Academic literature on the topic 'Arctic Haze'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arctic Haze.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Arctic Haze"
Shaw, Glenn E. "The Arctic Haze Phenomenon." Bulletin of the American Meteorological Society 76, no. 12 (December 1995): 2403–13. http://dx.doi.org/10.1175/1520-0477(1995)076<2403:tahp>2.0.co;2.
Full textHeintzenberg, Jost, Thomas Tuch, Birgit Wehner, Alfred Wiedensohler, Heike Wex, Albert Ansmann, Ina Mattis, et al. "Arctic haze over Central Europe." Tellus B: Chemical and Physical Meteorology 55, no. 3 (December 30, 2011): 796–807. http://dx.doi.org/10.3402/tellusb.v55i3.16366.
Full textHEINTZENBERG, JOST, THOMAS TUCH, BIRGIT WEHNER, ALFRED WIEDENSOHLER, HEIKE WEX, ALBERT ANSMANN, INA MATTIS, et al. "Arctic haze over Central Europe." Tellus B 55, no. 3 (July 2003): 796–807. http://dx.doi.org/10.1034/j.1600-0889.2003.00057.x.
Full textShaw, Glenn E. "Cloud condensation nuclei associated with arctic haze." Atmospheric Environment (1967) 20, no. 7 (January 1986): 1453–56. http://dx.doi.org/10.1016/0004-6981(86)90017-x.
Full textShaw, G. E., K. Stamnes, and Y. X. Hu. "Arctic haze: Perturbation to the radiation field." Meteorology and Atmospheric Physics 51, no. 3-4 (1993): 227–35. http://dx.doi.org/10.1007/bf01030496.
Full textQuinn, P. K., G. Shaw, E. Andrews, E. G. Dutton, T. Ruoho-Airola, and S. L. Gong. "Arctic haze: current trends and knowledge gaps." Tellus B: Chemical and Physical Meteorology 59, no. 1 (January 2007): 99–114. http://dx.doi.org/10.1111/j.1600-0889.2006.00236.x.
Full textStachlewska, Iwona S., Christoph Ritter, Christine Böckmann, and Ronny Engelmann. "Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen." EPJ Web of Conferences 176 (2018): 05024. http://dx.doi.org/10.1051/epjconf/201817605024.
Full textCarey, John. "Scientific Sleuths Solve: The Mystery of Arctic Haze." Weatherwise 41, no. 2 (April 1988): 97–99. http://dx.doi.org/10.1080/00431672.1988.9925253.
Full textHoff, R. M. "Vertical Structure of Arctic Haze Observed by Lidar." Journal of Applied Meteorology 27, no. 2 (February 1988): 125–39. http://dx.doi.org/10.1175/1520-0450(1988)027<0125:vsoaho>2.0.co;2.
Full textYamanouchi, T., R. Treffeisen, A. Herber, M. Shiobara, S. Yamagata, K. Hara, K. Sato, et al. "Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study." Tellus B: Chemical and Physical Meteorology 57, no. 2 (January 2005): 141–52. http://dx.doi.org/10.3402/tellusb.v57i2.16784.
Full textDissertations / Theses on the topic "Arctic Haze"
Stachlewska, Iwona Sylwia. "Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/698/.
Full textDas Airborne Mobile Aerosol Lidar (AMALi) wurde am Alfred-Wegener-Institut für Polar- und Meeresforschung in Potsdam für die Untersuchung arktischer Aerosole und Wolken der unteren Troposphäre entwickelt und gebaut. Das AMALi wurde erfolgreich in zwei AWI Flugzeugmesskampagnen, der ASTAR 2004 und der SvalEx 2005, die in Spitzbergen in der Arktis durchgeführt wurden, eingesetzt. Zwei neue Lidar Datenauswertungsmethoden wurden implementiert: die Two-Stream Inversion und die Iterative Airborne Inversion. Damit erwies sich die Berechnung der Profile der Teilchen Rückstreu- und Extinktionskoeffizienten mit einem entsprechenden Lidar Verhältnis, das charakteristisch für arktische Luft ist, als möglich. Der Vergleich dieser Auswertungen mit den Resultaten, die mit verschiedenen Fernerkundungs- und In-situ Instrumenten gewonnen worden waren (stationäres Koldewey Aerosol Raman Lidar KARL, Sonnenphotometer, Radiosondierung und Satellitenbilder) ermöglichten die Interpretation der Lidar-Resultate und eine Charakterisierung sowohl der reinen als auch der verschmutzten Luft. Außerdem konnten die Lidardaten mit operationellen ECMWF Daten und dem kleinskaligen Dispersionsmodel EULAG verglichen werden. Dadurch konnte der Einfluss der Spitzbergener Orographie auf die Aerosolladung der Planetaren Grenzschicht untersucht werden. Für Wolkenmessungen wurde eine neue Methode der alternativen Fernerkundung mit dem AMALi und flugzeuggetragenen In-situ Messgeräten verwendet, um optische und mikrophysikalische Eigenschaften der Wolken zu bestimmen. Diese Methode wurde erfolgreich implementiert und auf Mixed-Phase Wolken geringer optischen Dicke angewendet. Ein Beispiel hier stellt das Besamen der Wolken (sogenannte Feeder-Seeder Effekt) dar, bei dem Eiskristalle in eine niedrige unterkühlte Stratokumulus fallen. Dabei konnten Lidarsignale, Intensitätsprofile und die Volumendepolarisation gemessen werden. Zusätzlich konnten in den weniger dichten Bereichen der Wolken, in denen Vielfachstreuung vernachlässigbar ist, auch Profile des Teilchen Rückstreukoeffizienten berechnet werden, wobei Lidarverhältnisse genommen wurden, die aus In-situ Messungen für Wasser- und Eiswolken ermittelt wurden.
Savishinsky, Joel S. "The trail of the hare : environment and stress in a sub-arctic community /." Yverdon (Switzerland) : Gordon and Breach, 1994. http://catalogue.bnf.fr/ark:/12148/cb37463831g.
Full textOzola, Anete. "What impact can the economic potential of the Arctic region have on avoiding conflict?" Thesis, Malmö universitet, Malmö högskola, Institutionen för globala politiska studier (GPS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42783.
Full textWiniger, Patrik. "Isotope-based source apportionment of black carbon aerosols in the Eurasian Arctic." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-134577.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.
Vicente-Luis, Andy. "Caractérisation in situ des propriétés optiques et microphysiques des aérosols troposphériques dans l’archipel arctique canadien." Thesis, 2019. http://hdl.handle.net/1866/24156.
Full textGlobal warming in the Canadian Arctic is twice as fast as the global average, accelerating the melting of sea ice and radically disrupting the fauna, the flora, and the communities of the whole region. Arctic warming is caused not only by rising greenhouse gas emissions, but also by the short-lived climate forcing agents such as tropospheric aerosols. However, aerosol radiative forcing in the polar region is less precisely estimated than that of greenhouse gases, notably CO2, and remains highly uncertain. This large uncertainty arises mainly from the high spatiotemporal variability in aerosol chemical and physical properties, in addition to the complexity of the feedback loops observed in the Arctic. Furthermore, datasets on aerosol characteristics and their distribution across the region are very limited, particularly in the Canadian High Arctic. To address this issue, a series of measurements were conducted over a 3-year period (2016-2019) at the Polar Atmospheric Environment Research Laboratory (PEARL, 80N 86W) near Eureka weather station, in Nunavut, Canada. Aerosol size distribution was measured using several instruments including an Optical Particle Counter (OPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). Aerosol optical properties were determined by two Photoacoustic Extinctiometers (PAXs) which operate at wavelengths of 405 nm and 870 nm, respectively. Observations made at the PEARL observatory show a strong seasonal variation in the optical and microphysical properties of polar aerosols. In the winter and spring, the Arctic atmosphere is impacted by an anthropogenic haze that results in a sharp increase in aerosol size, number concentration, and optical properties. Arctic haze episodes typically occur in mid-December, when mineral dust events have also been observed, and end in May when formation and growth of new particles begin. Early spring exhibits the highest accumulation-mode aerosol concentrations during the year. The darkest Arctic haze aerosols have been identified as soot or black carbon transported into the Arctic from Eurasia and Alaska. Some systematic relationships among aerosol optical properties and size distribution have also been calculated and reveal a major difference between aerosols interacting with light at 405 nm and 870 nm.
Barta, Robert Michael. "Demography of sympatric arctic and snowshoe hare populations an experimental assessment of interspecific competition /." 1988. http://catalog.hathitrust.org/api/volumes/oclc/19617857.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 31-36).
Byrom, Andrea Elizabeth. "Population ecology of arctic ground squirrels in the boreal forest during the decline and low phases of a snowshoe hare cycle." Thesis, 1997. http://hdl.handle.net/2429/7269.
Full textBooks on the topic "Arctic Haze"
ill, Howarth Daniel, ed. Santa's little helper. New York, N.Y: Orchard Books, 2008.
Find full textSpinelli, Eileen. Polar bear, arctic hare: Poems of the frozen North. Honesdale, Pa: Wordsong, 2007.
Find full textill, Bernhard Durga, ed. How Snowshoe Hare rescued the sun: A tale from the Arctic. New York: Holiday House, 1993.
Find full textThe trail of the Hare: Environment and stress in a sub-Arctic community. 2nd ed. Yverdon, Switzerland: Gordon and Breach, 1993.
Find full textTrettin, Hans Peter. Pre-Carboniferous geology of the northern part of the Arctic Islands: Hazen Fold Belt and adjacent parts of Central Ellesmere Fold Belt, Ellesmere Island. Ottawa, Canada: Geological Survey of Canada, 1994.
Find full textBook chapters on the topic "Arctic Haze"
Shaw, Glenn E., and M. A. K. Khalil. "Arctic Haze." In The Handbook of Environmental Chemistry, 69–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-540-46113-5_3.
Full textKahl, Jonathan D., Joyce M. Harris, Gary A. Herbert, and Marvin P. Olson. "Intercomparison of Long-Range Trajectory Models Applied to Arctic Haze." In Air Pollution Modeling and Its Application VII, 175–85. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-6409-6_14.
Full textKoivurova, Timo. "Race to Resources in the Arctic: Have We Progressed in Our Understanding of What Takes Place in the Arctic?" In The New Arctic, 189–201. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17602-4_14.
Full textPletser, Vladimir. "The Arctic After—What Have We Learned from This Simulation?" In On To Mars!, 65–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7030-3_3.
Full textTennberg, Monica, Terhi Vuojala-Magga, and Minna Turunen. "The Ivalo River and its People: There Have Always Been Floods – What Is Different Now?" In Community Adaptation and Vulnerability in Arctic Regions, 221–37. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9174-1_9.
Full textvan Amstel, Andre, Amy Lauren Lovecraft, Maureen Biermann, Roberta Marinelli, and Douglas C. Nord. "The Assessment and Evaluation of Arctic Research – Where Have We Come From and Where Do We Need to Go in the Future?" In Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action, 413–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52324-4_19.
Full textShaw, G. "ARCTIC HAZE." In Encyclopedia of Atmospheric Sciences, 155–59. Elsevier, 2003. http://dx.doi.org/10.1016/b0-12-227090-8/00073-7.
Full textRussell, L. M., and G. E. Shaw. "ARCTIC AND ANTARCTIC | Arctic Haze." In Encyclopedia of Atmospheric Sciences, 116–21. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-382225-3.00073-6.
Full textShaw, Glenn E. "The arctic haze–arctic cloud connection." In Arctic Air Pollution, 143–50. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511565496.014.
Full textValero, Francisco P. J., and Thomas P. Ackerman. "Arctic haze and the radiation balance." In Arctic Air Pollution, 121–34. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511565496.012.
Full textConference papers on the topic "Arctic Haze"
Hoff, R. M. "Lidar observations of arctic haze." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.fg2.
Full textMasvie, Nils Andreas. "Do Arctic Hydrocarbons have a Place in Today's Market? Regulatory Issues." In OTC Arctic Technology Conference. Offshore Technology Conference, 2018. http://dx.doi.org/10.4043/29159-ms.
Full textCahay, Marc. "Full Year Drilling Season for MODU in Arctic Area." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18136.
Full textMatishov, G. G., S. L. Dzhenyuk, and S. Dahle. "Environmental Impact Assessment In The Ice-Filled Waters, Do We Have The Necessary Information?" In Arctic Shelf Oil & Gas Conference 2004. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.185.section5_12.
Full textPoole, W. J., M. Militzer, F. Fazeli, M. Maalekian, C. Penniston, and D. Taylor. "Microstructure Evolution in the HAZ of Girth Welds in Linepipe Steels for the Arctic." In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31155.
Full textTerada, Yoshio, Hiroshi Morimoto, Naoki Doi, and Masahiko Murata. "X80 UOE Pipe With Excellent HAZ Toughness." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57578.
Full textAmadioha, Alexander U., Adam C. Bannister, Simon Slater, and Martin Connelly. "HAZ Toughness: Realistic Testing for Pipeline Integrity." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49179.
Full textOkatsu, Mitsuhiro, Kenji Oi, Koichi Ihara, and Toshiyuki Hoshino. "High Strength Linepipe With Excellent HAZ Toughness." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51143.
Full textDeGeer, D., and M. Nessim. "Arctic Pipeline Design Considerations." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57802.
Full textPaulin, Mike, Jonathan Caines, Amy Davis, Duane DeGeer, and Todd Cowin. "The Status of Arctic Offshore Pipeline Standards and Technology." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19290.
Full textReports on the topic "Arctic Haze"
Beauchamp, B., C. T. Sherry, U. Mayr, J. C. Harrison, and A. Desrochers. Moscovian (Upper Carboniferous) to Sakmarian (Lower Permian) stratigraphy (Nansen and Hare Fiord formations; Unit C2), Hvitland Peninsula, northwestern Ellesmere Island, Arctic Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/202795.
Full textTrettin, H. P. Pre-carboniferous geology of the northern part of the Arctic islands, Hazen Fold Belt and adjacent parts of central Ellesmere Fold Belt, Ellesmere Island. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/194326.
Full textLasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Full textVas, Dragos, Steven Peckham, Carl Schmitt, Martin Stuefer, Ross Burgener, and Telayna Wong. Ice fog monitoring near Fairbanks, AK. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40019.
Full textDouglas, Thomas, and Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41222.
Full textAalto, Juha, and Ari Venäläinen, eds. Climate change and forest management affect forest fire risk in Fennoscandia. Finnish Meteorological Institute, June 2021. http://dx.doi.org/10.35614/isbn.9789523361355.
Full text