.org/10.1039/d0tc00640h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Er, Süleyman, Changwon Suh, Michael P. Marshak, and Alán Aspuru-Guzik. "Computational design of molecules for an all-quinone redox flow battery." Chemical Science 6, no. 2 (2015): 885–93. http://dx.doi.org/10.1039/c4sc03030c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Turner, Nicholas A., Matthew B. Freeman, Harry D. Pratt, Austin E. Crockett, Daniel S. Jones, Mitchell R. Anstey, Travis M. Anderson, and Christopher M. Bejger. "Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries." Chemical Communications 56, no. 18 (2020): 2739–42. http://dx.doi.org/10.1039/c9cc08547e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Romadina, Elena I., Ivan A. Volodin, Keith J. Stevenson, and Pavel A. Troshin. "New highly soluble triarylamine-based materials as promising catholytes for redox flow batteries." Journal of Materials Chemistry A 9, no. 13 (2021): 8303–7. http://dx.doi.org/10.1039/d0ta11860e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Romadina, Elena I., Denis S. Komarov, Keith J. Stevenson, and Pavel A. Troshin. "New phenazine based anolyte material for high voltage organic redox flow batteries." Chemical Communications 57, no. 24 (2021): 2986–89. http://dx.doi.org/10.1039/d0cc07951k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Jinhua, Zheng Yang, Vijayakumar Murugesan, Eric Walter, Aaron Hollas, Baofei Pan, Rajeev S. Assary, Ilya A. Shkrob, Xiaoliang Wei, and Zhengcheng Zhang. "Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries." ACS Energy Letters 3, no. 10 (September 25, 2018): 2533–38. http://dx.doi.org/10.1021/acsenergylett.8b01550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fornari, Rocco Peter, Murat Mesta, Johan Hjelm, Tejs Vegge, and Piotr de Silva. "Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries." ACS Materials Letters 2, no. 3 (February 7, 2020): 239–46. http://dx.doi.org/10.1021/acsmaterialslett.0c00028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hamelet, S., D. Larcher, L. Dupont, and J. M. Tarascon. "Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries." Journal of The Electrochemical Society 160, no. 3 (2013): A516—A520. http://dx.doi.org/10.1149/2.002304jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jing, Yan, Min Wu, Andrew A. Wong, Eric M. Fell, Shijian Jin, Daniel A. Pollack, Emily F. Kerr, Roy G. Gordon, and Michael J. Aziz. "In situ electrosynthesis of anthraquinone electrolytes in aqueous flow batteries." Green Chemistry 22, no. 18 (2020): 6084–92. http://dx.doi.org/10.1039/d0gc02236e.

Full text
Abstract:
We demonstrate the electrochemical oxidation of an anthracene derivative to a redox-active anthraquinone at room temperature in a flow cell without the use of hazardous oxidants or noble metal catalysts.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhao, Zhiling, Baosen Zhang, Briana R. Schrage, Christopher J. Ziegler, and Aliaksei Boika. "Investigations Into Aqueous Redox Flow Batteries Based on Ferrocene Bisulfonate." ACS Applied Energy Materials 3, no. 10 (October 15, 2020): 10270–77. http://dx.doi.org/10.1021/acsaem.0c02259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Small, Leo J., Harry D. Pratt, and Travis M. Anderson. "Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries." Journal of The Electrochemical Society 166, no. 12 (2019): A2536—A2542. http://dx.doi.org/10.1149/2.0681912jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Yahua, Yuanyuan Li, Peipei Zuo, Qianru Chen, Gonggen Tang, Pan Sun, Zhengjin Yang, and Tongwen Xu. "Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries." ChemSusChem 13, no. 9 (March 19, 2020): 2245–49. http://dx.doi.org/10.1002/cssc.202000381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hwang, Byunghyun, Min-Sik Park, and Ketack Kim. "Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries." ChemSusChem 8, no. 2 (November 26, 2014): 310–14. http://dx.doi.org/10.1002/cssc.201403021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shinkle, Aaron A., Alice E. S. Sleightholme, Levi T. Thompson, and Charles W. Monroe. "Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries." Journal of Applied Electrochemistry 41, no. 10 (June 8, 2011): 1191–99. http://dx.doi.org/10.1007/s10800-011-0314-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gentil, Solène, Danick Reynard, and Hubert H. Girault. "Aqueous organic and redox-mediated redox flow batteries: a review." Current Opinion in Electrochemistry 21 (June 2020): 7–13. http://dx.doi.org/10.1016/j.coelec.2019.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yao, Yiwen, He Xu, Zhongzhen Tian, Jing Zhang, Fuxu Zhan, Mei Yan, and Chuankun Jia. "Simple-Synthesized Sulfonated Ferrocene Ammonium for Aqueous Redox Flow Batteries." ACS Applied Energy Materials 4, no. 8 (July 27, 2021): 8052–58. http://dx.doi.org/10.1021/acsaem.1c01363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wu, Min, Roy Gordon, and Michael J. Aziz. "Development of Extremely Stable Anthraquinone Negolytes for Aqueous Flow Batteries." ECS Meeting Abstracts MA2021-01, no. 3 (May 30, 2021): 213. http://dx.doi.org/10.1149/ma2021-013213mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hu, Shuzhi, Liwen Wang, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huang, Peng Luo, Yufeng Liu, Zhiyong Fu, and Zhenxing Liang. "Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries." Energy Material Advances 2021 (August 14, 2021): 1–8. http://dx.doi.org/10.34133/2021/9795237.

Full text
Abstract:
A novel electroactive organic molecule, viz., 1-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)-1′-(3-(trimethylammonio)propyl)-4,4′-bipyridinium trichloride ((TPABPy)Cl3), is synthesized by decorating 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) with viologen, which is used as the positive electrolyte in neutral aqueous redox flow battery (ARFB). Extensive characterizations are performed to investigate the composition/structure and the electrochemical behavior, revealing the favorable effect of introducing the cationic viologen group on the electroactive TEMPO. Salient findings are as follows. First, the redox potential is elevated from +0.745 V for TEMPO to +0.967 V for decorated TEMPO, favoring its use as the positive electrolyte. Such an elevation originates from the electron-withdrawing effect of the viologen unit, as evidenced by the nuclear magnetic resonance and single crystal structure analysis. Second, linear sweep voltammetry reveals that the diffusion coefficient is 2.97×10−6 cm2 s−1, and the rate constant of the one-electron transfer process is 7.50×10−2 cm s−1. The two values are sufficiently high as to ensure low concentration and kinetics polarization losses during the battery operation. Third, the permeability through anion-exchange membrane is as low as 1.80×10−11 cm2 s−1. It is understandable as the positive-charged viologen unit prevents the molecule from permeating through the anion exchange membrane by the Donnan effect. Fourth, the ionic nature features a decent conductivity and thus eliminates the use of additional supporting electrolyte. Finally, a flow battery is operated with 1.50 M (TPABPy)Cl3 as the positive electrolyte, which affords a high energy density of 19.0 Wh L-1 and a stable cycling performance with capacity retention of 99.98% per cycle.
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Jinhua, Liang Su, Jeffrey A. Kowalski, John L. Barton, Magali Ferrandon, Anthony K. Burrell, Fikile R. Brushett, and Lu Zhang. "A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries." Journal of Materials Chemistry A 3, no. 29 (2015): 14971–76. http://dx.doi.org/10.1039/c5ta02380g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kim, Jae-Hun, Seungbo Ryu, Sandip Maurya, Ju-Young Lee, Ki-Won Sung, Jae-Suk Lee, and Seung-Hyeon Moon. "Fabrication of a composite anion exchange membrane with aligned ion channels for a high-performance non-aqueous vanadium redox flow battery." RSC Advances 10, no. 9 (2020): 5010–25. http://dx.doi.org/10.1039/c9ra08616a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Deller, Zachary, Lathe A. Jones, and Subashani Maniam. "Aqueous redox flow batteries: How ‘green’ are the redox active materials?" Green Chemistry 23, no. 14 (2021): 4955–79. http://dx.doi.org/10.1039/d1gc01333e.

Full text
Abstract:
Development of active materials in aqueous organic redox flow battery contributes to the aspect of green technology. The ‘greenness’ of synthetic methodologies for preparing active materials are evaluated using the 12 principles of green chemistry.
APA, Harvard, Vancouver, ISO, and other styles
48

Sun, C. N., M. M. Mench, and T. A. Zawodzinski. "High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents." Electrochimica Acta 237 (May 2017): 199–206. http://dx.doi.org/10.1016/j.electacta.2017.03.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ye, Ruijie, Dirk Henkensmeier, and Ruiyong Chen. "Imidazolium cation enabled reversibility of a hydroquinone derivative for designing aqueous redox electrolytes." Sustainable Energy & Fuels 4, no. 6 (2020): 2998–3005. http://dx.doi.org/10.1039/d0se00409j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Medabalmi, Veerababu, Mahesh Sundararajan, Vikram Singh, Mu-Hyun Baik, and Hye Ryung Byon. "Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries." Journal of Materials Chemistry A 8, no. 22 (2020): 11218–23. http://dx.doi.org/10.1039/d0ta01160f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography