Academic literature on the topic 'Arduino'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arduino.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arduino"

1

Park, Se-Ho, Won-Hoe Kim, and Suk-Hyun Seo. "Development of the educational Arduino module using the helium gas airship." Modern Physics Letters B 29, no. 06n07 (March 20, 2015): 1540050. http://dx.doi.org/10.1142/s0217984915400503.

Full text
Abstract:
Various educational Arduino modules with its simplicity have been developed since Arduino's release into the market. In this study, the helium gas airship was employed to make an Arduino module by applying Arduino Mini, Bluetooth and Android applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Subekti, Subekti, Hadi Pranoto, Beni Rukasah Salmon, Setyo Qomarudin Yusuf, Suyadiyanto Suyadiyanto, Ari Slamet Ariyadi, and Abdul Hamid. "Preventive maintenance of taper bearing using Arduino in the application of industry 4.0." International research journal of engineering, IT & scientific research 6, no. 4 (July 8, 2020): 1–14. http://dx.doi.org/10.21744/irjeis.v6n4.953.

Full text
Abstract:
The maintenance of industrial tools is very important to support production. Therefore, many companies apply preventive maintenance. A national industrialization agenda discussed that it is crucial especially in the manufacturing industry. The battery-powered IoT sensing device is capable of thorough monitoring of industrial machinery enabling the development of sophisticated predictive maintenance applications under set scenarios. In this paper, we applied the concept of the Internet of Thing (IoT) system using LabVIEW via Arduino. The research method used in this study was similar to Susanto et al. (2019) namely Frequency Response Function (FRF) test to investigate the dynamic characteristics of a mechanic structure to identifying damages on X, Y, and Z axes of tapered bearing using harmonic vibration from handphones. Results of FRF and Labview via Ardunio were then compared to identify the results of measurement using LabView via Arduino. It was found much noise in the measurement occupying Labview Via Ardunio because its system does not use a filter like the one in FFT Analyser. However, in general, LabVIEW via Ardunia can predict damages in taper bearing. It is because, under broken condition, there was a two-time movement of natural frequencies from good condition.
APA, Harvard, Vancouver, ISO, and other styles
3

Rosly, Muhammad Aliff, Muhammad Farid Shaari, and Zahurin Samad. "Feasibility Study of Arduino Microcontroller Usage for IPMC Actuator Control." Applied Mechanics and Materials 793 (September 2015): 625–29. http://dx.doi.org/10.4028/www.scientific.net/amm.793.625.

Full text
Abstract:
This paper investigates the usage of Arduino microcontroller to control closed loop of IPMC actuator response designed for compact underwater application. We demonstrate control of single Ionic Polymer Metal Composite (IPMC) actuator by PID controller using MATLAB/Simulink Arduino Input Output (ArduinoIO) support package. Experimental results show that the microcontroller able to differentiate response speed and stability of IPMC actuator with different thicknesses. Based on Arduino data acquisition results, thinner IPMC (t1) has more than 5 times respond speed than thicker IPMC (t2). However, IPMC t1 has lower steady-state stability (higher noise) compared to IPMC t2 due to IPMC actuator mechanism factors and current setup limitation for Arduino microcontroller. Therefore, added with further improvements in term of analog read sampling rate and analog write resolution, Arduino microcontroller can accurately control and analyse the IPMC actuator, thus manage to replace expensive and bulky current DAQ hardware.
APA, Harvard, Vancouver, ISO, and other styles
4

Purwaningsih, Sri, Jesi Pebralia, and Rustan Rustan. "PENGEMBANGAN TEMPAT SAMPAH PINTAR MENGGUNAKAN SENSOR ULTRASONIK BERBASIS ARDUINO UNO UNTUK LIMBAH MASKER." Jurnal Kumparan Fisika 5, no. 1 (April 30, 2022): 1–6. http://dx.doi.org/10.33369/jkf.5.1.1-6.

