Journal articles on the topic 'Arctic clouds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Arctic clouds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Klingebiel, Marcus, André Ehrlich, Elena Ruiz-Donoso, et al. "Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean." Atmospheric Chemistry and Physics 23, no. 24 (2023): 15289–304. http://dx.doi.org/10.5194/acp-23-15289-2023.
Full textZamora, Lauren M., Ralph A. Kahn, Sabine Eckhardt, et al. "Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds." Atmospheric Chemistry and Physics 17, no. 12 (2017): 7311–32. http://dx.doi.org/10.5194/acp-17-7311-2017.
Full textSotiropoulou, G., J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson. "The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface." Atmospheric Chemistry and Physics Discussions 14, no. 3 (2014): 3815–74. http://dx.doi.org/10.5194/acpd-14-3815-2014.
Full textSotiropoulou, G., J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson. "The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface." Atmospheric Chemistry and Physics 14, no. 22 (2014): 12573–92. http://dx.doi.org/10.5194/acp-14-12573-2014.
Full textTjernström, Michael, Joseph Sedlar, and Matthew D. Shupe. "How Well Do Regional Climate Models Reproduce Radiation and Clouds in the Arctic? An Evaluation of ARCMIP Simulations." Journal of Applied Meteorology and Climatology 47, no. 9 (2008): 2405–22. http://dx.doi.org/10.1175/2008jamc1845.1.
Full textBaek, Eun-Hyuk, Joo-Hong Kim, Sungsu Park, Baek-Min Kim, and Jee-Hoon Jeong. "Impact of poleward heat and moisture transports on Arctic clouds and climate simulation." Atmospheric Chemistry and Physics 20, no. 5 (2020): 2953–66. http://dx.doi.org/10.5194/acp-20-2953-2020.
Full textLoewe, Katharina, Annica M. L. Ekman, Marco Paukert, Joseph Sedlar, Michael Tjernström, and Corinna Hoose. "Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS)." Atmospheric Chemistry and Physics 17, no. 11 (2017): 6693–704. http://dx.doi.org/10.5194/acp-17-6693-2017.
Full textXie, Shaocheng, Xiaohong Liu, Chuanfeng Zhao, and Yuying Zhang. "Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization." Journal of Climate 26, no. 16 (2013): 5981–99. http://dx.doi.org/10.1175/jcli-d-12-00517.1.
Full textStapf, Johannes, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch. "Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions." Atmospheric Chemistry and Physics 20, no. 16 (2020): 9895–914. http://dx.doi.org/10.5194/acp-20-9895-2020.
Full textSartori, Ernani. "The Arctic ice melting confirms the new theory." Journal of Water and Climate Change 10, no. 2 (2018): 321–43. http://dx.doi.org/10.2166/wcc.2018.153.
Full textEastman, Ryan, and Stephen G. Warren. "Interannual Variations of Arctic Cloud Types in Relation to Sea Ice." Journal of Climate 23, no. 15 (2010): 4216–32. http://dx.doi.org/10.1175/2010jcli3492.1.
Full textWendisch, Manfred, Andreas Macke, André Ehrlich, et al. "The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification." Bulletin of the American Meteorological Society 100, no. 5 (2019): 841–71. http://dx.doi.org/10.1175/bams-d-18-0072.1.
Full textTurner, D. D. "Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA." Journal of Applied Meteorology 44, no. 4 (2005): 427–44. http://dx.doi.org/10.1175/jam2208.1.
Full textStramler, Kirstie, Anthony D. Del Genio, and William B. Rossow. "Synoptically Driven Arctic Winter States." Journal of Climate 24, no. 6 (2011): 1747–62. http://dx.doi.org/10.1175/2010jcli3817.1.
Full textZuidema, P., B. Baker, Y. Han, et al. "An Arctic Springtime Mixed-Phase Cloudy Boundary Layer Observed during SHEBA." Journal of the Atmospheric Sciences 62, no. 1 (2005): 160–76. http://dx.doi.org/10.1175/jas-3368.1.
Full textKravitz, Ben, Hailong Wang, Philip J. Rasch, Hugh Morrison, and Amy B. Solomon. "Process-model simulations of cloud albedo enhancement by aerosols in the Arctic." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2031 (2014): 20140052. http://dx.doi.org/10.1098/rsta.2014.0052.
Full textBecker, Sebastian, André Ehrlich, Michael Schäfer, and Manfred Wendisch. "Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait." Atmospheric Chemistry and Physics 23, no. 12 (2023): 7015–31. http://dx.doi.org/10.5194/acp-23-7015-2023.
Full textTietze, K., J. Riedi, A. Stohl, and T. J. Garrett. "Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008." Atmospheric Chemistry and Physics 11, no. 7 (2011): 3359–73. http://dx.doi.org/10.5194/acp-11-3359-2011.
Full textLonardi, Michael, Elisa F. Akansu, André Ehrlich, et al. "Tethered balloon-borne observations of thermal-infrared irradiance and cooling rate profiles in the Arctic atmospheric boundary layer." Atmospheric Chemistry and Physics 24, no. 3 (2024): 1961–78. http://dx.doi.org/10.5194/acp-24-1961-2024.
Full textSaavedra Garfias, Pablo, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen. "Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic." Atmospheric Chemistry and Physics 23, no. 22 (2023): 14521–46. http://dx.doi.org/10.5194/acp-23-14521-2023.
Full textVüllers, Jutta, Peggy Achtert, Ian M. Brooks, et al. "Meteorological and cloud conditions during the Arctic Ocean 2018 expedition." Atmospheric Chemistry and Physics 21, no. 1 (2021): 289–314. http://dx.doi.org/10.5194/acp-21-289-2021.
Full textSchirmacher, Imke, Pavlos Kollias, Katia Lamer, et al. "Assessing Arctic low-level clouds and precipitation from above – a radar perspective." Atmospheric Measurement Techniques 16, no. 17 (2023): 4081–100. http://dx.doi.org/10.5194/amt-16-4081-2023.
Full textSchäfer, Britta, Tim Carlsen, Ingrid Hanssen, Michael Gausa, and Trude Storelvmo. "Observations of cold-cloud properties in the Norwegian Arctic using ground-based and spaceborne lidar." Atmospheric Chemistry and Physics 22, no. 14 (2022): 9537–51. http://dx.doi.org/10.5194/acp-22-9537-2022.
Full textAchtert, P., M. Karlsson Andersson, F. Khosrawi, and J. Gumbel. "Do tropospheric clouds influence Polar Stratospheric cloud occurrence in the Arctic?" Atmospheric Chemistry and Physics Discussions 11, no. 12 (2011): 32065–84. http://dx.doi.org/10.5194/acpd-11-32065-2011.
Full textBarrientos-Velasco, Carola, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke. "Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106." Atmospheric Chemistry and Physics 22, no. 14 (2022): 9313–48. http://dx.doi.org/10.5194/acp-22-9313-2022.
Full textBae, Jungeun, Hyun-Joon Sung, Eun-Hyuk Baek, Ji-Hun Choi, Hyo-Jung Lee, and Baek-Min Kim. "Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic." Atmosphere 14, no. 3 (2023): 522. http://dx.doi.org/10.3390/atmos14030522.
Full textAdachi, Kouji, Yutaka Tobo, Makoto Koike, Gabriel Freitas, Paul Zieger, and Radovan Krejci. "Composition and mixing state of Arctic aerosol and cloud residual particles from long-term single-particle observations at Zeppelin Observatory, Svalbard." Atmospheric Chemistry and Physics 22, no. 21 (2022): 14421–39. http://dx.doi.org/10.5194/acp-22-14421-2022.
Full textShupe, Matthew D. "Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics." Journal of Applied Meteorology and Climatology 50, no. 3 (2011): 645–61. http://dx.doi.org/10.1175/2010jamc2468.1.
Full textAchtert, P., M. Karlsson Andersson, F. Khosrawi, and J. Gumbel. "On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space–borne lidar." Atmospheric Chemistry and Physics 12, no. 8 (2012): 3791–98. http://dx.doi.org/10.5194/acp-12-3791-2012.
Full textKretzschmar, Jan, Marc Salzmann, Johannes Mülmenstädt, and Johannes Quaas. "Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes." Atmospheric Chemistry and Physics 19, no. 16 (2019): 10571–89. http://dx.doi.org/10.5194/acp-19-10571-2019.
Full textLelli, Luca, Marco Vountas, Narges Khosravi, and John Philipp Burrows. "Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds." Atmospheric Chemistry and Physics 23, no. 4 (2023): 2579–611. http://dx.doi.org/10.5194/acp-23-2579-2023.
Full textSedlar, Joseph. "Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds." Journal of Applied Meteorology and Climatology 53, no. 12 (2014): 2775–89. http://dx.doi.org/10.1175/jamc-d-14-0065.1.
Full textGagné, Marie-Ève, Alexandre Laplante, Ronald Stewart, and John Hanesiak. "Using CloudSat data to look at the cloud and precipitation structure in the Arctic." McGill Science Undergraduate Research Journal 3, no. 1 (2008): 24–27. http://dx.doi.org/10.26443/msurj.v3i1.127.
Full textCoopman, Quentin, Timothy J. Garrett, Jérôme Riedi, Sabine Eckhardt, and Andreas Stohl. "Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic." Atmospheric Chemistry and Physics 16, no. 7 (2016): 4661–74. http://dx.doi.org/10.5194/acp-16-4661-2016.
