Academic literature on the topic 'Aquifer thermal energy storage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aquifer thermal energy storage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aquifer thermal energy storage"
Zhang, Yi, and Dong Ming Guo. "Temperature Field of Single-Well Aquifer Thermal Energy Storage in Sanhejian Coal Mine." Advanced Materials Research 415-417 (December 2011): 1028–31. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1028.
Full textIihola, H., T. Ala-Peijari, and H. Seppänen. "Aquifer Thermal Energy Storage in Finland." Water Science and Technology 20, no. 3 (March 1, 1988): 75–86. http://dx.doi.org/10.2166/wst.1988.0084.
Full textZhang, Yi, and Dong Ming Guo. "Temperature Field of Doublet-Wells Aquifer Thermal Energy Storage in Sanhejian Coal Mine." Advanced Materials Research 430-432 (January 2012): 746–49. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.746.
Full textWolska, Elwira Małgorzata. "Modelling of aquifer thermal energy storage." Annual Review in Automatic Programming 12 (January 1985): 322–25. http://dx.doi.org/10.1016/0066-4138(85)90392-1.
Full textMelville, J. G., F. J. Molz, and O. Gu¨ven. "Field Experiments in Aquifer Thermal Energy Storage." Journal of Solar Energy Engineering 107, no. 4 (November 1, 1985): 322–25. http://dx.doi.org/10.1115/1.3267700.
Full textNordbotten, Jan Martin. "Analytical solutions for aquifer thermal energy storage." Water Resources Research 53, no. 2 (February 2017): 1354–68. http://dx.doi.org/10.1002/2016wr019524.
Full textHendrickson, Paul L. "REGULATORY REQUIREMENTS AFFECTING AQUIFER THERMAL ENERGY STORAGE." Journal of the American Water Resources Association 26, no. 1 (February 1990): 81–85. http://dx.doi.org/10.1111/j.1752-1688.1990.tb01353.x.
Full textUmemiya, Hiromichi, and Susumu Gunji. "Aquifer Thermal Energy Storage Method. An Investigation of Aquifer Biofilter." Transactions of the Japan Society of Mechanical Engineers Series B 59, no. 568 (1993): 3945–50. http://dx.doi.org/10.1299/kikaib.59.3945.
Full textDickinson, J. S., N. Buik, M. C. Matthews, and A. Snijders. "Aquifer thermal energy storage: theoretical and operational analysis." Géotechnique 59, no. 3 (April 2009): 249–60. http://dx.doi.org/10.1680/geot.2009.59.3.249.
Full textTurgut, B., H. Y. Dasgan, K. Abak, H. Paksoy, H. Evliya, and S. Bozdag. "AQUIFER THERMAL ENERGY STORAGE APPLICATION IN GREENHOUSE CLIMATIZATION." Acta Horticulturae, no. 807 (January 2009): 143–48. http://dx.doi.org/10.17660/actahortic.2009.807.17.
Full textDissertations / Theses on the topic "Aquifer thermal energy storage"
Kolesnik, Lindgren Julian. "Aquifer Thermal Energy Storage : Impact on groundwater chemistry." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232110.
Full textKolesnik, Lindgren Julian. "Aquifer Thermal Energy Storage : Impact on grondwater chemistry." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241055.
Full textGrundvatten har förutsättningen att utgöra en värdefull resurs för att lagra och förse byggnader med termisk energi. I en nordisk kontext har termisk energilagring i akviferer, (ATES) inte varit föremål för någon bredare forskning angående miljöpåverkan. Denna uppsats syftar till att studera kemisk grundvattenpåverkan från ett ATES som togs i drift 2016 i norra Stockholm, i en isälvsavlagring vid namn Stockholmsåsen. Analysen omfattar grundvattenprovtagning 9 månader före ATES driften samt 7 månader efter driftstart och provtagningen genomfördes i ett antal brunnar i närheten av installationen samt i ATES systemet då driften startade. Utvärderingsmetoden bestod av ett statistiskt tillvägagångssätt och omfattade Kruskal-Wallis test by ranks, för att jämföra ATES brunnarna med omgivande brunnar och principal component analysis, (PCA), för att studera kemiska parametrar som kan kopplas till ATES. I tillägg genomfördes en geofysisk undersökning som omfattar 2D-resistivitet samt inducerad polarisation, (IP) för att klarlägga huruvida källan till den höga saliniteten kunde spåras. Analysen baseras på främst på cykeln då kyld energi lagras. Resultaten visar stor variation i redoxpotential, i synnerhet vid de kalla brunnarna vilket sannolikt beror på omblandning av grundvatten med tanke på en differens i djup som grundvattnet infiltrerar/pumpas från med tillhörande skillnad i redox zon. Arsenik vilket har visat sig känsligt för höga temperaturer i annan forskning visade minskade koncentrationer jämfört med omgivande brunnar. ATES brunnarna uppvisade även lägre specifik konduktivitet och totalhårdhet i jämförelse. Det pekar mot att brunnarna är mindre utsatta för salinitet och att ingen ackumulering har skett till dags dato. Det framgår tydligt att miljömässig påverkan från ATES styrs av grundförutsättningarna i mark och grundvatten.
Allen, Diana M. "Steady-state and transient hydrologic, thermal and chemical modelling of a faulted carbonate aquifer used for aquifer thermal energy storage, Carleton University, Ottawa, Canada." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22158.pdf.
Full textAllen, Diana M. (Diana Margaret) Carleton University Dissertation Earth Sciences. "Steady-state and transient hydrologic, thermal and chemical modelling of a faulted carbonate aquifer used for Aquifer Thermal Energy Storage, Carleton University, Ottawa, Canada." Ottawa, 1996.
Find full textBarrios, Rivero Matías. "EVALUATION OF AN AQUIFER THERMAL ENERGY STORAGE (ATES) SYSTEM FOR THE CITY HOSPITAL IN KARLSRUHE (GERMANY)." Thesis, Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267554.
Full textFleuchaus, Paul [Verfasser], and P. [Akademischer Betreuer] Blum. "Global application, performance and risk analysis of Aquifer Thermal Energy Storage (ATES) / Paul Fleuchaus ; Betreuer: P. Blum." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1212512456/34.
Full textRevholm, Johan. "Energisimulering av kvarteret Hästskon 9 och 12 med ombyggnad och termiskt akviferlager." Thesis, KTH, Uthålliga byggnadssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124630.
Full textThis thesis investigates the viability of a system solution for aquifer thermal energy storage along with new HVAC technical solutions in real estates Hästskon 9 and 12 at a proposed future renovation. It also explores opportunities for certification in the Swedish energy and environmental certification system Miljöbyggnad (Environmental Building) regarding energy consumption, daylight comfort, solar heat load and thermal comfort for the renovation and extension proposal of Hästskon 12 with the goal of the GOLD level. By exploiting the aquifer in the properties Hästskon 9 and 12 today, very low energy consumption is achievable with seasonal energy efficiency via chillers for heating and cooling supply of 5.6. The LCC analysis shows that there are energy cost savings for property owner Vasakronan of about 3.65 million SEK per year compared to the current situation, if the described aquifer thermal energy storage solution is used. This gives a payback time of approximately 4.5 years in the investment to be made. Certification in the Miljöbyggnad system for existing buildings is probably possible with the aquifer thermal energy storage, but with BRONZE or possibly SILVER level. In the future refurbishment and extension proposal, the property owner adds about 13 000 m² of additional rentable commercial premises and offices. Nevertheless, the energy use of the properties decreases further owing to a seasonal energy efficiency via chillers for heating and cooling supply of 7.0 when the data centre refrigeration equipment for tenant SEB persists with heat recovery on the properties' heating systems, heating and cooling systems are adapted for low heat carrier temperature and high brine water temperature, ventilation systems are designed for low fan electricity demand and high heat recovery rate, glass solutions chosen are based on limited solar radiation and the building envelope is additionally insulated to some extent. Energy cost savings are furthered to 4.8 million SEK per year compared to the current situation. Even if the data centre refrigeration equipment for tenant SEB is closed down in a future refurbishment scenario, there is possibility to independently supply the property with its own heat produced by an additional heat pump, which removes the dependence of tenant SEB's data centre for heat supply and yet provides an energy saving of 4.25 million SEK per year compared the current situation. Such a solution will result in specific energy with the BBR 2012 (Swedish building regulations) definition of only about 30 kWh / m² Atemp, year. This figure is much lower than new construction requirements of BBR 2012 and on par with virgin buildings with borehole energy storage system. Based on the analysis of the Miljöbyggnad system indicators for energy, solar thermal load, daylight comfort and thermal comfort it is possible to certify Hästskon 12 and 9 in a future refurbishment and extension at GOLD level with some changes in the refurbishment proposal. In order to achieve GOLD level with respect to daylight comfort and solar heat load, special adaptation of the glazing on the S building, M building's facade facing Malmskillnadsgatan, and a large atrium in the H-building is required to let in enough natural light while still providing effective solar shading.
Müller, Daniel Richard [Verfasser], Traugott [Akademischer Betreuer] Scheytt, Simona [Akademischer Betreuer] Regenspurg, Thomas [Gutachter] Neumann, Traugott [Gutachter] Scheytt, Michael [Gutachter] Kühn, and Simona [Gutachter] Regenspurg. "The impact of temperature and oxygen on water-rock interactions in siliciclastic rocks and implications for aquifer thermal energy storage systems / Daniel Richard Müller ; Gutachter: Thomas Neumann, Traugott Scheytt, Michael Kühn, Simona Regenspurg ; Traugott Scheytt, Simona Regenspurg." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1174990546/34.
Full textMartin, Gregory D. "Aquifer underground pumped hydroelectric energy storage." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447687.
Full textRanjith, Adam. "Thermal Energy Storage System Construction." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264530.
Full textInom ramverket för 2020 PUPM HEAT projektet kommer tre olika typer av värmeenergilagrings enheter tillverkas och analyseras vid energikraftverket IREN i Moncalieri, Italien. KTH kommer att assistera detta projekt genom att sätta upp en anläggning med tre liknande värmeenergilagrings enheter i mindre dimensioner som kommer konstrueras och analyseras. Dess data kommer sedan användas som riktlinje för att tillverka de större värmeenergilagringsenheterna i IREN. Den första enheten som tillverkas är en värmeväxlare som bygger på en ny version av latent energilagring. Den kommer att bestå av parallella lager av spiral formade koppar rör som fyller en tank. Tomrummet som blir över kommer att fyllas upp av fasändrings material (PCM). Genom att injicera varmt vatten i systemet kommer PCM:et att byta fas, vilket resulterar i att värmeenergin lagras i systemet. När sedan kallt vatten injiceras kan den sparade energin bli utvunnen. Den här rapporten kommer att presentera designen till tank kåpan såväl som den inre strukturen med kopparrör som behövs till värmeväxlaren. Resultatet ska möjliggöra beställning av alla delar som behövs för att konstruera värmeväxlaren.
Books on the topic "Aquifer thermal energy storage"
Ibsen, Lotte Schleisner. The Danish aquifer thermal ; Energy storage project: Demonstration plant. Roskilde: Riso Library, 1988.
Find full textAndersson, Olof. Scaling and corrosion: Annex VI : environmental and chemical aspects of thermal energy storage in aquifers. Stockholm, Sweden: Swedish Council for Building Research, 1992.
Find full textDing, Yulong, ed. Thermal Energy Storage. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019842.
Full textAli, Hafiz Muhammad, Furqan Jamil, and Hamza Babar. Thermal Energy Storage. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5.
Full textCanada. Energy, Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.
Find full textCanada, Energy Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.
Find full textC, Mullick S., and Bhargava A. K, eds. Solar thermal energy storage. Dordrecht: D. Reidel, 1985.
Find full textLee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4273-7.
Full textBook chapters on the topic "Aquifer thermal energy storage"
Lee, Kun Sang. "Aquifer Thermal Energy Storage." In Underground Thermal Energy Storage, 59–93. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_4.
Full textTsang, Chin-Fu. "Thermohydraulics of an Aquifer Thermal Energy Storage System." In Advances in Transport Phenomena in Porous Media, 185–237. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_6.
Full textWillemsen, A., and G. J. Groeneveld. "Environmental Impacts of Aquifer Thermal Energy Storage (ATES): Modelling of the Transport of Energy and Contaminants from the Store." In Groundwater Contamination: Use of Models in Decision-Making, 337–51. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2301-0_31.
Full textTamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Encyclopedia of Sustainability Science and Technology, 10551–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_684.
Full textTamme, Rainer, Doerte Laing, Wolf-Dieter Steinmann, and Thomas Bauer. "Thermal Energy Storage thermal energy storage." In Solar Energy, 688–714. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_684.
Full textAlami, Abdul Hai. "Thermal Storage." In Mechanical Energy Storage for Renewable and Sustainable Energy Resources, 27–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33788-9_4.
Full textHuggins, Robert A. "Thermal Energy Storage." In Energy Storage, 21–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21239-5_3.
Full textHuggins, Robert A. "Thermal Energy Storage." In Energy Storage, 21–27. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1024-0_3.
Full textSarbu, Ioan. "Thermal Energy Storage." In Advances in Building Services Engineering, 559–627. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64781-0_7.
Full textStadler, Ingo, Andreas Hauer, and Thomas Bauer. "Thermal Energy Storage." In Handbook of Energy Storage, 563–609. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-55504-0_10.
Full textConference papers on the topic "Aquifer thermal energy storage"
Bahadori, Mehdi N., and Farhad Behafarid. "Cooling of Gas Turbines Inlet Air Through Aquifer Thermal Energy Storage." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88126.
Full textHall, Stephen H., and John R. Raymond. "Geohydrologic Characterization for Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929156.
Full textAdinolfi, Maurizio, and Wolfgang Ruck. "Microbiological and Environmental Effects of Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929155.
Full textRudolph, H., Y. Zhou, P. Song, Y. Zhang, and X. Lei. "Aquifer Thermal Energy Storage in the Netherlands: A Review." In 2018 International Conference on Power System Technology (POWERCON). IEEE, 2018. http://dx.doi.org/10.1109/powercon.2018.8602211.
Full textJaxa-Rozen, Marc, Vahab Rostampour, Eunice Herrera, Martin Bloemendal, Jan Kwakkel, and Tamás Keviczky. "Integrated building energy management using aquifer thermal energy storage (ATES) in smart thermal grids." In BuildSys '17: The 4th ACM International Conference on Systems for Energy-Efficient Built Environments. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3137133.3141467.
Full textRosen, M. A., and F. C. Hooper. "Exergy Analysis of Aquifer Thermal Energy Storages." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929196.
Full textHolmslykke, H. D. H., C. Kjøller, and I. L. Fabricius. "Seasonal Deep Aquifer Thermal Energy Storage in the Gassum Sandstone Formation." In Fourth Sustainable Earth Sciences Conference. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702139.
Full textVail, L. W., E. A. Jenne, and L. E. Eary. "H20TREAT: An Aid for Evaluating Water Treatment Requirements for Aquifer Thermal Energy Storage." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929195.
Full textMobley, Paul D., Rebecca Z. Pass, and Chris F. Edwards. "Exergy Analysis of Coal Energy Conversion With Carbon Sequestration Via Combustion in Supercritical Saline Aquifer Water." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54458.
Full textChen Xiao-bing, Zhao Jian, and Zhao Zhongwei. "Research on numerical model of hydrothermal coupling and its application in aquifer thermal energy storage." In 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009. IEEE, 2009. http://dx.doi.org/10.1109/supergen.2009.5348054.
Full textReports on the topic "Aquifer thermal energy storage"
Anderson, M. R., and R. O. Weijo. Potential energy savings from aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6531749.
Full textHall, S. Feasibility studies of aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7087673.
Full textHattrup, M. P., and R. O. Weijo. Commercialization of aquifer thermal energy storage technology. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5830827.
Full textHall, S. H. Environmental risk assessment for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7087615.
Full textHall, S. H. Environmental risk assessment for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10117104.
Full textHall, S. H., and E. A. Jenne. Sizing a water softener for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6722749.
Full textHall, S. H., and E. A. Jenne. Sizing a water softener for aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10134624.
Full textZimmerman, P. W., and M. K. Drost. Cost analysis of power plant cooling using aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5962306.
Full textBrown, D. R., M. P. Hattrup, and R. L. Watts. Site-specific investigations of aquifer thermal energy storage for space and process cooling. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5076602.
Full textMarseille, T. J., P. R. Armstrong, D. R. Brown, L. W. Vail, and L. D. Kannberg. Aquifer thermal energy storage at Mid-Island postal facility: Phase 1 final report. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6405021.
Full text