Full text
Abstract:
ABSTRAK Penggunaan masker telah menjadi kewajiban dan gaya hidup baru bagi masyarakat menyebabkan peningkatan limbah masker. Tempat sampah masker didominasi oleh tempat sampah konvensional yakni pengguna harus membuka dan menutup penutup tempat sampah tersebut dengan menggunakan tangan atau pijakan kaki dan dapat menjadi ancaman sumber penularan baru COVID-19. Pada penelitian ini dikembangkan tempat sampah pintar untuk limbah masker menggunakan sensor dan motor servo berbasis Arduini Uno. Sensor yang digunakan adalah sensor ultrasonik HC-SR04 sebagai pendeteksi jarak dan pengukur volume sampah limbah masker medis. Motor servo befungsi membuka dan menutup tempat sampah dan dikontrol oleh Arduino Uno secara otomatis. Hasil kalibrasi sensot ultasonik HC-SR04 yang telah dilakukan menghasilkan persaman linier dan nilai R2= 0.9986. Hal ini menunjukkan sensor ultrasonik HC-SR04 dapat diaplikasikan dalam pengembangan tempat sampah pintar. Kata kunci: Arduino Uno, Motor Servo, Sensor Ultrasonik, Tempat Sampah Pintar ABSTRACT The use of masks has become a requirement and a new lifestyle for the community has led to an increase in mask waste. The trash bin for masks waste are dominated by conventional trash bin, where users have to open and close the lid of the trash bin by using hands or footrests and this can pose a threat to a new source of COVID-19 transmission. In this study, a smart trash bin for mask waste was developed using an Arduino Uno-based sensor and servo motor. The sensor used is the ultrasonic sensor HC-SR04 as a distance sensor and measuring the volume of medical mask waste. The servo motor used to open and close the trash bin and is controlled by Arduino Uno automatically. The results of the ultrasonic sensor HC-SR04 calibration that have been carried out produce a linear equation and the value of R2 = 0.9986. This shows that the ultrasonic sensor HC-SR04 can be applied in the development of smart trash bins. Keywords: Ardunino Uno, Servo Motor, Ultrasonic Sensor, Smart Trash
APA, Harvard, Vancouver, ISO, and other styles
5

Dolinay, Jan, Petr Dostalek, and Vladimir Vasek. "Arduino Debugger." IEEE Embedded Systems Letters 8, no. 4 (December 2016): 85–88. http://dx.doi.org/10.1109/les.2016.2619692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gheorghe, A. C., and C. I. Stoica. "Wireless Weather Station Using Arduino Mega and Arduino Nano." Scientific Bulletin of Electrical Engineering Faculty 21, no. 1 (April 1, 2021): 35–38. http://dx.doi.org/10.2478/sbeef-2021-0008.

Full text
Abstract:
Abstract The study aims for the development of a wireless weather station composed of two modules, the outdoor module that takes the temperature and humidity from the environment through the DHT22 sensor and transmits the information through the n24RFL01+ communication module to the indoor module. The indoor module takes the temperature and humidity from the environment and displays it on a 3.5” TFT display along with the information received from the outdoor module, also the date and time are displayed. The development boards used for the weather station are Arduino Mega 2560 for the indoor module and Arduino Nano for the outdoor module. The n24RFL01+ wireless communication module, depending on the model, can transmit data at a distance of 800+ m and the DHT22 sensor is very accurate. The programming code used for the development of the weather station is made in Arduino IDE. Arduino IDE is an open-source software that is used to write and upload code to the Arduino developing boards.
APA, Harvard, Vancouver, ISO, and other styles
7

Murthy, Mora Narasimha, G. Ravinder, and C. J. Sreelatha. "Designing Low-Cost Arduino Powered Spin Coater for Thin Film Deposition." Advanced Materials Research 1169 (March 18, 2022): 49–55. http://dx.doi.org/10.4028/p-g184d4.

Full text
Abstract:
In the present work, we have designed a low-cost spin coater using the Arduino Uno board. The advantage of selecting Ardunio is, it has pulse width modulation (PWM) based pins. Depending on the width of the pulse, the output voltage changes which will intern changes the speed of the DC motor connected to the PWM pin. The thickness of deposited film using spin coater depends on RPM and duration of rotation. The rotation of the substrate during deposition has three stages a gradual increase in RPM, maintaining constant RPM over a while, and a gradual decrease in RPM. All these parameters can be controlled by an Arduino board. An Aluminum doped Zinc Oxide film was deposited on glass substrate using Arduino based spin coater. X-ray diffraction, UV – VIS spectroscopy, and FTIR methods were used as characterization techniques. Hexagonal crystal structure of deposited AZO layer was confirmed by XRD and optical band gap, transparency were calculated by UV-VIS spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
8

Gfroerer, Tim, Michael Adenew, and Ella Williams. "Sunny with a Chance of Servos: Solar-Powered Arduinos." Physics Teacher 60, no. 9 (December 2022): 724–26. http://dx.doi.org/10.1119/5.0065597.