Full textEhrlich, A., E. Bierwirth, M. Wendisch, et al. "Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches." Atmospheric Chemistry and Physics 8, no. 24 (2008): 7493–505. http://dx.doi.org/10.5194/acp-8-7493-2008.
Full textZhao, Xiaoyi, Kristof Bognar, Vitali Fioletov, et al. "Assessing the impact of clouds on ground-based UV–visible total column ozone measurements in the high Arctic." Atmospheric Measurement Techniques 12, no. 4 (2019): 2463–83. http://dx.doi.org/10.5194/amt-12-2463-2019.
Full textMauritsen, T., J. Sedlar, M. Tjernström, et al. "Aerosols indirectly warm the Arctic." Atmospheric Chemistry and Physics Discussions 10, no. 7 (2010): 16775–96. http://dx.doi.org/10.5194/acpd-10-16775-2010.
Full textMorrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema. "A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds." Journal of the Atmospheric Sciences 62, no. 6 (2005): 1678–93. http://dx.doi.org/10.1175/jas3447.1.
Full textEliasson, Salomon, Karl-Göran Karlsson, and Ulrika Willén. "A simulator for the CLARA-A2 cloud climate data record and its application to assess EC-Earth polar cloudiness." Geoscientific Model Development 13, no. 1 (2020): 297–314. http://dx.doi.org/10.5194/gmd-13-297-2020.
Full textShupe, Matthew D., David D. Turner, Alexander Zwink, Mandana M. Thieman, Eli J. Mlawer, and Timothy Shippert. "Deriving Arctic Cloud Microphysics at Barrow, Alaska: Algorithms, Results, and Radiative Closure." Journal of Applied Meteorology and Climatology 54, no. 7 (2015): 1675–89. http://dx.doi.org/10.1175/jamc-d-15-0054.1.
Full textGriesche, Hannes J., Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann. "Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds." Atmospheric Chemistry and Physics 21, no. 13 (2021): 10357–74. http://dx.doi.org/10.5194/acp-21-10357-2021.
Full textTietze, K., J. Riedi, A. Stohl, and T. J. Garrett. "Space-based evaluation of interactions between pollution plumes and low-level Arctic clouds during the spring and summer of 2008." Atmospheric Chemistry and Physics Discussions 10, no. 11 (2010): 29113–52. http://dx.doi.org/10.5194/acpd-10-29113-2010.
Full textShupe, Matthew D., Pavlos Kollias, P. Ola G. Persson, and Greg M. McFarquhar. "Vertical Motions in Arctic Mixed-Phase Stratiform Clouds." Journal of the Atmospheric Sciences 65, no. 4 (2008): 1304–22. http://dx.doi.org/10.1175/2007jas2479.1.
Full textKnudsen, Erlend M., Bernd Heinold, Sandro Dahlke, et al. "Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017." Atmospheric Chemistry and Physics 18, no. 24 (2018): 17995–8022. http://dx.doi.org/10.5194/acp-18-17995-2018.
Full textLibois, Quentin, Liviu Ivanescu, Jean-Pierre Blanchet, et al. "Airborne observations of far-infrared upwelling radiance in the Arctic." Atmospheric Chemistry and Physics 16, no. 24 (2016): 15689–707. http://dx.doi.org/10.5194/acp-16-15689-2016.
Full textStevens, Robin G., Katharina Loewe, Christopher Dearden, et al. "A model intercomparison of CCN-limited tenuous clouds in the high Arctic." Atmospheric Chemistry and Physics 18, no. 15 (2018): 11041–71. http://dx.doi.org/10.5194/acp-18-11041-2018.
Full textTjernström, M., C. Leck, C. E. Birch, et al. "The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design." Atmospheric Chemistry and Physics 14, no. 6 (2014): 2823–69. http://dx.doi.org/10.5194/acp-14-2823-2014.
Full textGriesche, Hannes Jascha, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke. "Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget." Atmospheric Chemistry and Physics 24, no. 1 (2024): 597–612. http://dx.doi.org/10.5194/acp-24-597-2024.
Full textKretzschmar, Jan, Johannes Stapf, Daniel Klocke, Manfred Wendisch, and Johannes Quaas. "Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic." Atmospheric Chemistry and Physics 20, no. 21 (2020): 13145–65. http://dx.doi.org/10.5194/acp-20-13145-2020.
Full textDekoutsidis, Georgios, Martin Wirth, and Silke Groß. "The effects of warm-air intrusions in the high Arctic on cirrus clouds." Atmospheric Chemistry and Physics 24, no. 10 (2024): 5971–87. http://dx.doi.org/10.5194/acp-24-5971-2024.
Full text