Journal articles on the topic 'Aqueous Phase Reforming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aqueous Phase Reforming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bludowsky, T., J. Pfaff, and D. W. Agar. "Selektivitätsuntersuchungen beim Hochdruck-Aqueous-Phase-Reforming." Chemie Ingenieur Technik 82, no. 9 (2010): 1330–31. http://dx.doi.org/10.1002/cite.201050199.
Full textValenzuela, Mariefel B., Christopher W. Jones, and Pradeep K. Agrawal. "Batch Aqueous-Phase Reforming of Woody Biomass." Energy & Fuels 20, no. 4 (2006): 1744–52. http://dx.doi.org/10.1021/ef060113p.
Full textRemón, J., L. García, and J. Arauzo. "Cheese whey management by catalytic steam reforming and aqueous phase reforming." Fuel Processing Technology 154 (December 2016): 66–81. http://dx.doi.org/10.1016/j.fuproc.2016.08.012.
Full textNadzru, Najwa Afaf, Ain Syuhada, Mohammad Tazli Azizan, and Mariam Ameen. "Thermodynamic Analysis of Aqueous Phase Reforming of Sorbitol." Journal of Computational and Theoretical Nanoscience 17, no. 2 (2020): 1004–8. http://dx.doi.org/10.1166/jctn.2020.8757.
Full textGodina, Lidia I., Hans Heeres, Sonia Garcia, Steve Bennett, Stephen Poulston, and Dmitry Yu Murzin. "Hydrogen production from sucrose via aqueous-phase reforming." International Journal of Hydrogen Energy 44, no. 29 (2019): 14605–23. http://dx.doi.org/10.1016/j.ijhydene.2019.04.123.
Full textYun, Yang Sik, Dae Sung Park, and Jongheop Yi. "Effect of nickel on catalytic behaviour of bimetallic Cu–Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol." Catal. Sci. Technol. 4, no. 9 (2014): 3191–202. http://dx.doi.org/10.1039/c4cy00320a.
Full textBoga, Dilek A., Fang Liu, Pieter C. A. Bruijnincx, and Bert M. Weckhuysen. "Aqueous-phase reforming of crude glycerol: effect of impurities on hydrogen production." Catalysis Science & Technology 6, no. 1 (2016): 134–43. http://dx.doi.org/10.1039/c4cy01711k.
Full textXie, Tianjun, Cameron J. Bodenschatz, and Rachel B. Getman. "Insights into the roles of water on the aqueous phase reforming of glycerol." Reaction Chemistry & Engineering 4, no. 2 (2019): 383–92. http://dx.doi.org/10.1039/c8re00267c.
Full textZhang, Jianguang, and Ningge Xu. "Hydrogen Production from Ethylene Glycol Aqueous Phase Reforming over Ni–Al Layered Hydrotalcite-Derived Catalysts." Catalysts 10, no. 1 (2020): 54. http://dx.doi.org/10.3390/catal10010054.
Full textArandia, Aitor, Irene Coronado, Aingeru Remiro, Ana G. Gayubo, and Matti Reinikainen. "Aqueous-phase reforming of bio-oil aqueous fraction over nickel-based catalysts." International Journal of Hydrogen Energy 44, no. 26 (2019): 13157–68. http://dx.doi.org/10.1016/j.ijhydene.2019.04.007.
Full textFaheem, Muhammad, Mohammad Saleheen, Jianmin Lu, and Andreas Heyden. "Ethylene glycol reforming on Pt(111): first-principles microkinetic modeling in vapor and aqueous phases." Catalysis Science & Technology 6, no. 23 (2016): 8242–56. http://dx.doi.org/10.1039/c6cy02111e.
Full textAlvear, Matias, Atte Aho, Irina L. Simakova, Henrik Grénman, Tapio Salmi, and Dmitry Yu Murzin. "Aqueous phase reforming of xylitol and xylose in the presence of formic acid." Catalysis Science & Technology 10, no. 15 (2020): 5245–55. http://dx.doi.org/10.1039/d0cy00811g.
Full textAho, Atte, Matias Alvear, Juha Ahola, et al. "Aqueous phase reforming of birch and pine hemicellulose hydrolysates." Bioresource Technology 348 (March 2022): 126809. http://dx.doi.org/10.1016/j.biortech.2022.126809.
Full textFaria, Daniella, Adriana Oliveira, José A. Baeza, et al. "Sewage treatment using Aqueous Phase Reforming for reuse purpose." Journal of Water Process Engineering 37 (October 2020): 101413. http://dx.doi.org/10.1016/j.jwpe.2020.101413.
Full textWEN, G., Y. XU, H. MA, Z. XU, and Z. TIAN. "Production of hydrogen by aqueous-phase reforming of glycerol." International Journal of Hydrogen Energy 33, no. 22 (2008): 6657–66. http://dx.doi.org/10.1016/j.ijhydene.2008.07.072.
Full textÖzgür, Derya Öncel, and Bekir Zühtü Uysal. "Hydrogen production by aqueous phase catalytic reforming of glycerine." Biomass and Bioenergy 35, no. 2 (2011): 822–26. http://dx.doi.org/10.1016/j.biombioe.2010.11.012.
Full textVaidya, Prakash D., and Jose A. Lopez-Sanchez. "Review of Hydrogen Production by Catalytic Aqueous-Phase Reforming." ChemistrySelect 2, no. 22 (2017): 6563–76. http://dx.doi.org/10.1002/slct.201700905.
Full textXie, Ling, Zilong Huang, Yapeng Zhan, et al. "Efficient Hydrogen Production by Aqueous Phase Reforming of Ethylene Glycol over Ni-W Catalysts with Enhanced C-C Bond Cleavage Activity." Catalysts 15, no. 3 (2025): 258. https://doi.org/10.3390/catal15030258.
Full textOliveira, A. S., J. A. Baeza, L. Calvo, et al. "Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts." Environmental Science: Water Research & Technology 4, no. 12 (2018): 1979–87. http://dx.doi.org/10.1039/c8ew00414e.
Full textOrdomsky, V. V., and A. Y. Khodakov. "Mastering a biphasic single-reactor process for direct conversion of glycerol into liquid hydrocarbon fuels." Green Chem. 16, no. 4 (2014): 2128–31. http://dx.doi.org/10.1039/c3gc42319k.
Full textNeira D’Angelo, M. F., J. C. Schouten, J. van der Schaaf, and T. A. Nijhuis. "Three-Phase Reactor Model for the Aqueous Phase Reforming of Ethylene Glycol." Industrial & Engineering Chemistry Research 53, no. 36 (2014): 13892–902. http://dx.doi.org/10.1021/ie5007382.
Full textRahman, M. M., Tamara L. Church, Meherzad F. Variava, Andrew T. Harris, and Andrew I. Minett. "Bimetallic Pt–Ni composites on ceria-doped alumina supports as catalysts in the aqueous-phase reforming of glycerol." RSC Adv. 4, no. 36 (2014): 18951–60. http://dx.doi.org/10.1039/c4ra00355a.
Full textMd Radzi, Mohamad Razlan, M. Devendran Manogaran, Mohd Hizami Mohd Yusoff, et al. "Production of Propanediols through In Situ Glycerol Hydrogenolysis via Aqueous Phase Reforming: A Review." Catalysts 12, no. 9 (2022): 945. http://dx.doi.org/10.3390/catal12090945.
Full textPipitone, Giuseppe, Giulia Zoppi, Raffaele Pirone, and Samir Bensaid. "A critical review on catalyst design for aqueous phase reforming." International Journal of Hydrogen Energy 47, no. 1 (2022): 151–80. http://dx.doi.org/10.1016/j.ijhydene.2021.09.206.
Full textKirilin, Alexey, Johan Wärnå, Anton Tokarev, and Dmitry Yu Murzin. "Kinetic Modeling of Sorbitol Aqueous-Phase Reforming over Pt/Al2O3." Industrial & Engineering Chemistry Research 53, no. 12 (2014): 4580–88. http://dx.doi.org/10.1021/ie403813y.
Full textTungal, Richa, and Rajesh Shende. "Subcritical Aqueous Phase Reforming of Wastepaper for Biocrude and H2Generation." Energy & Fuels 27, no. 6 (2013): 3194–203. http://dx.doi.org/10.1021/ef302171q.
Full textMukarakate, Calvin, Robert J. Evans, Steve Deutch, et al. "Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels." Energy & Fuels 31, no. 2 (2017): 1600–1607. http://dx.doi.org/10.1021/acs.energyfuels.6b02463.
Full textAiouache, Farid, Lisa McAleer, Quan Gan, Ala’a H. Al-Muhtaseb, and Mohammad N. Ahmad. "Path lumping kinetic model for aqueous phase reforming of sorbitol." Applied Catalysis A: General 466 (September 2013): 240–55. http://dx.doi.org/10.1016/j.apcata.2013.06.039.
Full textRahman, M. M. "Aqueous-Phase Reforming of Glycerol over Carbon-Nanotube-Supported Catalysts." Catalysis Letters 150, no. 9 (2020): 2674–87. http://dx.doi.org/10.1007/s10562-020-03167-2.
Full textSoták, Tomáš, Milan Hronec, Ivo Vávra, and Edmund Dobročka. "Sputtering processed tungsten catalysts for aqueous phase reforming of cellulose." International Journal of Hydrogen Energy 41, no. 47 (2016): 21936–44. http://dx.doi.org/10.1016/j.ijhydene.2016.08.183.
Full textCallison, J., N. D. Subramanian, S. M. Rogers, et al. "Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles." Applied Catalysis B: Environmental 238 (December 2018): 618–28. http://dx.doi.org/10.1016/j.apcatb.2018.07.008.
Full textReynoso, A. J., J. L. Ayastuy, U. Iriarte-Velasco, and M. A. Gutiérrez-Ortiz. "Cobalt aluminate spinel-derived catalysts for glycerol aqueous phase reforming." Applied Catalysis B: Environmental 239 (December 2018): 86–101. http://dx.doi.org/10.1016/j.apcatb.2018.08.001.
Full textKim, Ji Yeon, Seong Hak Kim, Dong Ju Moon, Jong Ho Kim, Nam Cook Park, and Young Chul Kim. "Aqueous Phase Reforming of Glycerol Over Nanosize Cu–Ni Catalysts." Journal of Nanoscience and Nanotechnology 13, no. 1 (2013): 593–97. http://dx.doi.org/10.1166/jnn.2013.6954.
Full textHuber, George W., Randy D. Cortright, and James A. Dumesic. "Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates." Angewandte Chemie International Edition 43, no. 12 (2004): 1549–51. http://dx.doi.org/10.1002/anie.200353050.
Full textEtzold, B. J. M., B. Hasse, A. V. Kirilin, A. V. Tokarev, and D. Y. Murzin. "Karbidabgeleiteter Kohlenstoff als Katalysatorträger im Aqueous-Phase Reforming von Xylitol." Chemie Ingenieur Technik 84, no. 8 (2012): 1241. http://dx.doi.org/10.1002/cite.201250257.
Full textHuber, George W., Randy D. Cortright, and James A. Dumesic. "Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates." Angewandte Chemie 116, no. 12 (2004): 1575–77. http://dx.doi.org/10.1002/ange.200353050.
Full textEsteve-Adell, Iván, Bertrand Crapart, Ana Primo, Philippe Serp, and Hermenegildo Garcia. "Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts." Green Chemistry 19, no. 13 (2017): 3061–68. http://dx.doi.org/10.1039/c7gc01058c.
Full textGarcía, Lucía, Ana Valiente, Miriam Oliva, Joaquín Ruiz, and Jesús Arauzo. "Influence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst." International Journal of Hydrogen Energy 43 (October 11, 2018): 20392–407. https://doi.org/10.1016/j.ijhydene.2018.09.119.
Full textSousa, José, Paranjeet Lakhtaria, Paulo Ribeirinha, Werneri Huhtinen, Johan Tallgren, and Adélio Mendes. "Kinetic Characterization of Pt/Al2O3 Catalyst for Hydrogen Production via Methanol Aqueous-Phase Reforming." Catalysts 14, no. 10 (2024): 741. http://dx.doi.org/10.3390/catal14100741.
Full textMauriello, Francesco, Alessandro Vinci, Claudia Espro, Bianca Gumina, Maria Grazia Musolino, and Rosario Pietropaolo. "Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst." Catalysis Science & Technology 5, no. 9 (2015): 4466–73. http://dx.doi.org/10.1039/c5cy00656b.
Full textLakhtaria, Paranjeet, Paulo Ribeirinha, Werneri Huhtinen, Saara Viik, José Sousa, and Adélio Mendes. "Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review." Open Research Europe 1 (March 23, 2022): 81. http://dx.doi.org/10.12688/openreseurope.13812.3.
Full textChen, Guanyi, Ningge Xu, Xiangping Li, Qingling Liu, Huijun Yang, and Wanqing Li. "Hydrogen production by aqueous-phase reforming of ethylene glycol over a Ni/Zn/Al derived hydrotalcite catalyst." RSC Advances 5, no. 74 (2015): 60128–34. http://dx.doi.org/10.1039/c5ra07184d.
Full textJeon, Seongho, Hyungwon Ham, Young-Woong Suh, and Jong Wook Bae. "Aqueous phase reforming of ethylene glycol on Pt/CeO2–ZrO2: effects of cerium to zirconium molar ratio." RSC Advances 5, no. 68 (2015): 54806–15. http://dx.doi.org/10.1039/c5ra07124k.
Full textLakhtaria, Paranjeet, Paulo Ribeirinha, Werneri Huhtinen, Saara Viik, José Sousa, and Adélio Mendes. "Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review." Open Research Europe 1 (September 29, 2021): 81. http://dx.doi.org/10.12688/openreseurope.13812.2.
Full textLakhtaria, Paranjeet, Paulo Ribeirinha, Werneri Huhtinen, Saara Viik, José Sousa, and Adélio Mendes. "Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review." Open Research Europe 1 (July 20, 2021): 81. http://dx.doi.org/10.12688/openreseurope.13812.1.
Full textOliveira, A. S., T. Cordero-Lanzac, J. A. Baeza, L. Calvo, J. J. Rodriguez, and M. A. Gilarranz. "Continuous aqueous phase reforming of wastewater streams: A catalyst deactivation study." Fuel 305 (December 2021): 121506. http://dx.doi.org/10.1016/j.fuel.2021.121506.
Full textXiong, Haifeng, Andrew DeLaRiva, Yong Wang, and Abhaya K. Datye. "Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts." Catalysis Science & Technology 5, no. 1 (2015): 254–63. http://dx.doi.org/10.1039/c4cy00914b.
Full textPérez, Rodolfo Salazar, Mariana M. V. M. Souza, Neyda C. Om Tapanes, Gisel Chenard Diaz, and Donato A. G. Aranda. "Production of Hydrogen from Aqueous Phase Reforming of Glycerol: Economic Evaluation." Engineering 06, no. 01 (2014): 12–18. http://dx.doi.org/10.4236/eng.2014.61003.
Full textDavda, R. R., J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic. "Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts." Applied Catalysis B: Environmental 43, no. 1 (2003): 13–26. http://dx.doi.org/10.1016/s0926-3373(02)00277-1.
Full textGodina, Lidia I., Alexey V. Kirilin, Anton V. Tokarev, and Dmitry Yu Murzin. "Aqueous Phase Reforming of Industrially Relevant Sugar Alcohols with Different Chiralities." ACS Catalysis 5, no. 5 (2015): 2989–3005. http://dx.doi.org/10.1021/cs501894e.
Full text