Full text
Abstract:
The Arduino microcontroller is finding its way into labs throughout undergraduate physics curricula, from introductory courses to a variety of beyond-the-first-year laboratory classes. At Davidson College, we use Arduinos in a gateway STEM course for students who are interested in energy and the environment. Students learn to build simple circuits and write the accompanying Arduino code to control the temperature in solar-powered model buildings. To make the models fully solar powered, the Arduino itself must be powered by the Sun—no batteries allowed! Hence, we replace the 9-V battery that is usually used to power an Arduino with a 13.5 cm × 12.5 cm 9-V solar panel (DFRobot part #FIT0330), which can generate a maximum short-circuit current of approximately 200 mA. We find that the solar panel works well for most tasks, including temperature measurements, liquid-crystal display (LCD) illumination, and SD card module operation, but cannot generate enough power to drive a servo motor, which needs several hundred milliamps. For these situations, a 9-V, 1-F capacitor connected in parallel with the solar panel can store energy during the rest period between brief high-current operations and supplement the solar panel when higher power is required.
APA, Harvard, Vancouver, ISO, and other styles
9

Rukmana, Susi Tarwianti Endra, Afrizal Mayub, and Rosane Medriati. "PROTOTYPE ALAT PENDETEKSI DAN PENGUSIR TIKUS PADA PEMBIBITAN KELAPA SAWIT BERBASIS ARDUINO UNO." Jurnal Kumparan Fisika 2, no. 1 (April 30, 2019): 9–16. http://dx.doi.org/10.33369/jkf.2.1.9-16.

Full text
Abstract:
Penelitian ini bertujuan untuk menghasilkan rancangan pengembangan prototype alat pendeteksi dan pengusir tikus pada pembibitan kelapa sawit berbasis Arduino Uno. Penelitian ini menggunakan metode penelitian Research and Development. Tahapan dalam penelitian ini meliputi: perencanaan, produksi dan evaluasi. Alat pendeteksi dan pengusir tikus pada pembibitan kelapa sawit ini tersusun oleh komponen-komponen elektronik, seperti sensor PIR sebagai pendeteksi pergerakan tikus, Arduino uno sebagai pengendali utama sistem dan penghubung modul GSM SIM900A. GSM SIM 900A berfungsi untuk alat komunikasi antara alat dengan user dalam satu arah. Alat pendeteksi dan pengusir tikus ini akan mengusir tikus dengan menggunakan suara yang dikeluarkan oleh speaker dari audio generator dengan frekuensi ultrasonik. Berdasarkan pengujian yang telah dilakukan pada alat yang dibuat, didapat bahwa prototype alat pendeteksi dan pengusir tikus pada pembiitan kelapa sawit berbasis Arduino Uno layak untuk digunakan untuk mendeteksi dan mengusir tikus. Kata kunci: sensor PIR, Arduio Uno, GSM SIM900A, Audio Generator, Research and Development (R&D)
APA, Harvard, Vancouver, ISO, and other styles
10

Roumen, Geert Jacob, and Ylva Fernaeus. "Envisioning Arduino Action." International Journal of Child-Computer Interaction 29 (September 2021): 100277. http://dx.doi.org/10.1016/j.ijcci.2021.100277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Arduino"

1

Mustakangas, A. (Aappo). "Arduino-konseptin sovellutusesimerkkejä." Bachelor's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201605101655.

Full text
Abstract:
Arduino on avoimeen lähdekoodiin ja laitteistoon perustuva kehitysalusta. Arduino -konsepti koostuu erilaisista kontrollerikorteista ja suuresta kehittäjäyhteisöstä. Arduinokortti on helposti ohjelmoitava sille tarkoitetulla ohjelmalla ja sille löytyy runsaasti ohjeita, esimerkkejä ja projekteja. Tässä tekstissä kerrotaan joitakin esimerkkejä näistä töistä ja pyritään havainnollistamaan Arduinon mahdollisuuksia
Arduino is a development board based on open source code and hardware. Arduino consept is made up of different kinds of microcontrollers and large Internet community. Arduino board is easily programmable with computer program made for it. Lot of guides, examples and projects can be found from Internet and literature. This work shows some examples and attempts to give understanding of Arduino’s possibilities
APA, Harvard, Vancouver, ISO, and other styles
2

Столяров, В. Г., and Л. П. Голубєв. "Дистанційне керування Arduino." Thesis, КНУТД, 2016. https://er.knutd.edu.ua/handle/123456789/5206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jyrkkä, J. (Joonas). "Aurinkopaneelien mittausjärjestelmä Arduino-kehitysalustalle." Bachelor's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201602051124.

Full text
Abstract:
Työssä suunniteltiin Arduino Uno-kehitysalustaan liitettävä virtaohjattu aktiivikuorma ja mittausjärjestelmä pienitehoisille aurinkopaneeleille. Jännite- ja virtamittaukset ja mittausdatan kerääminen toteutettiin Arduino-alustalla. Työssä käydään lyhyesti läpi mittauspiirin analogiasuunnittelu ja toimintaperiaate. Suunnittelu ja simulointi toteutettiin LTSpice-simulointiohjelmalla ja piirilevyn suunnittelu KiCAD-suunnitteluohjelmalla. Mittaukset toteutettiin Oulun yliopiston IEC 60904-3 -standardiin kykenevässä laboratoriossa. Mittaustulosten perusteella voidaan todeta mittauspiirin sopivan pienten aurinkopaneelien virta-jännite -käyrän mittaamiseen, ja mitattujen aurinkopaneelien vastaavan valmistajan tuotetietoja. Mittaukset osoittivat tarvetta suurempien aurinkopaneelien mittauslaitteistolle, jonka toteuttamismahdollisuuksia pohditaan työn lopussa
The purpose of this Bachelor’s thesis was to design current controlled Arduino Uno photovoltaics active load and measurement board. Voltage and current measurements and data logging were implemented on Arduino independently. In this work analogue planning and operating principles of the circuit are explained briefly. Planning and simulation were done with LTSpice simulation software and PCB designing was sketched with KiCAD designing software. Measurements took place in IEC 60904-3 standard test conditions capable EMC laboratory at University of Oulu. On the basis of the measurements designed board is ideal for measuring small solar cells and the results show that measured cells met manufacturer’s specifications based on datasheet. Measurements pointed out need for more capable measurement circuit for bigger cells therefore possibility of the circuit is evaluated
APA, Harvard, Vancouver, ISO, and other styles
4

Hossameldin, Abdelwahed, and O. Kravchuk. "Prosthetic hand using ARDUINO." Thesis, ХНУРЕ, 2021. https://openarchive.nure.ua/handle/document/15691.

Full text
Abstract:
This paper describes the field of prosthetics has seen many accomplishments especially with the integration of technological advancements. There are different types of hand (robotic, surgical, bionic, prosthetic and static) are analyzed in terms of resistance, usage, flexibility, cost and potential. We use Servo to control the fingers by connect the fingers to servo by cord after we connect it to the finger and threading it through all the narrow holes, the opening ‘and closing ‘finger positions are marked.
APA, Harvard, Vancouver, ISO, and other styles
5

Guan, Xiao. "Connecting Arduino Sensors to SensibleThings." Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-28229.

Full text
Abstract:
The Internet of Things is going to bring the Internet into every objectsaround us. To enable this ambitious idea, tiny devices have to be connected within the global Internet. Such devices are extreme small so it’sbecoming a challenge to connect it to the Internet via TCP/IP. The thesispresents a way of connecting microcontrollers with other devices to jointlyform a distributed network.The thesis investigates and takes advantage of Internet of Things platform to implement the connection. SensibleThings is used as the platform. Limited by the hardware, microcontroller can’t run such a bloatedplatform. The thesis investigates different microcontrollers characteristics and chooses Arduino as a representative in the work. Then it realizes a bridge connection between Arduino and SensibleThings. Arduinois connected with a single-board computer, Raspberry Pi by a USB cable.SensibleThings is running on Raspberry Pi to process the network messages. The channel throughput, latency and general usability are measured and interoperated. As a result, the data indicates this is a promising, flexible, cost effective network topology. Microcontroller can join adistributed network by the bridge. Comparing to dedicate hardware solution, the bridge connection cuts down the implementation difficultiesand cost. The thesis also covers possible problems in such connection andproposes future work.
APA, Harvard, Vancouver, ISO, and other styles
6

Дударенко, В. О. "Розумний будинок на платформі Arduino." Thesis, Cумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/49041.

Full text
Abstract:
Проекти «розумних» будинків на даний момент дуже активно обговорюються і реалізуються в усьому світі. Мета проекту «Розумний будинок» розробити систему для автоматичного керування освітленням, температурою, вологістю, сигналізацією в кімнаті, квартирі, гаражі, теплиці, системи автополиву і т.д.
APA, Harvard, Vancouver, ISO, and other styles
7

Донченко, А. А. "Скануючий тепловізор на основі Arduino." Thesis, Національний авіаційний університет, 2017. http://er.nau.edu.ua/handle/NAU/27144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ERICSON, JOAKIM, and ADAM WESTERMARK. "CheckMate : Remote Arduino powered chess." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279824.

Full text
Abstract:
Board games are on the rise and chess is no exception. However, in an increasingly digitalized world these board games lack something in comparison to digitalized games, being able to play with anyone anywhere. This project aimed to combine these two worlds by being a physical game of chess where one could play against an opponent from far away. CheckMate is a robot consisting of an acrylic frame and various electronic components, such as an electromagnet, two stepper motors, a Hall eect sensor and a WiFi module. The electromagnet and Hall eect sensor were able to move using a belt and pulley system. This allowed magnetic pieces to be identified and dragged across the board. The board then communicated the location of all the pieces on the board, using Wifi, to an website that also kept track on whose turn it was. The result of this project was a robot that was able to perform all the moves necessary on the chessboard as well as communicating to the website. When moving a piece from one location to another the piece repelled other pieces on its way. However, this was deemed to be acceptable since the pieces were not moved too large of a distance for the electromagnet to attract them when moved into its square. One move that the robot was not able to perform was castling. The results can therefore bee seen as a starting point toward further developments.
Brädspels popularitet stiger och schack är inget undantag. Dock saknar brädspel de digitala spelens möjlighet att spela med vem som helst varsomhelst. Detta projekt ville bygga över klyftorna mellan dessa två världar genom att vara ett fysiskt schackspel med de digitala spelens möjligheter. CheckMate är en robot byggd av akrylplast och diverse elektroniska komponenter sådan som en elektromagnet, två stegmotorer, en halleektsensor och en WiFi-modul. Elektromagneten och halleektsensorn förflyttades via ett system av kuggremmar drivet av stegmotorerna. Elektromagneten användes för att flytta pjäserna på brädet medan halleektsensorn användes vid kartläggning av pjäsernas position på brädet. Brädet kommunicerade, via trådlöst nätverk, till en hemsida som användes för att spara och överföra pjäsernas positioner. Projektet resulterade i en robot som kunde göra alla motsvarande drag hämtat från hemsidan. Dock så repellerade en flyttande pjäs på de stationära pjäserna när den passerade. Detta ansågs dock vara acceptabelt då elektromagneten kunde föra tillbaka pjäserna när den befann sig i dess ruta. Något som projektet ej lyckades utföra var draget rockad. Resultatet av detta projekt kan ses som en startpunkt i en vidareutveckling eller en färdig produkt vid obesvärad spelning.
APA, Harvard, Vancouver, ISO, and other styles
9

Lejarza, Lander. "Gas Data Acquisition using Arduino." Thesis, Högskolan i Gävle, Elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24607.

Full text
Abstract:
The aim of this project is to acquire gas data using an Arduino microcontroller. This project is part of a bigger project called The electronic nose where mechanical, thermal, electrical, electronic and software parts work together. It is the continuation of a project handled before where mainly the mechanical, thermal and electrical parts were done.   The whole e-Nose project is divided in 4 main subcategories: general mechanical structure, thermal and piston electric circuit, gas sensors and software. My work will be focused in the last two subcategories of the general project.   The sample to be measured is placed inside of a moving cylinder, which will lift up the sample reaching near the sensors and warming it using a thermal resistance, to release more odor. That is where the sensors act, synchronized with the piston, will get the data through the Arduino and sends it to the computer to be analysed. The sensors will be activated using an Arduino Mega 2560 and transferred to the computer to be analysed with MatLab.   To control the measurement, a push button, a LCD display and a LED will be placed; having like this a full control of the project and an easy interface for the user. Six gas sensors will be used, which will be enough to be able to differentiate between different kind of gases. With such variety it is possible to categorize between combustible gas (methane, propane, LPG etc.), NH3, alcohol and more gases.   The e-Nose will be able to measure different gases in more than ways depending on the program we choose. For a more accurate response, more sensors would be needed using a sensor fusion method or more accurate sensors.
APA, Harvard, Vancouver, ISO, and other styles
10

Motuzas, Armandas. "Patalpų apsaugos sistemos kūrimas Arduino mikrokontroleriu." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140716_143615-40294.

Full text
Abstract:
Darbe buvo susipažinta su apsaugos sistemomis, Arduino platforma ir Android sistema. Projektuojant standartinę apsaugos sistemą su Arduino mikrokontroleriu, buvo pasirinktos tinkamiausios dalys. Rasti ir išanalizuoti galimi komunikavimo būdai tarp Arduino platformos ir Android operacinės sistemos. Pasirinktu geriausiu komunikavimo būdu, buvo realizuota standartinė apsaugos sistema, kurią galima valdyti nuotoliniu būdu internetiniu puslapiu arba Android programėle.
In this Project were been familiarized with security systems, Arduino platform and Android system. Designing a standart security system with Arduino microcontroller was choosen the most suitable components. Was choosed and analized possible ways to communicate between the Arduino platform and the Android operating system. Choosen best way of comunication, has been realized in standart security system that can be operated by remote with web page or Android application.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Arduino"

1

1981-, Williams Josh, ed. Arduino. Ann Arbor, Michigan: Cherry Lake Publishing, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arduino Wearables. [Berkeley, Calif.]: Apress, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barrett, Steven F. Arduino I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-79915-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barrett, Steven F. Arduino III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-79923-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barrett, Steven F. Arduino II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-79919-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wheat, Dale. Arduino Internals. Berkeley, CA: Apress, 2011. http://dx.doi.org/10.1007/978-1-4302-3883-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Rick, and Dan Cervo. Pro Arduino. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-3940-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Olsson, Tony. Arduino Wearables. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4360-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oxer, Jonathan, and Hugh Blemings. Practical Arduino. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2478-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cameron, Neil. Arduino Applied. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-3960-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Arduino"

1

Bräunl, Thomas. "Arduino." In Embedded Robotics, 53–65. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-0804-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cook, Mike. "Basic Arduino." In Arduino Music and Audio Projects, 3–30. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-1721-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Javed, Adeel. "Arduino Basics." In Building Arduino Projects for the Internet of Things, 3–13. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1940-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dunbar, Norman. "Arduino Compilation." In Arduino Software Internals, 9–72. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5790-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dunbar, Norman. "Arduino Classes." In Arduino Software Internals, 179–244. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5790-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cameron, Neil. "Build Arduino." In Arduino Applied, 325–37. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3960-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Purdum, Jack. "Arduino Libraries." In Beginning C for Arduino, 211–30. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4777-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Purdum, Jack. "Arduino C." In Beginning C for Arduino, 21–36. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4777-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Purdum, Jack. "Arduino Libraries." In Beginning C for Arduino, 277–98. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0940-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Purdum, Jack. "Arduino C." In Beginning C for Arduino, 23–44. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0940-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Arduino"

1

Krauss, Ryan W. "Teaching Real-Time Control Using Arduino: Timer ISR vs delayMicroseconds." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5140.

Full text
Abstract:
Arduino microcontrollers are inexpensive and easy to program, making them very popular among hobbyists and “makers”. Arduinos are also surprisingly capable when it comes to creating real-time feedback control systems. This paper investigates several facets of using Arduino microcontrollers to teach students to create real-time control systems. A simplified approach to enforcing the real-time execution of a control law is introduced based on the delayMicroseconds function and its accuracy is compared to the standard timer interrupt approach. Initial assessment data is presented on whether or not the delayMicroseconds approach is easier for students to understand. The accuracy of the Arduino’s built-in timing function micros is also investigated.
APA, Harvard, Vancouver, ISO, and other styles
2

Krauss, Ryan W. "Evaluation of a Low-Cost Microcontroller for Real-Time Control Education and Prototyping." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5846.

Full text
Abstract:
Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghosh, Arijit, Hiranmoy Roy, and Soumyadip Dhar. "Arduino Quadcopter." In 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 2018. http://dx.doi.org/10.1109/icrcicn.2018.8718695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

อินทรายุทธ, สิทธิพงศ์, and ธราธิป ภู่ระหงษ์. "การพัฒนาเครื่องรีดลิ้นแคนควบคุมอัตโนมัติด้วยไมโครคอนโทรลเลอร์ Arduino." In The 9th National Conference on Technical Education. The Faculty of Technical Education (FTE), KMUTNB, 2016. http://dx.doi.org/10.14416/c.fte.2016.11.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chochiang, Kitsiri, Kullawat Chaowanawatee, Kittasil Silanon, and Thitinan Kliangsuwan. "Arduino Visual Programming." In 2019 23rd International Computer Science and Engineering Conference (ICSEC). IEEE, 2019. http://dx.doi.org/10.1109/icsec47112.2019.8974710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skrlec, D., V. Simovic, and A. Pender. "Arduino based Quadcopter." In 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2022. http://dx.doi.org/10.23919/mipro55190.2022.9803322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weeks, Michael. "Arduino controlled brewing." In SoutheastCon 2015. IEEE, 2015. http://dx.doi.org/10.1109/secon.2015.7132950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buechley, Leah, Mike Eisenberg, Jaime Catchen, and Ali Crockett. "The LilyPad Arduino." In Proceeding of the twenty-sixth annual CHI conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1357054.1357123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Comlan, Maurice, David Delfieu, and Narcisse Assogba. "Grafcet to Arduino: Edit and Upload Grafcets on an Arduino Boards." In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2021. http://dx.doi.org/10.1109/iceccme52200.2021.9590933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Voštinár, Patrik, Nika Klimová, and Jarmila Škrinárová. "BEFORE WE START ARDUINO." In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.1748.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Arduino"

1

Frost, Sandra L. Introduction to Arduino Uno. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1412918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balyk, Nadiia, Svitlana Leshchuk, and Dariia Yatsenyak. Developing a Mini Smart House model. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3741.

Full text
Abstract:
The work is devoted to designing a smart home educational model. The authors analyzed the literature in the field of the Internet of Things and identified the basic requirements for the training model. It contains the following levels: command, communication, management. The authors identify the main subsystems of the training model: communication, signaling, control of lighting, temperature, filling of the garbage container, monitoring of sensor data. The proposed smart home educational model takes into account the economic indicators of resource utilization, which gives the opportunity to save on payment for their consumption. The hardware components for the implementation of the Mini Smart House were selected in the article. It uses a variety of technologies to conveniently manage it and use renewable energy to power it. The model was produced independently by students involved in the STEM project. Research includes sketching, making construction parts, sensor assembly and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Research includes sketching, making some parts, assembly sensor and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Approbation Mini Smart House researches were conducted within activity the STEM-center of Physics and Mathematics Faculty of Ternopil Volodymyr Hnatiuk National Pedagogical University, in particular during the educational process and during numerous trainings and seminars for pupils and teachers of computer science.
APA, Harvard, Vancouver, ISO, and other styles
3

Хараджян, Н. А., and А. В. Командирчик. Розробка смарт-пристрою для людей з особливими потребами на основі програмно-апаратного комплексу Arduino. Видавництво ОНАХТ, April 2021. http://dx.doi.org/10.31812/123456789/4991.

Full text
Abstract:
Проблеми людей із особливими потребами стає дедалі гострішою та актуальнішою. Адже в умовах боротьби з епідемією COVID-19 як ніколи раніше на перший план виступає значущість найвищої соціальної цінності – здоров’я. Це відбувається внаслідок зростання захворюваності населення України і певної ізольованості від навколишнього світу. В світі постійно розробляються пристрої для людей з особливими потребами. Але перед кожним розробником постає питання щодо зменшення вартості пристрою (щоб він був доступний), зменшення його ваги та покращення функціональності, урахування індивідуальних особливостей людини. В статті представлено розробка смарт-пристрою для людей з особливими потребами на основі програмно-апаратного комплексу Arduino.
APA, Harvard, Vancouver, ISO, and other styles
4

Головко, Д. В. Упровадження елементів STEM-освіти під час виконання лабораторних робіт з фізики. [б. в.], 2019. http://dx.doi.org/10.31812/123456789/4423.

Full text
Abstract:
Стаття присвячена огляду можливостей використання платформи Arduino як елементу STEM-освіти. Зумовлена можливістю підвищення рівня актуалізації пізнавальної діяльності учнів, зацікавленості предметом та поліпшення міжпредметних зав’язків. Оглянуто проблеми впровадження STEM-освіти в сучасний освітній процес.
APA, Harvard, Vancouver, ISO, and other styles
5

Головко, Д. В. Упровадження елементів STEM-освіти під час виконання лабораторних робіт з фізики. [б. в.], 2019. http://dx.doi.org/10.31812/handle/123456789/4423.

Full text
Abstract:
Стаття присвячена огляду можливостей використання платформи Arduino як елементу STEM-освіти. Зумовлена можливістю підвищення рівня актуалізації пізнавальної діяльності учнів, зацікавленості предметом та поліпшення міжпредметних зав’язків. Оглянуто проблеми впровадження STEM-освіти в сучасний освітній процес.
APA, Harvard, Vancouver, ISO, and other styles
6

Goossen, C. M. Monitoring bezoekers in het Renkumse Beekdal : case-studie Internet of Things: Combinatie PIR-sensor, LoRa en Arduino. Wageningen: Wageningen University & Research Wetenschapswinkel, 2017. http://dx.doi.org/10.18174/428633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Claus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.

Full text
Abstract:
Currently, several studies and experiments are being done to create a new generation of ultra-low-power wearable sensors. For instance, our group is currently working towards the development of a high-performance flexible pressure sensor. However, with the creation of new sensors, a need for a standard test method is necessary. Therefore, we opted to create a standardized testbed to evaluate the pressure applied to sensors. A pulse wave is generated when the heart pumps blood causing a change in the volume of the blood vessel. In order to eliminate the need of human subjects when testing pressure sensors, we utilized polymeric material, which mimics human flesh. The goal is to simulate human pulse by pumping air into a polymeric pocket which s deformed. The project is realized by stepper motor and controlled with an Arduino board. Furthermore, this device has the ability to simulate pulse wave form with different frequencies. This in turn allows us to simulate conditions such as bradycardia, tachycardia, systolic pressure, and diastolic pressure.
APA, Harvard, Vancouver, ISO, and other styles
8

Maroñas, Cecilia, Nicolás Rezzano, and Marcello Basani. El saneamiento urbano en Montevideo: 40 años de logros y lecciones aprendidas hacia un servicio adecuado y universal. Inter-American Development Bank, May 2021. http://dx.doi.org/10.18235/0003281.

Full text
Abstract:
Un elemento clave para evitar repetir los errores y avanzar hacia un futuro mejor consiste en aprender de la propia experiencia. En ese sentido, todos lo acontecido durante los casi 40 años de arduo trabajo en el desarrollo del sistema de saneamiento y drenaje de Montevideo contiene conocimientos prácticos muy valiosos. Extraer lecciones de tales vivencias permite aprovechar el camino transitado y mejorar el desempeño de los futuros proyectos que se desarrollen en la región. Esto es así, en gran medida, porque la ejecución ininterrumpida de las distintas etapas del Plan de Saneamiento Urbano de Montevideo lo han convertido en un caso de éxito sin precedentes a nivel latinoamericano. En este trabajo se identifican cuatro grandes grupos de lecciones aprendidas, vinculados con: (i) aspectos de carácter institucional, (ii) aspectos relativos al sistema financiero-comercial, (iii) aspectos relacionados con la ejecución de los proyectos que formaron y forman parte del PSU, y (iv) aspectos de carácter social y comunicacional.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography