Academic literature on the topic 'Aquifer thermal energy storage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aquifer thermal energy storage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aquifer thermal energy storage"

1

Zhang, Yi, and Dong Ming Guo. "Temperature Field of Single-Well Aquifer Thermal Energy Storage in Sanhejian Coal Mine." Advanced Materials Research 415-417 (December 2011): 1028–31. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1028.

Full text
Abstract:
The technology of aquifer thermal energy storage(ATES) is an energy-saving technology which can provide a solution to energy shortages and resources expasion. The first key point of this technology is whether the aquifer can be use to store energy. In this paper, taking Sanhejian Coal Mine as an example, we choose Quaternary upper loose sandy porosity confined aquifer to bottom clayed glavel porosity confined aquifer as aquifers thermal energy storage, to discuss whether the aquifers can be used to store energy. The simulation results of aquifer temperature field show that the selected aquifers reach the goal of energy storage. And with the same irrigation flow, the lower the temperature, the more the cold water and the larger the low temperature region in aquifers thermal energy storage. With the same irrigation temperature, the lager the irrigation flow the more the cold water and the larger the low temperature region in aquifers thermal energy storage.
APA, Harvard, Vancouver, ISO, and other styles
2

Iihola, H., T. Ala-Peijari, and H. Seppänen. "Aquifer Thermal Energy Storage in Finland." Water Science and Technology 20, no. 3 (March 1, 1988): 75–86. http://dx.doi.org/10.2166/wst.1988.0084.

Full text
Abstract:
The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100°C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, ‘Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yi, and Dong Ming Guo. "Temperature Field of Doublet-Wells Aquifer Thermal Energy Storage in Sanhejian Coal Mine." Advanced Materials Research 430-432 (January 2012): 746–49. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.746.

Full text
Abstract:
Utilizating of tube-well irrigation, the technology of aquifer thermal energy storage (ATES) store rich cold energy in winter and cheap warm energy in summar into aquifers seasonally. In this paper, taking Sanhejian Coal Mine as an example, we discuss that with the same pumping and irrigation flow in doublet wells, distribution and change of temperature field in aquifers both at the end of energy storage and after the period of no pumping and no irrigation. The simulation results of aquifer temperature field show that 2~10°C water body of aquifers is decreasing in the period of no pumping and no irrigation, but it is only a small reduction with a stable trend. And after the period of no pumping and no irrigation, about 11°C water body of aquifers stores steadily in the aquifer, so the selected aquifers is suitable and its effect of energy storage is good.
APA, Harvard, Vancouver, ISO, and other styles
4

Wolska, Elwira Małgorzata. "Modelling of aquifer thermal energy storage." Annual Review in Automatic Programming 12 (January 1985): 322–25. http://dx.doi.org/10.1016/0066-4138(85)90392-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Melville, J. G., F. J. Molz, and O. Gu¨ven. "Field Experiments in Aquifer Thermal Energy Storage." Journal of Solar Energy Engineering 107, no. 4 (November 1, 1985): 322–25. http://dx.doi.org/10.1115/1.3267700.

Full text
Abstract:
Large scale field experiments in aquifer thermal energy storage (ATES) were conducted between September, 1976, and November, 1982. Volumes of 7,700 m3, 54,800 m3, 58,000 m3, 24,400 m3, 58,000 m3, and 58,680 m3 were injected at average temperatures of 35.0° C, 55.0° C, 55.0° C, 58.5° C, 81.0° C, and 79.0° C, respectively, in an aquifer with ambient temperature of 20.0° C. Based on recovery volumes equal to the injection volumes, the respective energy recovery efficiencies were 69, 65, 74, 56, 45, and 42 percent. Primary factors in reduction of efficiency were aquifer nonhomogeneity and especially convection due to buoyancy of the injection volumes.
APA, Harvard, Vancouver, ISO, and other styles
6

Nordbotten, Jan Martin. "Analytical solutions for aquifer thermal energy storage." Water Resources Research 53, no. 2 (February 2017): 1354–68. http://dx.doi.org/10.1002/2016wr019524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hendrickson, Paul L. "REGULATORY REQUIREMENTS AFFECTING AQUIFER THERMAL ENERGY STORAGE." Journal of the American Water Resources Association 26, no. 1 (February 1990): 81–85. http://dx.doi.org/10.1111/j.1752-1688.1990.tb01353.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Umemiya, Hiromichi, and Susumu Gunji. "Aquifer Thermal Energy Storage Method. An Investigation of Aquifer Biofilter." Transactions of the Japan Society of Mechanical Engineers Series B 59, no. 568 (1993): 3945–50. http://dx.doi.org/10.1299/kikaib.59.3945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dickinson, J. S., N. Buik, M. C. Matthews, and A. Snijders. "Aquifer thermal energy storage: theoretical and operational analysis." Géotechnique 59, no. 3 (April 2009): 249–60. http://dx.doi.org/10.1680/geot.2009.59.3.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turgut, B., H. Y. Dasgan, K. Abak, H. Paksoy, H. Evliya, and S. Bozdag. "AQUIFER THERMAL ENERGY STORAGE APPLICATION IN GREENHOUSE CLIMATIZATION." Acta Horticulturae, no. 807 (January 2009): 143–48. http://dx.doi.org/10.17660/actahortic.2009.807.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aquifer thermal energy storage"

1

Kolesnik, Lindgren Julian. "Aquifer Thermal Energy Storage : Impact on groundwater chemistry." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232110.

Full text
Abstract:
Groundwater is potentially a useful source for storing and providing thermal energy to the built environment. In a nordic context, aquifer thermal energy storage, (ATES) has not been subject to a wider extent of research concerning environmental impact. This thesis intends to study the impact on groundwater chemistry from an ATES that has been operational since 2016 and is located in the northern part of Stockholm, on a glaciofluvial deposit called the Stockholm esker. Analysis of groundwater sampling included a period of 9 months prior to ATES operation as well as a 7 month period after operation and sampling was conducted in a group of wells in vicinity of the installation and within the system as ATES operation began. Means of evaluation constituted a statistical approach which included Kruskal-Wallis test by ranks, to compare the ATES wells with the wells in the surroundings and principal component analysis, (PCA), to study the chemical parameters that could be related to ATES. In addition, a geophysical survey comprising 2D-resistivity and induced polarization, (IP) was done to elucidate whether the origin of high salinity could be traced to nearby possible sources. The analysis was based on foremost the cycle of cold energy storage. The results showed large variations in redox potential, particularly at the cold wells which likely was due to the mixing of groundwater considering the different depths of groundwater being abstracted/injected from different redox zones. Arsenic, which has shown to be sensitive to high temperatures in other research showed a decrease in concentration compared to surrounding wells. There were found to be a lower specific conductivity and total hardness at the ATES well compared to their vicinity. That indicates that they are less subject to salinization and that no accumulation has occurred to date. It is evident that the environmental impact from ATES is governed by the pre-conditions in soil- and groundwater.
APA, Harvard, Vancouver, ISO, and other styles
2

Kolesnik, Lindgren Julian. "Aquifer Thermal Energy Storage : Impact on grondwater chemistry." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241055.

Full text
Abstract:
Groundwater is potentially a useful source for storing and providing thermal energy to the built environment. In a nordic context, aquifer thermal energy storage, (ATES) has not been subject to a wider extent of research concerning environmental impact. This thesis intends to study the impact on groundwater chemistry from an ATES that has been operational since 2016 and is located in the northern part of Stockholm, on a glaciofluvial deposit called the Stockholm esker. Analysis of groundwater sampling included a period of 9 months prior to ATES operation as well as a 7 month period after operation and sampling was conducted in a group of wells in vicinity of the installation and within the system as ATES operation began. Means of evaluation constituted a statistical approach which included Kruskal-Wallis test by ranks, to compare the ATES wells with the wells in the surroundings and principal component analysis, (PCA), to study the chemical parameters that could be related to ATES. In addition, a geophysical survey comprising 2D-resistivity and induced polarization, (IP) was done to elucidate whether the origin of high salinity could be traced to nearby possible sources. The analysis was based on foremost the cycle of cold energy storage. The results showed large variations in redox potential, particularly at the cold wells which likely was due to the mixing of groundwater considering the different depths of groundwater being abstracted/injected from different redox zones. Arsenic, which has shown to be sensitive to high temperatures in other research showed a decrease in concentration compared to surrounding wells. There were found to be a lower specific conductivity and total hardness at the ATES well compared to their vicinity. That indicates that they are less subject to salinization and that no accumulation has occurred to date.  It is evident that the environmental impact from ATES is governed by the pre-conditions in  soil- and groundwater.
Grundvatten har förutsättningen att utgöra en värdefull resurs för att lagra och förse byggnader med termisk energi. I en nordisk kontext har termisk energilagring i akviferer, (ATES)  inte varit föremål för någon bredare forskning angående miljöpåverkan. Denna uppsats syftar till att studera kemisk grundvattenpåverkan från ett ATES som togs i drift 2016 i norra Stockholm, i en isälvsavlagring vid namn Stockholmsåsen. Analysen omfattar grundvattenprovtagning 9 månader före ATES driften samt 7 månader efter driftstart och provtagningen genomfördes i ett antal brunnar i närheten av installationen samt i ATES systemet då driften startade. Utvärderingsmetoden bestod av ett statistiskt tillvägagångssätt och omfattade Kruskal-Wallis test by ranks, för att jämföra ATES brunnarna med omgivande brunnar och principal component analysis, (PCA), för att studera kemiska parametrar som kan kopplas till ATES. I tillägg genomfördes en geofysisk undersökning som omfattar 2D-resistivitet samt inducerad polarisation, (IP) för att klarlägga huruvida källan till den höga saliniteten kunde spåras. Analysen baseras på främst på cykeln då kyld energi lagras. Resultaten visar stor variation i redoxpotential, i synnerhet vid de kalla brunnarna vilket sannolikt beror på omblandning av grundvatten med tanke på en differens i djup som grundvattnet infiltrerar/pumpas från med tillhörande skillnad i redox zon. Arsenik vilket har visat sig känsligt för höga temperaturer i annan forskning visade minskade koncentrationer jämfört med omgivande brunnar. ATES brunnarna uppvisade även lägre specifik konduktivitet och totalhårdhet i jämförelse. Det pekar mot att brunnarna är mindre utsatta för salinitet och att ingen ackumulering har skett till dags dato. Det framgår tydligt att miljömässig påverkan från ATES styrs av grundförutsättningarna i mark och grundvatten.
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, Diana M. "Steady-state and transient hydrologic, thermal and chemical modelling of a faulted carbonate aquifer used for aquifer thermal energy storage, Carleton University, Ottawa, Canada." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22158.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allen, Diana M. (Diana Margaret) Carleton University Dissertation Earth Sciences. "Steady-state and transient hydrologic, thermal and chemical modelling of a faulted carbonate aquifer used for Aquifer Thermal Energy Storage, Carleton University, Ottawa, Canada." Ottawa, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barrios, Rivero Matías. "EVALUATION OF AN AQUIFER THERMAL ENERGY STORAGE (ATES) SYSTEM FOR THE CITY HOSPITAL IN KARLSRUHE (GERMANY)." Thesis, Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267554.

Full text
Abstract:
The objective of the present study is to evaluate the economic, technical and environmental feasibility of an Aquifer Thermal Energy Storage (ATES) system combined with groundwater heat pumps (GWHP) for providing space cooling and heating for the future surgery building at the city hospital in Karlsruhe. The base case system used as reference for comparison is a system similar to the one currently supplying space cooling from a GWHP system and space heating by the local district-heating network. In addition, two alternative systems were included in the analysis, an Absorption Chiller (AbC) and a Desiccative Evaporative Cooling (DEC) system, both fed from the district-heating network. The study shows that the ATES system combined with a GWHP system is the most environmentally and economically attractive system for the planned facility. The results for the AbC system and the DEC systems show a negative net present value, meaning that this alternative is economically unfeasible. Furthermore, the AbC system and the DEC system do not provide any environmental advantage, showing an annual increase in CO2 emissions compared to the base case. A similar system like the one already providing cooling to some of the facilities would have several advantages over these two alternatives. However, it cannot compete with the ATES system together with GWHP, which apart from providing cooling at slightly higher efficiencies than the base case also delivers heating at high efficiencies. Therefore, it offers great potential savings and also provides an annual reduction in green house gas emissions. Concerning the technical feasibility of the four studied systems, no obstacle or significant barrier could be identified yet.
APA, Harvard, Vancouver, ISO, and other styles
6

Fleuchaus, Paul [Verfasser], and P. [Akademischer Betreuer] Blum. "Global application, performance and risk analysis of Aquifer Thermal Energy Storage (ATES) / Paul Fleuchaus ; Betreuer: P. Blum." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1212512456/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Revholm, Johan. "Energisimulering av kvarteret Hästskon 9 och 12 med ombyggnad och termiskt akviferlager." Thesis, KTH, Uthålliga byggnadssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124630.

