To see the other types of publications on this topic, follow the link: Arbitrary optical waveform generation.

Journal articles on the topic 'Arbitrary optical waveform generation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Arbitrary optical waveform generation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cundiff, Steven T., and Andrew M. Weiner. "Optical arbitrary waveform generation." Nature Photonics 4, no. 11 (2010): 760–66. http://dx.doi.org/10.1038/nphoton.2010.196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scott, Ryan P., Nicolas K. Fontaine, Jonathan P. Heritage, and S. J. B. Yoo. "Dynamic optical arbitrary waveform generation and measurement." Optics Express 18, no. 18 (2010): 18655. http://dx.doi.org/10.1364/oe.18.018655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Ming, José Azaña, Ninghua Zhu, and Jianping Yao. "Recent progresses on optical arbitrary waveform generation." Frontiers of Optoelectronics 7, no. 3 (2014): 359–75. http://dx.doi.org/10.1007/s12200-014-0470-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Lawrence R., and Bing Xia. "Arbitrary Optical Waveform Generation Using Planar Lightwave Circuits." PIERS Online 3, no. 1 (2007): 35–39. http://dx.doi.org/10.2529/piers060904155037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fontaine, N. K., R. P. Scott, J. Cao, et al. "32 phase×32 amplitude optical arbitrary waveform generation." Optics Letters 32, no. 7 (2007): 865. http://dx.doi.org/10.1364/ol.32.000865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xia, Bing, and Lawrence R. Chen. "Arbitrary optical waveform generation using 2D ring resonator arrays." Optics Express 14, no. 15 (2006): 6619. http://dx.doi.org/10.1364/oe.14.006619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liao, Sha-Sha, Ting Yang, and Jian-Ji Dong. "On-chip optical pulse shaper for arbitrary waveform generation." Chinese Physics B 23, no. 7 (2014): 073201. http://dx.doi.org/10.1088/1674-1056/23/7/073201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fontaine, Nicolas K., David J. Geisler, Ryan P. Scott, Tingting He, Jonathan P. Heritage, and S. J. B. Yoo. "Demonstration of high-fidelity dynamic optical arbitrary waveform generation." Optics Express 18, no. 22 (2010): 22988. http://dx.doi.org/10.1364/oe.18.022988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Proietti, Roberto, Chuan Qin, Binbin Guan, et al. "Elastic Optical Networking by Dynamic Optical Arbitrary Waveform Generation and Measurement." Journal of Optical Communications and Networking 8, no. 7 (2016): A171. http://dx.doi.org/10.1364/jocn.8.00a171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

He, Tingting, Nicolas K. Fontaine, Ryan P. Scott, David J. Geisler, Jonathan P. Heritage, and S. J. B. Yoo. "Optical Arbitrary Waveform Generation-Based Packet Generation and All-Optical Separation for Optical-Label Switching." IEEE Photonics Technology Letters 22, no. 10 (2010): 715–17. http://dx.doi.org/10.1109/lpt.2010.2044658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dai, Yitang, Xiangfei Chen, Heng Ji, and Shizhong Xie. "Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings." IEEE Photonics Technology Letters 19, no. 23 (2007): 1916–18. http://dx.doi.org/10.1109/lpt.2007.908430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cartledge, John C., Ying Jiang, Abdullah S. Karar, James Harley, and Kim Roberts. "Arbitrary waveform generation for pre-compensation in optical fiber communication systems." Optics Communications 284, no. 15 (2011): 3711–17. http://dx.doi.org/10.1016/j.optcom.2011.03.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jiang, Z., D. E. Leaird, and A. M. Weiner. "Line-by-line pulse shaping control for optical arbitrary waveform generation." Optics Express 13, no. 25 (2005): 10431. http://dx.doi.org/10.1364/opex.13.010431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Duan, Fang Zhen, Xue Hua Yang, Yong Ming Nie, and Jun Li Qi. "A Nested Folded 4f System for Ultra-Short Optical Pulse Shaping by Liquid Crystal Spatial Light Modulator." Applied Mechanics and Materials 556-562 (May 2014): 1704–7. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1704.

Full text
Abstract:
In order to modulate the spectral phase properties of the ultra-short optical pulse in two dimensions by the liquid crystal spatial light modulator (LC-SLM), a setup named quasi-zero-dispersion nested folded 4f system is proposed, in which a grating disperses the ultra-short optical pulse frequency components in the vertical direction and a prism disperses the ultra-short optical pulse frequency components in the horizontal direction. Because the frequencies are dispersed in two directions, the LC-SLM is utilized more effectively and the optical frequency resolution for arbitrary temporal waveform generation is higher than the conventional zero dispersion 4f system. In theory, the quasi-zero-dispersion nested folded 4f system can generate arbitrary desired temporal waveform ultra-short optical pulse. Based on the system, Femtosecond pulse beam with Gaussian temporal waveform is used for experimentation, and an optical pulse train and several other temporal profiles were obtained. All the experimental results indicated that the quasi-zero-dispersion nested folded 4f system is reliable for arbitrary ultra-short optical pulse waveform generation, which fit well with the theoretical analysis. In the future, if a proper high dispersive optical element substitutes the prism in the quasi-zero-dispersion nested folded 4f system, the setup we proposed here will be widely used in the optical pulse shaping areas.
APA, Harvard, Vancouver, ISO, and other styles
15

Mendoza-Yero, Omel, Gladys Mínguez-Vega, Jesús Lancis, and Vicent Climent. "Diffractive pulse shaper for arbitrary waveform generation." Optics Letters 35, no. 4 (2010): 535. http://dx.doi.org/10.1364/ol.35.000535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McKinney, Jason D. "Background-Free Arbitrary Waveform Generation via Polarization Pulse Shaping." IEEE Photonics Technology Letters 22, no. 16 (2010): 1193–95. http://dx.doi.org/10.1109/lpt.2010.2051538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ozharar, S., F. Quinlan, S. Gee, and P. J. Delfyett. "Demonstration of endless phase modulation for arbitrary waveform generation." IEEE Photonics Technology Letters 17, no. 12 (2005): 2739–41. http://dx.doi.org/10.1109/lpt.2005.859398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Protopopov, V. "Programmable light source for arbitrary waveform generation in time." Optics & Laser Technology 139 (July 2021): 106942. http://dx.doi.org/10.1016/j.optlastec.2021.106942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhou, Xin, Xiaoping Zheng, He Wen, Hanyi Zhang, Yili Guo, and Bingkun Zhou. "All optical arbitrary waveform generation by optical frequency comb based on cascading intensity modulation." Optics Communications 284, no. 15 (2011): 3706–10. http://dx.doi.org/10.1016/j.optcom.2011.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Torres-Company, V., J. Lancis, P. Andrés, and L. R. Chen. "Electromagnetic Arbitrary Waveform Generation with Broadband Incoherent Light Sources." Optics and Photonics News 19, no. 12 (2008): 38. http://dx.doi.org/10.1364/opn.19.12.000038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Ailing, and Changxiu Li. "Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays." Optics & Laser Technology 52 (November 2013): 81–86. http://dx.doi.org/10.1016/j.optlastec.2013.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Peili, Xiaolu Ma, Weihua Shi, and Enming Xu. "Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser." Optics & Laser Technology 94 (September 2017): 228–33. http://dx.doi.org/10.1016/j.optlastec.2017.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhi Jiang, D. E. Leaird, and A. M. Weiner. "Optical arbitrary waveform generation and characterization using spectral line-by-line control." Journal of Lightwave Technology 24, no. 7 (2006): 2487–94. http://dx.doi.org/10.1109/jlt.2006.874661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Azana, J., N. K. Berger, B. Levit, and B. Fischer. "Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers." Journal of Lightwave Technology 24, no. 7 (2006): 2663–75. http://dx.doi.org/10.1109/jlt.2006.875212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Samadi, P., L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo. "RF arbitrary waveform generation using tunable planar lightwave circuits." Optics Communications 284, no. 15 (2011): 3737–41. http://dx.doi.org/10.1016/j.optcom.2011.02.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liao, Sha-Sha, Shu-Cun Min, and Jian-Ji Dong. "Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force." Chinese Physics B 23, no. 12 (2014): 124211. http://dx.doi.org/10.1088/1674-1056/23/12/124211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Soares, F. M., N. K. Fontaine, R. P. Scott, et al. "Monolithic InP 100-Channel $\times$ 10-GHz Device for Optical Arbitrary Waveform Generation." IEEE Photonics Journal 3, no. 6 (2011): 975–85. http://dx.doi.org/10.1109/jphot.2011.2170558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Geisler, David J., Nicolas K. Fontaine, Tingting He, et al. "Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation." Optics Express 17, no. 18 (2009): 15911. http://dx.doi.org/10.1364/oe.17.015911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lin, Wei-Hsun, and A. H. Kung. "Arbitrary waveform synthesis by multiple harmonics generation and phasing in aperiodic optical superlattices." Optics Express 17, no. 18 (2009): 16342. http://dx.doi.org/10.1364/oe.17.016342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feng, Shaoqi, Chuan Qin, Kuanping Shang, et al. "Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits." Optics Express 25, no. 8 (2017): 8872. http://dx.doi.org/10.1364/oe.25.008872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bolea, Mario, José Mora, Beatriz Ortega, and José Capmany. "Photonic arbitrary waveform generation applicable to multiband UWB communications." Optics Express 18, no. 25 (2010): 26259. http://dx.doi.org/10.1364/oe.18.026259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Adams, Rhys, Reza Ashrafi, Junjia Wang, Mohammad Rezagholipour Dizaji, and Lawrence R. Chen. "RF-Arbitrary Waveform Generation Based on Microwave Photonic Filtering." IEEE Photonics Journal 6, no. 5 (2014): 1–8. http://dx.doi.org/10.1109/jphot.2014.2361637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Song, Chunqi, Shanguo Huang, Xinlu Gao, et al. "Photonics Generation of Baseband-Free Arbitrary-Phase-Coded Microwave Waveform Pulse." IEEE Photonics Technology Letters 33, no. 9 (2021): 457–60. http://dx.doi.org/10.1109/lpt.2021.3068384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Peng Haitao, 彭海涛, 王菊 Wang Ju, 马闯 Ma Chuang, et al. "Arbitrary Waveform Generation of Enhanced High-Order Harmonics Based on Injection Locking." Acta Optica Sinica 40, no. 4 (2020): 0419001. http://dx.doi.org/10.3788/aos202040.0419001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Ailing, and Changxiu Li. "Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays." Optics Express 20, no. 21 (2012): 23074. http://dx.doi.org/10.1364/oe.20.023074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schnébelin, Côme, and Hugues Guillet de Chatellus. "Spectral interpretation of Talbot self-healing effect and application to optical arbitrary waveform generation." Optics Letters 43, no. 7 (2018): 1467. http://dx.doi.org/10.1364/ol.43.001467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhou, Xin, Xiaoping Zheng, He Wen, Hanyi Zhang, and Bingkun Zhou. "Pair-by-pair pulse shaping for optical arbitrary waveform generation by dual-comb heterodyne." Optics Letters 38, no. 24 (2013): 5331. http://dx.doi.org/10.1364/ol.38.005331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fontaine, Nicolas K., Ryan P. Scott, Chunxin Yang, et al. "Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation." Optics Letters 33, no. 15 (2008): 1714. http://dx.doi.org/10.1364/ol.33.001714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Ai-ling, Qi-hang Cheng, Hong-yun Song, and Hong-gang Pan. "Optical arbitrary waveform generation based on an array of tunable apodized waveguide Bragg gratings." Optoelectronics Letters 16, no. 3 (2020): 195–99. http://dx.doi.org/10.1007/s11801-020-9083-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Wangzhe, Fanqi Kong, and Jianping Yao. "Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator." Journal of Lightwave Technology 31, no. 23 (2013): 3780–86. http://dx.doi.org/10.1109/jlt.2013.2287122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chi, Hao, Shanyi Wang, Shuna Yang, et al. "Photonic arbitrary waveform generation based on the temporal Talbot effect." Optics Express 29, no. 11 (2021): 16927. http://dx.doi.org/10.1364/oe.425209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fontaine, Nicolas K., Ryan P. Scott, and S. J. B. Yoo. "Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications." Optics Communications 284, no. 15 (2011): 3693–705. http://dx.doi.org/10.1016/j.optcom.2011.03.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chao Wang and Jianping Yao. "Simultaneous Optical Spectral Shaping and Wavelength-to-Time Mapping for Photonic Microwave Arbitrary Waveform Generation." IEEE Photonics Technology Letters 21, no. 12 (2009): 793–95. http://dx.doi.org/10.1109/lpt.2009.2017732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ashrafi, Reza, Mohammad Rezagholipour Dizaji, Luis Romero Cortés, et al. "Time-delay to intensity mapping based on a second-order optical integrator: application to optical arbitrary waveform generation." Optics Express 23, no. 12 (2015): 16209. http://dx.doi.org/10.1364/oe.23.016209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jiang, H. Y., L. S. Yan, Y. F. Sun, et al. "Photonic arbitrary waveform generation based on crossed frequency to time mapping." Optics Express 21, no. 5 (2013): 6488. http://dx.doi.org/10.1364/oe.21.006488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Chen-Bin, Zhi Jiang, DanielE Leaird, José Caraquitena, and AndrewM Weiner. "Spectral line-by-line shaping for optical and microwave arbitrary waveform generations." Laser & Photonics Review 2, no. 4 (2008): 227–48. http://dx.doi.org/10.1002/lpor.200810001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Renner, Christoffer J., Randy R. Reibel, Mingzhen Tian, Tiejun Chang, and W. Randall Babbitt. "Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials." Journal of the Optical Society of America B 24, no. 12 (2007): 2979. http://dx.doi.org/10.1364/josab.24.002979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Singh, Karanveer, Janosch Meier, Arijit Misra, Stefan Preubler, J. Christoph Scheytt, and Thomas Schneider. "Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator Bandwidth." IEEE Photonics Technology Letters 32, no. 24 (2020): 1544–47. http://dx.doi.org/10.1109/lpt.2020.3039621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rashidinejad, Amir, and Andrew M. Weiner. "Photonic Radio-Frequency Arbitrary Waveform Generation With Maximal Time-Bandwidth Product Capability." Journal of Lightwave Technology 32, no. 20 (2014): 3383–93. http://dx.doi.org/10.1109/jlt.2014.2331491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhu, Xinyi, Hao Sun, Wei Li, Ninghua Zhu, and Ming Li. "Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique." IEEE Photonics Journal 10, no. 1 (2018): 1–9. http://dx.doi.org/10.1109/jphot.2018.2798610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!