Full text
Abstract:
Detta examensarbete utreder lönsamheten i en systemlösning för termiskt akviferenergilager tillsammans med ny VVS-teknisk lösning i fastigheterna kv Hästskon 9 och 12 vid en föreslagen framtida helrenovering. Dessutom utreds förutsättningar för miljöklassning i energi- och miljöcertifieringssystemet Miljöbyggnad avseende energianvändning, dagsljuskomfort, solvärmelast och termisk komfort för om- och tillbyggnadsförslaget med målsättning på nivå GULD. Genom att utnyttja akviferen under fastigheterna kvarteret Hästskon 9 och 12 idag kan man åstadkomma mycket låg energianvändning med en säsongsenergiverkningsgrad via kylmaskiner för värme- och kylaförsörjning på 5,6. En LCC-kalkyl visar att det finns en energikostnadsbesparing för fastighetsägaren Vasakronan omkring 3,65 MSEK per år jämfört med dagens situation om den beskrivna akviferlösningen används. Det ger en återbetalningstid om cirka 4,5 år på investeringen som måste göras. Energiklassning i Miljöbyggnadssystemet för befintliga fastigheter är troligtvis möjlig utan andra åtgärder än akviferlagersystemet, men då med BRONS eller möjligtvis SILVER nivå. Vid ett framtida om- och tillbyggnadsförslag får fastighetsägaren cirka 13 000 m² ytterligare uthyrbar lokalyta för handelslokaler och kontor. Trots detta kan energianvändningen minska ännu mer tack vare en säsongsenergiverkningsgrad via kylmaskiner för värme- och kylaförsörjning på 7,0 då SEB:s datakylanläggning kvarstår med värmeåtervinning på fastigheternas värmesystem, värme- och kylsystem byggs om för låg värmebärartemperatur och hög köldbärartemperatur, luftbehandlingssystem optimeras för låg fläktelenergi och hög värmeåtervinningsgrad, glaslösningar väljs med hänsyn till begränsad solinstrålning och byggnadens klimatskärm tilläggsisoleras i viss omfattning. Energikostnadsbesparingen ökar då ytterligare framåt 4,8 MSEK per år jämfört med dagens situation. Även om SEB:s datakylanläggning faller bort vid en ombyggnad finns ändå möjligheten att självständigt försörja fastigheten med egenproducerad värme via ytterligare en värmepump, vilket avlägsnar beroendet av SEB IT:s datahall för värmeproduktion och ändå ger en energikostnadsbesparing på 4,25 MSEK per år jämfört med dagens situation. Vid en sådan lösning blir den specifika energianvändningen enligt BBR 2012:s definition endast cirka 30 kWh/m² Atemp, år. Denna siffra är mycket lägre än nybyggnadskraven i BBR 2012 och i klass med nyproducerade byggnader med borrhålsenergilager. Utifrån analysen av Miljöbyggnadssystemets indikatorer för energianvändning, solvärmelast, dagsljuskomfort och termisk komfort bedöms det möjligt att klassa kvarteret Hästskon 12 och 9 vid om- och tillbyggnad i klass GULD med vissa förändringar av om- och tillbyggnadsförslaget. För att uppnå klass GULD med hänsyn till dagsljuskomfort och solvärmelast krävs särskild anpassning av glasning på S-huset, M-husets fasad mot Malmskillnadsgatan, samt en stor ljusgård i H-huset för att släppa in tillräckligt mycket dagsljus samtidigt som man åstadkommer effektiv solavskärmning.
This thesis investigates the viability of a system solution for aquifer thermal energy storage along with new HVAC technical solutions in real estates Hästskon 9 and 12 at a proposed future renovation. It also explores opportunities for certification in the Swedish energy and environmental certification system Miljöbyggnad (Environmental Building) regarding energy consumption, daylight comfort, solar heat load and thermal comfort for the renovation and extension proposal of Hästskon 12 with the goal of the GOLD level. By exploiting the aquifer in the properties Hästskon 9 and 12 today, very low energy consumption is achievable with seasonal energy efficiency via chillers for heating and cooling supply of 5.6. The LCC analysis shows that there are energy cost savings for property owner Vasakronan of about 3.65 million SEK per year compared to the current situation, if the described aquifer thermal energy storage solution is used. This gives a payback time of approximately 4.5 years in the investment to be made. Certification in the Miljöbyggnad system for existing buildings is probably possible with the aquifer thermal energy storage, but with BRONZE or possibly SILVER level. In the future refurbishment and extension proposal, the property owner adds about 13 000 m² of additional rentable commercial premises and offices. Nevertheless, the energy use of the properties decreases further owing to a seasonal energy efficiency via chillers for heating and cooling supply of 7.0 when the data centre refrigeration equipment for tenant SEB persists with heat recovery on the properties' heating systems, heating and cooling systems are adapted for low heat carrier temperature and high brine water temperature, ventilation systems are designed for low fan electricity demand and high heat recovery rate, glass solutions chosen are based on limited solar radiation and the building envelope is additionally insulated to some extent. Energy cost savings are furthered to 4.8 million SEK per year compared to the current situation. Even if the data centre refrigeration equipment for tenant SEB is closed down in a future refurbishment scenario, there is possibility to independently supply the property with its own heat produced by an additional heat pump, which removes the dependence of tenant SEB's data centre for heat supply and yet provides an energy saving of 4.25 million SEK per year compared the current situation. Such a solution will result in specific energy with the BBR 2012 (Swedish building regulations) definition of only about 30 kWh / m² Atemp, year. This figure is much lower than new construction requirements of BBR 2012 and on par with virgin buildings with borehole energy storage system. Based on the analysis of the Miljöbyggnad system indicators for energy, solar thermal load, daylight comfort and thermal comfort it is possible to certify Hästskon 12 and 9 in a future refurbishment and extension at GOLD level with some changes in the refurbishment proposal. In order to achieve GOLD level with respect to daylight comfort and solar heat load, special adaptation of the glazing on the S building, M building's facade facing Malmskillnadsgatan, and a large atrium in the H-building is required to let in enough natural light while still providing effective solar shading.
APA, Harvard, Vancouver, ISO, and other styles
8

Müller, Daniel Richard [Verfasser], Traugott [Akademischer Betreuer] Scheytt, Simona [Akademischer Betreuer] Regenspurg, Thomas [Gutachter] Neumann, Traugott [Gutachter] Scheytt, Michael [Gutachter] Kühn, and Simona [Gutachter] Regenspurg. "The impact of temperature and oxygen on water-rock interactions in siliciclastic rocks and implications for aquifer thermal energy storage systems / Daniel Richard Müller ; Gutachter: Thomas Neumann, Traugott Scheytt, Michael Kühn, Simona Regenspurg ; Traugott Scheytt, Simona Regenspurg." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1174990546/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Gregory D. "Aquifer underground pumped hydroelectric energy storage." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ranjith, Adam. "Thermal Energy Storage System Construction." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264530.

Full text
Abstract:
In the framework of 2020 PUPM HEAT project three different types of thermal energy storage (TES) systems are being constructed and analyzed at a demonstration site set up at the power plant IREN in Moncalieri, Italy. KTH will assist this project by setting up a validation rig where three TES systems in smaller dimensions will be constructed and analyzed for its performance, to use as guideline for the demonstration site rig. The first TES system that is being constructed is the submerged parallel spiral heat exchanger which is a completely new version of latent heat storage to be tested. For this idea, parallel layers of spiral copper coils will fill up a tank shell which in turn will be filled with phase change material. By injecting high temperature heat transfer fluid, phase change material will change its state and energy will be stored in the system. When injecting low temperature heat transfer fluid, the energy will be extracted. This BSc thesis will present detailed design solutions for the tank shell and the spiral copper coils that will be used for the heat exchanger. Presented solutions are then used to order parts needed to initiate the construction phase.
Inom ramverket för 2020 PUPM HEAT projektet kommer tre olika typer av värmeenergilagrings enheter tillverkas och analyseras vid energikraftverket IREN i Moncalieri, Italien. KTH kommer att assistera detta projekt genom att sätta upp en anläggning med tre liknande värmeenergilagrings enheter i mindre dimensioner som kommer konstrueras och analyseras. Dess data kommer sedan användas som riktlinje för att tillverka de större värmeenergilagringsenheterna i IREN. Den första enheten som tillverkas är en värmeväxlare som bygger på en ny version av latent energilagring. Den kommer att bestå av parallella lager av spiral formade koppar rör som fyller en tank. Tomrummet som blir över kommer att fyllas upp av fasändrings material (PCM). Genom att injicera varmt vatten i systemet kommer PCM:et att byta fas, vilket resulterar i att värmeenergin lagras i systemet. När sedan kallt vatten injiceras kan den sparade energin bli utvunnen. Den här rapporten kommer att presentera designen till tank kåpan såväl som den inre strukturen med kopparrör som behövs till värmeväxlaren. Resultatet ska möjliggöra beställning av alla delar som behövs för att konstruera värmeväxlaren.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aquifer thermal energy storage"

1

Ibsen, Lotte Schleisner. The Danish aquifer thermal ; Energy storage project: Demonstration plant. Roskilde: Riso Library, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andersson, Olof. Scaling and corrosion: Annex VI : environmental and chemical aspects of thermal energy storage in aquifers. Stockholm, Sweden: Swedish Council for Building Research, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ding, Yulong, ed. Thermal Energy Storage. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ali, Hafiz Muhammad, Furqan Jamil, and Hamza Babar. Thermal Energy Storage. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Canada. Energy, Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Canada, Energy Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garg, H. P. Solar Thermal Energy Storage. Dordrecht: Springer Netherlands, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Mullick S., and Bhargava A. K, eds. Solar thermal energy storage. Dordrecht: D. Reidel, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4273-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aquifer thermal energy storage"

1

Lee, Kun Sang. "Aquifer Thermal Energy Storage." In Underground Thermal Energy Storage, 59–93. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsang, Chin-Fu. "Thermohydraulics of an Aquifer Thermal Energy Storage System." In Advances in Transport Phenomena in Porous Media, 185–237. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Willemsen, A., and G. J. Groeneveld. "Environmental Impacts of Aquifer Thermal Energy Storage (ATES): Modelling of the Transport of Energy and Contaminants from the Store." In Groundwater Contamination: Use of Models in Decision-Making, 337–51. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2301-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Encyclopedia of Sustainability Science and Technology, 10551–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Solar Energy, 688–714. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alami, Abdul Hai. "Thermal Storage." In Mechanical Energy Storage for Renewable and Sustainable Energy Resources, 27–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33788-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huggins, Robert A. "Thermal Energy Storage." In Energy Storage, 21–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21239-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huggins, Robert A. "Thermal Energy Storage." In Energy Storage, 21–27. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1024-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sarbu, Ioan. "Thermal Energy Storage." In Advances in Building Services Engineering, 559–627. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64781-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stadler, Ingo, Andreas Hauer, and Thomas Bauer. "Thermal Energy Storage." In Handbook of Energy Storage, 563–609. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-55504-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aquifer thermal energy storage"

1

Bahadori, Mehdi N., and Farhad Behafarid. "Cooling of Gas Turbines Inlet Air Through Aquifer Thermal Energy Storage." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88126.

Full text
Abstract:
The power output of gas turbines reduces greatly with the increase of inlet air temperature. Aquifer thermal energy storage (ATES) is employed for cooling of the inlet air of a gas turbine. Water from a confined aquifer is cooled in winter, and is injected back into the aquifer. The stored chilled water is withdrawn in summer to cool the gas turbine inlet air. The heated water is then injected back into the aquifer. A 20 MW Hitachi gas turbine, along with a two-well aquifer were considered for analysis. It was shown that the minimum power output of the gas turbine on the warmest day of the year could be raised from 16.30 to 20.05 MW, and the mean annual power output could be increased from 19.1 to 20.1 MW, and the efficiency from 32.52% to 34.54% on the warmest day of the year and the mean annual efficiency from 33.88% to 34.52%. The use of ATES is a viable option for the increase of gas turbines power output, provided that suitable confined aquifers are available at their sites.
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Stephen H., and John R. Raymond. "Geohydrologic Characterization for Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adinolfi, Maurizio, and Wolfgang Ruck. "Microbiological and Environmental Effects of Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rudolph, H., Y. Zhou, P. Song, Y. Zhang, and X. Lei. "Aquifer Thermal Energy Storage in the Netherlands: A Review." In 2018 International Conference on Power System Technology (POWERCON). IEEE, 2018. http://dx.doi.org/10.1109/powercon.2018.8602211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jaxa-Rozen, Marc, Vahab Rostampour, Eunice Herrera, Martin Bloemendal, Jan Kwakkel, and Tamás Keviczky. "Integrated building energy management using aquifer thermal energy storage (ATES) in smart thermal grids." In BuildSys '17: The 4th ACM International Conference on Systems for Energy-Efficient Built Environments. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3137133.3141467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosen, M. A., and F. C. Hooper. "Exergy Analysis of Aquifer Thermal Energy Storages." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holmslykke, H. D. H., C. Kjøller, and I. L. Fabricius. "Seasonal Deep Aquifer Thermal Energy Storage in the Gassum Sandstone Formation." In Fourth Sustainable Earth Sciences Conference. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vail, L. W., E. A. Jenne, and L. E. Eary. "H20TREAT: An Aid for Evaluating Water Treatment Requirements for Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mobley, Paul D., Rebecca Z. Pass, and Chris F. Edwards. "Exergy Analysis of Coal Energy Conversion With Carbon Sequestration Via Combustion in Supercritical Saline Aquifer Water." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54458.

Full text
Abstract:
Decarbonization of electricity production is a vital component in meeting stringent emissions targets aimed at curbing the effects of global climate change. Most projected pathways toward meeting those targets include a large contribution from carbon capture and storage. Many capture technologies impose a large energy penalty to separate and compress carbon dioxide (CO2). Also, injected neat CO2 in a deep saline aquifer is buoyant compared to the aquifer brine and requires an impermeable seal to prevent it from escaping the aquifer. An alternative technology was recently proposed by Heberle and Edwards [1] that burns coal in supercritical water pumped from a saline aquifer. The entire effluent stream is sequestered, capturing all carbon and non-mineral coal combustion products in the process. This stream is denser than the aquifer brine and therefore offers a higher level of storage security, and can utilize aquifers without suitable structural trapping. This technology also increases energy security in the U.S., allowing for the use of its coal resources while avoiding atmospheric pollution. In this paper, a complete architecture employing supercritical water oxidation is proposed, including a liquid-oxygen-pumped air separation unit and regenerator system that heats and desalinates the incoming brine. A thermodynamic model calculates the overall thermal efficiency of the plant, including all separation and storage energy penalties. In addition, an exergy analysis gives insights into the least efficient parts of the proposed system. The details and assumptions of the model are discussed. Insights from the model and these analyses elucidate how the proposed system may be operated as a zero-emission electricity source and the technical challenges that must be addressed for deployment.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen Xiao-bing, Zhao Jian, and Zhao Zhongwei. "Research on numerical model of hydrothermal coupling and its application in aquifer thermal energy storage." In 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009. IEEE, 2009. http://dx.doi.org/10.1109/supergen.2009.5348054.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aquifer thermal energy storage"

1

Anderson, M. R., and R. O. Weijo. Potential energy savings from aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6531749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, S. Feasibility studies of aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7087673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hattrup, M. P., and R. O. Weijo. Commercialization of aquifer thermal energy storage technology. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5830827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, S. H. Environmental risk assessment for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7087615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, S. H. Environmental risk assessment for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10117104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, S. H., and E. A. Jenne. Sizing a water softener for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6722749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, S. H., and E. A. Jenne. Sizing a water softener for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10134624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimmerman, P. W., and M. K. Drost. Cost analysis of power plant cooling using aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5962306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brown, D. R., M. P. Hattrup, and R. L. Watts. Site-specific investigations of aquifer thermal energy storage for space and process cooling. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5076602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marseille, T. J., P. R. Armstrong, D. R. Brown, L. W. Vail, and L. D. Kannberg. Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6405021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography