Academic literature on the topic 'Arduino NANO'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arduino NANO.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arduino NANO"

1

Gheorghe, A. C., and C. I. Stoica. "Wireless Weather Station Using Arduino Mega and Arduino Nano." Scientific Bulletin of Electrical Engineering Faculty 21, no. 1 (April 1, 2021): 35–38. http://dx.doi.org/10.2478/sbeef-2021-0008.

Full text
Abstract:
Abstract The study aims for the development of a wireless weather station composed of two modules, the outdoor module that takes the temperature and humidity from the environment through the DHT22 sensor and transmits the information through the n24RFL01+ communication module to the indoor module. The indoor module takes the temperature and humidity from the environment and displays it on a 3.5” TFT display along with the information received from the outdoor module, also the date and time are displayed. The development boards used for the weather station are Arduino Mega 2560 for the indoor module and Arduino Nano for the outdoor module. The n24RFL01+ wireless communication module, depending on the model, can transmit data at a distance of 800+ m and the DHT22 sensor is very accurate. The programming code used for the development of the weather station is made in Arduino IDE. Arduino IDE is an open-source software that is used to write and upload code to the Arduino developing boards.
APA, Harvard, Vancouver, ISO, and other styles
2

Suradi, Suradi, Faridah Faridah, and A. Patala Putra. "AUTOMATIC HAND DRYER BERBASIS ARDUINO NANO." ILTEK : Jurnal Teknologi 13, no. 01 (April 14, 2018): 1871–76. http://dx.doi.org/10.47398/iltek.v13i01.125.

Full text
Abstract:
Automatic Hand driyer ini bisa memberikan kemudahan pengeringan tangan basah. Di Rumah Sakit, selalu menemukan Perawat dan Petugas Kesehatan lainnya dianjurkan mencuci tangan setelah menghubungi pasien atau bahan kimia lainnya agar tidak diserang kuman di tangan. Sehingga membuat Automatic Hand Dryer Berbasis Arduino Nano, Tujuan penelitian ini adalah menggunakan mikrokontroler Arduino Nano dan sensor Ultrasound sebagai alat kontrol pengering tangan. Menggunakan sensor Ultrasound untuk mendeteksi gerakan tangan, mendapatkan informasi dan mengirimkannya ke mikrokontroler. Penelitian ini menggunakan mikrokontroler Arduino Nano untuk memproses input dan menggerakkan motor AC pada pengering tangan. Pengering tangan otomatis ini bisa memberikan kemudahan pengeringan tangan basah anda sehingga bisa menghemat waktu dan tenaga. Kesimpulan bahwa pemanfaatan mikrokontroler arduino nano menggunakan sensor ultrasound sebagai alat kontrol pengering tangan telah dikembangkan.
APA, Harvard, Vancouver, ISO, and other styles
3

Wardhana, Firza, Sunu Pradana, and Khairuddin Karim. "Pemrograman Sistem Arduino Nano dan Arduino Mega Menggunakan Ladder Logic." PoliGrid 2, no. 2 (August 19, 2021): 35. http://dx.doi.org/10.46964/poligrid.v2i2.704.

Full text
Abstract:
PLC merupakan salah satu alat kendali yang dirancang untuk mengendalikan dan mengatur jalannya suatu proses industri secara otomatis. Salah satu bahasa yang umum dipakai untuk memrogram PLC adalah ladder logic. Untuk dapat melakukan pemrograman dengan baik, diperlukan waktu yang cukup untuk mempelajari dengan cara mencoba langsung di sistem alat. Tetapi harga perangkat PLC industrial cukup mahal, sehingga menyulitkan mahasiswa untuk dapat dengan leluasa mempelajarinya. Dengan demikian diperlukan suatu cara agar mahasiswa dapat berlatih secara intensif tanpa terkendala faktor biaya yang mahal. Salah satu upaya adalah dengan mencoba memanfaatkan sistem Arduino Nano dan Arduino Mega yang dapat diprogram dengan ladder logic melalui perangkat lunak Outseal Studio dan LDmicro. Dalam makalah ini disampaikan bagaimana sistem Arduino yang lebih murah dapat dimanfaatkan untuk mempelajari ladder logic. Pengujian dilakukan dengan simulasi dasar sistem praktikum airblast, milling, pompa air dan ATS, dengan hasil sistem bekerja sesuai dengan deskripsi dan program yang diterapkan. Alat yang dihasilkan ini dapat menjadi alternatif untuk pembelajaran mahasiswa.
APA, Harvard, Vancouver, ISO, and other styles
4

Nuraiman, Nuraiman, Mardiana Ahmad, and Suryani As’ad. "Grade Komposisi Vitamin A Air Susu Ibu (ASI) pada Penyimpanan Microkontroler Arduino Nano dengan Penyimpanan pada Lemari Pendingin dan Suhu Ruangan." Poltekita : Jurnal Ilmu Kesehatan 14, no. 2 (November 1, 2020): 100–103. http://dx.doi.org/10.33860/jik.v14i2.172.

Full text
Abstract:
Penelitan ini bertujuan membandingkan komposisi Vitamin A pada ASI yang disimpan menggunakan Mikrocontroller Arduino Nano, dengan Lemari Pendingin dan Suhu Ruangan. Penelitian ini berjenis percobaan murni. Teknik penyampelan yang digunakan adalah penyampelan purposive dan diperoleh sebanyak 45 sampel. Kadar komposisi Vitamin A ASI diuji dengan Spektrofotometrik UV-Vis, Perlakuan dilakukan dengan memompa menggunakan pompa doubell pumping kemudian disimpan menggunakan Mikrocontroller Arduino Nano, Lemari Pendingin dan Suhu Ruangan selama 8 jam, Analisa data menggunakan uji One-Way Anova. Hasil penelitian menunjukan bahwa komposisi Vitamin A ASI yang disimpan menggunakan penyimpanan Mikrocontroller Arduino Nano pada suhu 300C lebih tinggi dibanding ASI yang disimpan pada Lemari pendingin pada suhu 40C dan pada Suhu Ruangan (p=0,064). Vitamin A lebih baik disimpan menggunakan Mikrocontroller Arduino Nano.
APA, Harvard, Vancouver, ISO, and other styles
5

Haryani, Prita. "Bimbingan Teknis Pemrograman Arduino Robot Soccer Untuk Siswa SMP IT dan SMP Negeri 10 Magelang." Jurnal Penelitian dan Pengabdian Kepada Masyarakat UNSIQ 6, no. 1 (January 30, 2019): 21–25. http://dx.doi.org/10.32699/ppkm.v6i1.495.

Full text
Abstract:
Perkembangan teknologi saat ini berkembang dengan pesat, salah satunya yaitu teknologi robotika. Teknologi robotika saat ini sangat menarik untuk dipelajari oleh generasi muda khususnya pelajar. Melalui berbagai kegiatan edukatif, pelajar mengimplementasikan sains secara mudah, murah dan menyenangkan. Salah satu kegiatan edukatif dalam memperkenalkan robotika kepada pelajar adalah bimbingan teknik pemrograman Arduino Nano Robot Soccer. Peserta pelatihan adalah siswa SMP IT dan SMP Negeri 10 Magelang. Pelatihan pemrograman ini menggunakan pemrograman Arduino sebagai media pemrograman pada robot soccer. Metode pelaksanaan dalam bimbingan ini adalah metode kolaboratif dari metode ceramah yang disampaikan oleh narasumber terkait dengan materi pemrograman arduino nano dan metode praktik pemrograman arduino yang diimplementasikan oleh siswa terhadap robot soccer yang mereka buat. Kegiatan bimbingan teknis ini berjalan dengan lancar, siswa dan guru pendamping antusias untuk mendengarkan penjelasan tentang Pemrograman Arduino Robot Soccer. Dari hasil pelatihan, siswa sudah dapat memahami tentang pemrograman arduino dan berhasil memprogam robot soccer beroda tersebut dengan pemrograman arduino nano.
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Sarah. "Digital Garbage System using Arduino NANO." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2967–71. http://dx.doi.org/10.22214/ijraset.2021.37880.

Full text
Abstract:
Abstract: Garbage bins or dust bins are those that are put in public places in cities and are currently overflowing due to an increase in waste every day. It harms people's health by spreading deadly infections. To avoid this, smart bins will be designed with sensors such as an infrared sensor, a weight sensor, a photoelectric sensor, and radio frequency identification (RFID) card reader. If someone throws trash into the smart bins, a photoelectric sensor will identify the clear representation objects, and a weight sensor will be positioned beneath the smart bin to calculate the percentage of garbage present it will forward the information to the authorities in charge of that specific location. As a result, the relevant authorities can get messages until the bin is squished, and each bin is assigned a unique ID, which will appear on the screen of the respected officer, allowing them to take fast action. If a person is within two meters radius of the bin that contains an RFID CARD READER, the RFID reader will read all of that person's information and send a message to him about what they placed into the bin, as well as an appreciation message for using the bin. Keywords: Arduino NANO, GSM Module, Smart Dustbin, IoT, Arduino Uno.
APA, Harvard, Vancouver, ISO, and other styles
7

Borkar, Harshita, Mohan Rambhad, Kalyani Paunikar, Ankit Karanjikar, and Dr J. S. Gawai. "Color Sorting System Using Arduino Nano." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (March 31, 2022): 487–91. http://dx.doi.org/10.22214/ijraset.2022.40658.

Full text
Abstract:
Abstract: Sorting of object is a vital mechanical method within which troublesome work is kind of required. Chronic manual arrangement makes consistency troubles. Machines will perform in the main dreary assignments superior to human beings. Working man exhaustion on ordered producing structures may {end up} in reduced execution, and purpose troubles in holding up object fine. A worker who has been showing analysis enterprise over and over could in addition within the end ditch to acknowledge the color of tem, however a machine in no way. In this paper we have describe on the sorting machine which can be help to sort the products. There’s a large usage of the many product in our day to day life, associate degreed producing of this products are tired many large scale and tiny scale industries. Arrangement makes quality consistency issue. Today the most issue that's visage when the assembly is of sorting arrangement of things in an trade may be a uninteresting trendy process, that is by and huge done physically. We are implementing the color sorting machine with the new feature which can count the marbles as well as detect. Keywords: Color Sorting, TCS3200, Arduino Nano, LCD display.
APA, Harvard, Vancouver, ISO, and other styles
8

Kryvonos, Oleksandr M., Yevhenii V. Kuzmenko, and Svitlana V. Kuzmenko. "ОГЛЯД ТА ПЕРСПЕКТИВИ ВИКОРИСТАННЯ ПЛАТФОРМИ ARDUINO NANO 3.0 У ВИЩІЙ ШКОЛІ." Information Technologies and Learning Tools 56, no. 6 (December 30, 2016): 77. http://dx.doi.org/10.33407/itlt.v56i6.1506.

Full text
Abstract:
The article represents hardware opportunities, advantages and specification of Arduino platform. The author gives functional characteristics of the main accessory boards which are used for functional improving. The comparative analysis of the most popular Arduino platforms is made. The perspectives of this tool implementation are defined. The article points out functional description and engineering specification by the example of Arduino Nano 3.0 platform. The author describes the advantages of Arduino Nano 3.0 platform in comparison with other controllers. ArduinoIDE software is explored. The prospects of the use of microprocessor board in teaching and learning activities are evaluated.
APA, Harvard, Vancouver, ISO, and other styles
9

Simanjuntak, Kardo, and Panahatan Sitorus. "PENGEMBANGAN TRAINER MIKROKONTROLER BERBASIS ARDUINO NANO PADA MATA PELAJARAN TEKNIK PEMROGRAMAN, MIKROPROSESOR DAN MIKROKONTROLER KELAS XI." JEVTE: Journal of Electrical Vocational Teacher Education 1, no. 2 (November 22, 2021): 86. http://dx.doi.org/10.24114/jevte.v1i2.29251.

Full text
Abstract:
Abstract This study aims to determine how the process of developing a Microcontroller Trainer as a learning medium and producing a Microcontroller trainer that has been developed is feasible as a learning medium. This research uses research and development methods. The steps for developing the Arduino Nano trainer include: (1) Potential and Problems; (2) Data Collection; (3) Product Design; (4) Design Validation; (5) Design Revision; (6) Product Trial; (7) Product Revision; (8) Trial of Use; (9) Product Revision; (10) Determination of Trainer Eligibility. The object of this research is the Arduino Nano Microcontroller Trainer. The data collection method in this study used a trainer requirements test validation questionnaire and a trainer validation test. The trainer requirement test was conducted on the Expert Practitioners and the trainer validation test was conducted on the Media Expert. Technical analysis of the data used in this study is descriptive qualitative, quantitative and descriptive statistics. The result of this research is the Arduino Nano Microcontroller Trainer which consists of IR sensor input devices, light sensors and output devices such as LEDs, LCD Matrix, Dot Matrix, Seven Segment Displays, Relays, DC Motors and Buzzers. The results of the trainer requirements test by Expert Practitioners are 92.5% (very feasible) and the results of the trainer validation test by Media Experts are 91.25% (very feasible). Based on the total scores of the trainer requirements test results and the results of the media validation test, it was concluded that the Arduino Nano-Based Microcontroller Trainer was very suitable to be used as a learning medium for class XI TAV at SMK N.1 Lubuk Pakam. Keywords: Learning Media Trainer, Arduino Nano, AbstrakPenelitian ini bertujuan untuk mengetahui bagaimana proses pengembangan Trainer Mikrokontroler sebagai media pembelajaran dan Menghasilkan trainer Mikrokontroler yang telah dikembangkan layak sebagai media pembelajaran. Penelitian ini menggunakan metode penelitian pengembangan (research and development). Langkah-langkah pengembangan trainer Arduino Nano ini meliputi : (1) Potensi Dan Masalah; (2) Pengumpulan Data; (3) Desain Produk; (4) Validasi Desain; (5) Revisi Desain; (6) Uji Coba Produk; (7) Revisi Produk; (8) Uji Coba Pemakaian; (9) Revisi Produk; (10) Penetapan Kelayakan Trainer. Objek pada penelitian ini adalah Trainer Mikrokontroler Arduino Nano. Metode pengumpulan data pada penelitian ini menggunakan angket validasi uji persyaratan trainer dan uji validasi Trainer. Uji persyaratan trainer dilakukan terhadap Ahli Praktisi dan uji validasi trainer dilakukan terhadap Ahli Media. Teknis analisis data yang digunakan pada penelitian ini adalah deskriptif kualitatif, kuantitatif dan statistik deskriptif. Hasil penelitian in adalah Trainer Mikrokontroler Arduino Nano yang terdiri dari piranti input sensor IR, Sensor cahaya dan piranti output seperti LED, LCD Matriks, Dot Matriks, Peragah Seven Segmen, Relay, Motor DC dan Buzzer. Hasil uji persyaratan trainer oleh Ahli Praktisi sebesar 92,5% (sangat layak) dan hasil uji validasi trainer oleh Ahli Media sebesar 91,25% (sangat layak). Berdasarkan jumlah skor hasil uji persyaratan trainer dan hasil uji validasi media disimpulkan bahwa Trainer Mikrokontroler Berbasis Arduino Nano sangat layak digunakansebagai media pembelajaran untuk kelas XI TAV di SMK N.1 Lubuk Pakam. Kata Kunci : Media Pembelajaran Trainer, Arduino Nano
APA, Harvard, Vancouver, ISO, and other styles
10

., Sriadhi, Bakti Dwi Waluyo, and Kardo Simanjuntak. "PENGEMBANGAN TRAINER MIKROKONTROLER BERBASIS ARDUINO NANO PADA MATA PELAJARAN TEKNIK PEMROGRAMAN, MIKROPROSESOR DAN MIKROKONTROLER KELAS XI KOMPETENSI KEAHLIAN TEKNIK AUDIO VIDEO DI SMK N. 1 LUBUK PAKAM." JURNAL TEKNOLOGI INFORMASI & KOMUNIKASI DALAM PENDIDIKAN 7, no. 1 (January 15, 2021): 1. http://dx.doi.org/10.24114/jtikp.v7i1.22626.

Full text
Abstract:
Abstrak: Penelitian ini bertujuan untuk mengetahui bagaimana proses pengembangan Trainer Mikrokontroler sebagai media pembelajaran dan Menghasilkan trainer Mikrokontroler yang telah dikembangkan layak sebagai media pembelajaran. Penelitian ini menggunakan metode penelitian pengembangan research and development (R&D). Langkah-langkah pengembangan trainer arduino nano ini meliputi : (1) Potensi Dan Masalah, (2) Pengumpulan Data, (3) Desain Produk, (4) Validasi Desain, (5) Revisi Desain, (6) Uji Coba Produk, (7) Revisi Produk, (8) Uji Coba Pemakaian, (9) Revisi Produk, (10) Penetapan Kelayakan Trainer. Objek pada penelitian ini adalah Trainer Mikrokontroler Arduino Nano. Metode pengumpulan data pada penelitian ini menggunakan angket validasi uji persyaratan trainer dan uji validasi trainer. Uji persyaratan trainer dilakukan terhadap Ahli Praktisi dan uji validasi trainer dilakukan terhadap Ahli Media. Teknis analisis data yang digunakan pada penelitian ini adalah deskriptif kualitatif, kuantitatif dan statistik deskriptif. Hasil penelitian in adalah Trainer Mikrokontroler Arduino Nano yang terdiri dari piranti input sensor IR, Sensor cahaya dan piranti output seperti light emitting diode (LED), liquid crystal display (LCD) Matriks, Dot Matriks, Peragah Seven Segmen, Relay, Motor direct current (DC) dan Buzzer. Hasil uji persyaratan trainer oleh Ahli Praktisi sebesar 92,5% (sangat layak) dan hasil uji validasi trainer oleh Ahli Media sebesar 91,25% (sangat layak). Berdasarkan jumlah skor hasil uji persyaratan trainer dan hasil uji validasi media disimpulkan bahwa Trainer Mikrokontroler Berbasis Arduino Nano sangat layak digunakan sebagai media pembelajaran untuk kelas XI Teknik Audio Video di SMK Negeri 1 Lubuk Pakam. Kata Kunci : Media Pembelajaran Trainer, Arduino Nano. Abstract: This study aims to see how the process of developing a Microcontroller Trainer as a learning medium and producing a Microcontroller trainer that has been developed is feasible as a learning medium. This research uses research and development research and development (R&D) methods. The steps to develop this Arduino nano trainer include: (1) Potentials and Problems, (2) Data Collection, (3) Product Design, (4) Design Validation, (5) Design Revision, (6) Product Testing, (7) )) Product Revision, (8) Usage Trial, (9) Product Revision, (10) Determination of Trainer Eligibility. The object of this research is the Arduino Nano Microcontroller Trainer. The data test method in this study used a validation questionnaire to test the trainer requirements and the trainer validation test. Test of trainer requirements is carried out on Practitioners and trainer validation tests are carried out on Media Experts. The technical analysis of the data used in this research is descriptive qualitative, quantitative and descriptive statistics. The results of this research are the Arduino Nano Microcontroller Trainer which consists of IR sensor input devices, light sensors and output devices such as light emitting diode (LED), liquid crystal display (LCD) Matrix, Dot Matrix, Seven Segment Modeling, Relay, Direct Current Motor ( DC) and Buzzer. The results of the trainer requirements test by Practitioners were 92.5% (very feasible) and the results of the trainer validation tests by Media Experts were 91.25% (very feasible). Based on the total score of the results of the trainer requirements and the results of the media validation test, it is stated that the Arduino Nano-based Microcontroller Trainer is very suitable to be used as a learning medium for class XI Audio Video Engineering at SMK Negeri 1 Lubuk Pakam. Keywords: Trainer Learning Media, Arduino Nano.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Arduino NANO"

1

Кашніков, В. М. "Розробка та програмування пристрою вимірювання відстані з використанням датчика хола на базі платформи Arduino nano." Thesis, Чернігів, 2020. http://ir.stu.cn.ua/123456789/23460.

Full text
Abstract:
Кашніков, В. М. Розробка та програмування пристрою вимірювання відстані з використанням датчика хола на базі платформи Arduino nano : випускна кваліфікаційна робота : 123 "Комп’ютерна інженерія" / В. М. Кашніков ; керівник роботи Т. П. Бівойно ; НУ "Чернігівська політехніка", кафедра інформаційних та комп’ютерних систем. – Чернігів, 2020. – 72 с.
Об’єктом розробки є платформа Arduino Nano V3. Метою проектування є вивчення мікроконтролерів та розробка приладу виміру відстані за допомогою датчика Хола та мікроконтролера Arduino, та вивід інформації на дисплей. Розробка програми для роботи та налаштування приладу.
The object of development is the Arduino Nano V3 platform. The purpose of the design is to study microcontrollers and develop a distance measuring device using a Hall sensor and an Arduino microcontroller, and display information. Development of the program for work and adjustment of the device.
APA, Harvard, Vancouver, ISO, and other styles
2

Халімов, Т. Р., and Євген Анатолійович Борисенко. "Arduino-базована система для забезпечення безпеки будівлі." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Улянич, Б. О. "Система моніторингу за мікрокліматом в приміщенні на базі платформи Arduino Nano." Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/23079.

Full text
Abstract:
Улянич, Б. О. Система моніторингу за мікрокліматом в приміщенні на базі платформи Arduino Nano : випускна кваліфікаційна робота : 123 "Кoмп’ютepнa iнжeнepiя" / Б. О. Улянич ; керівник роботи С. П. Казнадій ; НУ "Чернігівська політехніка", кафедра iнфopмaцiйниx тa кoмп’ютepниx cиcтeм. – Чернігів, 2021. – 66 с.
Об’єктом розробки дипломної роботи є прилад для відображення даних мікроклімату кімнати та поточної дати. Основу приладу складає платформа Arduino Nano, яка фіксує, обробляє та виводить на дисплей інформацію з датчиків. Arduino – це своєрідне «серце електронного конструктору», зручна та проста платформа для розробки електронних приладів як для починаючих, так і для професіоналів. Програмна частина написана в середовищі розробки «ArduinoIDE» на мові ArduinoС, що являє собою С++ з фреймворком Wiring. За вимір даних мікроклімату приміщення відповідають 2 датчики: BME280 (температура, вологість, атмосферний тиск) та MH-Z19 (рівень вуглекислого газу в повітрі). За відображення даних відповідає рідкокристалічний дисплей 2004, який під’єднується до Arduino за допомогою шини І2С. За відображення поточної дати, після вимкнення живлення приладу відповідає модуль реального часу DS3231. Метою даної роботи є створення приладу для спостереження та сестиматизації даних мікроклімату в приміщенні. За допомогою мікроконтролера можна буде спостерігати та оцінювати графіки коливання температури, атмосферного тиску, вологості та рівня вуглекислого газу, які будуть відображатись на дисплеї. Також по зміні рівня атмосферного тиску можна буде робити прогноз погоди. Світловий індикатор буде сигналізувати про нормальний рівень СО2 (зелений колір) та про високий рівень СО2 (червоний колір). Результатом роботи є реалізація таких можливостей приладу: - Відображення поточного часу, дати, дня тижня. - Відображення температури, атмосферного тиску, вологості, та рівня вуглекислого газу в приміщенні. - Відображення графіків коливання температури, атмосферного тиску, вологості, та рівня вуглекислого газу за годину та за день. - Передбачення погоди. - Світлова індикація про рівень вуглекислого газу. Подальший розвиток проекту можливий шляхом розширення функціональних можливостей (заміна мікроконтролера на більш сучасний, підключення датчиків «Розумний дім» для автоматичного відкриття вікон та провітрювання кімнати при високому рівні СО2, для автоматичного ввімкнення кондиціонеру/опалення/зволожувача для підтримування заданої температури, вологості і т.д.), покращення інтерфейсу (заміна дисплею, вивід та управління за допомогою смартфону).
The object of the thesis is a device for displaying data on the microclimate of the room and the current date. The basis of the device is the Arduino Nano platform, which captures, processes and displays information from sensors. Arduino is a kind of "heart of the electronic designer", a convenient and simple platform for the development of electronic devices for both beginners and professionals. The software part is written in the development environment "ArduinoIDE" on ArduinoC, which is a C ++ language with the Wiring framework. 2 sensors are responsible for measuring the data of the room microclimate: BME280 (temperature, humidity, atmospheric pressure) and MH-Z19 (level of carbon dioxide in the air). The 2004 LCD is connected to the Arduino via the I2C bus. The DS3231 real-time module is responsible for displaying the current date after the device has been switched off. The purpose of this work is to create a device for monitoring and systematization of microclimate data in the room. With the help of a microcontroller it will be possible to observe and evaluate the graphs of temperature, atmospheric pressure, humidity and carbon dioxide fluctuations that will be displayed. It will also be possible to make a weather forecast by changing the level of atmospheric pressure. The indicator light will indicate a low CO2 level (blue), a normal CO2 level (green color) and a high CO2 level (red color). The result is the implementation of the following capabilities of the device: - Display of the current time, date, day of the week. - Display of temperature, atmospheric pressure, humidity, and level of carbon dioxide in the room. - Display graphs of temperature, atmospheric pressure, humidity, and carbon dioxide fluctuations per hour and per day. - Weather forecast. - Light indication of carbon dioxide level. Further development of the project is possible by expanding the functionality (replacement of the microcontroller with a more modern and better, connection of sensors "Smart Home" for automatic opening of windows and ventilation of the room at high CO2, for automatic activation of air conditioning / heating / humidifier to maintain temperature). etc.), improving the interface (replacing the display, output and control using a smartphone). The work has practical value.
The object of the thesis is a device for displaying data on the microclimate of the room and the current date. The basis of the device is the Arduino Nano platform, which captures, processes and displays information from sensors. Arduino is a kind of "heart of the electronic designer", a convenient and simple platform for the development of electronic devices for both beginners and professionals. The software part is written in the development environment "ArduinoIDE" on ArduinoC, which is a C ++ language with the Wiring framework. 2 sensors are responsible for measuring the data of the room microclimate: BME280 (temperature, humidity, atmospheric pressure) and MH-Z19 (level of carbon dioxide in the air). The 2004 LCD is connected to the Arduino via the I2C bus. The DS3231 real-time module is responsible for displaying the current date after the device has been switched off. The purpose of this work is to create a device for monitoring and systematization of microclimate data in the room. With the help of a microcontroller it will be possible to observe and evaluate the graphs of temperature, atmospheric pressure, humidity and carbon dioxide fluctuations that will be displayed. It will also be possible to make a weather forecast by changing the level of atmospheric pressure. The indicator light will indicate a low CO2 level (blue), a normal CO2 level (green color) and a high CO2 level (red color). The result is the implementation of the following capabilities of the device: - Display of the current time, date, day of the week. - Display of temperature, atmospheric pressure, humidity, and level of carbon dioxide in the room. - Display graphs of temperature, atmospheric pressure, humidity, and carbon dioxide fluctuations per hour and per day. - Weather forecast. - Light indication of carbon dioxide level. Further development of the project is possible by expanding the functionality (replacement of the microcontroller with a more modern and better, connection of sensors "Smart Home" for automatic opening of windows and ventilation of the room at high CO2, for automatic activation of air conditioning / heating / humidifier to maintain temperature). etc.), improving the interface (replacing the display, output and control using a smartphone). The work has practical value.
APA, Harvard, Vancouver, ISO, and other styles
4

Бобчинець, В. С. "Портативна метеорологічна станція на базі платформи Arduino." Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/23003.

Full text
Abstract:
Бобчинець, В. С. Портативна метеорологічна станція на базі платформи Arduino : випускна кваліфікаційна робота : 123 "Кoмп’ютepнa iнжeнepiя" / В. С. Бобчинець ; керівник роботи Т. П. Бивойно ; НУ "Чернігівська політехніка", кафедра iнфopмaцiйниx тa кoмп’ютepниx cиcтeм. – Чернігів, 2021. – 88 с.
Об’єктом дослідження є розробка портативної метеорологічної станції на базі платформи Arduino. Мета – проектування пристрою для виведення на LCD дисплей температури, вологості, напрямку та швидкості вітру через інтерфейс 1-Wire на платі Arduino Nano v3.0 на базі мікроконтролера ATmega 328. В дипломному проекті на базі Arduino nano спроектовано пристрій виведення температури, вологості, напрямку та швидкості вітру на LCD дисплей інтерфейсом 1-Wire, визначено елементну базу, принцип керування та роботи з передачею даних по інтерфейсу 1-Wire, описано середовище програмування та бібліотеки, складено схему алгоритму роботи пристрою, описані технічні несправності в приладі, причини та методи їх усунення, порівняні аналоги метеостанцій та їх комплектуючого. В ході виконання дипломного проекту було розроблено електричну схему, структурну схему, схему алгоритму програми, підібрана відповідна елементна база для правильного функціонування приладу.
About the development of a portable meteorological station based on Arduino platforms. Meta - a design of an attachment for displaying temperature, visibility, and direct temperature on the LCD display through the 1-Wire interface on the Arduino Nano v3.0 board based on the ATmega 328 microcontroller. In the diploma project on the basis of the Arduino nano, it was designed to adjust the temperature, visibility, directly to the LCD display with a 1-Wire interface, an elementary base, the principle of keruvanning and robots in transferring data via the interface of the 1-Wire storage, described a diagram to the robotics algorithm, a description of technical irregularities in the attachment, the reasons for the methods of the operation, the analogous analogs of the weather stations and of the complete set. In the course of the presentation of the diploma project, an electrical diagram, a structural diagram, a diagram of the program algorithm, a base for the correct function of the attachment was added.
APA, Harvard, Vancouver, ISO, and other styles
5

Астапєєв, Д. С., and Д. С. Ганшин. "Попіксельна змійка на LCD." Thesis, ХНУРЕ, 2020. https://openarchive.nure.ua/handle/document/18752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Мальцев, Максим Олександрович. "Електронне табло з дистанційним керуванням." Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/34957.

Full text
Abstract:
У дипломному проекті розроблено електронне табло із дистанційним керуванням. Метою даного проекту є розробка даного пристрою, а саме ідеї керування, програмного забезпечення, та конструкції. Для досягнення цілі проекту було проаналізовано аналогічні пристрої, виявлено їх переваги і недоліки, здійснено аналіз ТЗ. Розроблено ідею керу-вання системою, друковані плати, несучу раму, та конструкцію світлових ко-робів. Проведено аналіз працездатності, з метою проаналізувати відповідність пристрою зазначеним в ТЗ вимогам.
The electronic scoreboard with remote control has been developed in the diploma project. The purpose of this project is to develop this device, namely the ideas of control, software, and design. To achieve the project goal, similar devices were analyzed, their advantages and disadvantages were identified, and the technical task was analyzed. The idea of system control, printed circuit boards, supporting frame, and construction of light boxes was developed. The analysis of performance was, in order to analyze the compliance of the device indicated in the specifications requirements.
APA, Harvard, Vancouver, ISO, and other styles
7

Пеньков, Владислав Юрійович. "Стаціонарна охоронна сигналізація приміщення." Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/29122.

Full text
Abstract:
У дипломному проекті розроблено стаціонарна охоронна сигналізація приміщення з керуванням через GSM/GPRS модуль. Метою дипломного проекта є розробка системи охоронної сигналізації на базі Arduino, та написання програмного коду для користувачів, які зможуть самотужки його налаштовувати. Проводиться аналіз готових рішень, розроблено структурну схему, обрано електронні модулі. Розроблено програмне забезпечення на мовах програмування С/С++. Проведено перевірку на працездатність програмного забезпечення.
The graduation project presents the stationary security alarm system for the premises with GSM module control. The aim of the project is to develop a security alarm system on the Arduino controller and writing software code who can set it up themselves. The project presents a block diagram, electronic module and an overview of existing solutions and devices for addressing the deficiencies. We considered available programming languages and substantiated the choice of such languages as C/C++, for writing a smartphone or computer software. A software performance check has been performed.
APA, Harvard, Vancouver, ISO, and other styles
8

Kashif, Muhammad. "Analysis and Evaluation of Tiny Machine Learning applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.
APA, Harvard, Vancouver, ISO, and other styles
9

Pavlišin, Tomáš. "Řízení a monitorování klimatu ve skupinách terárií." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316387.

Full text
Abstract:
The aim of this master thesis is to propose a system for monitoring and regulating the climate in groups of terrariums using the Raspberry Pi platform and subsequent transparent display through the web server. Each group of terrariums has its own control device that wirelessly communicates with the Raspberry Pi control computer. The measured values are stored in the MySQL database on the control computer. The measured values are graphically displayed on the web page.
APA, Harvard, Vancouver, ISO, and other styles
10

Škorpík, Daniel. "Optický analyzátor koncentrace CO2 v dechu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-399625.

Full text
Abstract:
This Master's thesis discusses about the measurement of the carbon dioxide concentration in breathing by an optical analyzer using infrared absorption spectroscopy. The method is described with the technical focus on individual components needed for subsequent implementation. A circuit diagram is created to produce Arduino platform devices that serve as hardware to connect and power individual parts and software to create a user environment, followed by a Bluetooth module to transmit measured data to mobile devices where real-time results are presented.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Arduino NANO"

1

Kurniawan, Agus. Beginning Arduino Nano 33 IoT. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6446-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurniawan, Agus. IoT Projects with Arduino Nano 33 BLE Sense. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cruz, Edisson, Norman Beltrán, and Reynaldo Condori. Diseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kW. Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú, 2022. http://dx.doi.org/10.35622/inudi.b.003.

Full text
Abstract:
En el presente trabajo de investigación se realizó el diseño e implementación de un sistema de monitoreo y adquisición de datos inalámbrico con un interfaz en LabVIEW en tiempo real para monitoreo de parámetros eléctricos en DC y ambientales de un SFCR de 3kW, El cual se llevó a cabo integrando dispositivos como un Raspberry pi 3B+, un Arduino Nano, usando como sensores de temperatura 03 PT100, como sensor de tensión un divisor de tensión, como sensor de corriente el ACS758, como sensor de irradiancia una celda calibrada y como interfaz gráfica y almacenamiento de datos un programa elaborado en LabVIEW, también se hizo el modelado e impresión en 3D de las piezas de la carcasa pudiendo así implementar un prototipo con un sujetador para riel DIN. Todo esto orientado bajo la norma IEC-61724-2017. En el periodo de prueba de 05 días nos entrega los siguientes resultados: Influencia de la temperatura en el módulo fotovoltaico, en el cual pudimos observar que las temperaturas de cada célula en el módulo no son iguales, teniendo una desviación de hasta 3C el cual ocasiona pérdidas por dispersión de parámetros. Influencia de la temperatura en el generador fotovoltaico, en el cual pudimos observar que la temperatura y la tensión en un sistema fotovoltaico son inversamente proporcionales y cuando más caliente esté un módulo fotovoltaico es menos eficiente, en este apartado se registró temperaturas de hasta 52.31C en la superficie del módulo fotovoltaico. Influencia de la irradiancia en el generador fotovoltaico, apartado en el cual observamos que la irradiancia y la corriente generada son directamente proporcionales, también se presentó eventos de irradiancia solar extrema, siendo el más alto y menos prolongado el día 17 de Junio del 2021, con un valor 1245.89[W/m2], una duración de 06 segundos, registrados a las 11:39:13 y el más prolongado, presentado el mismo día, con un valor de 1219.75[W/m2], una duración de 176 segundos registrados a las 11:34:17 segundos. Finalmente se concluye que los indicadores proporcionados sobre la energía generada por el SFRC bajo ciertas condiciones ambientales son confiables debido a lineamientos con la norma propuesta, calibración y validación de las lecturas de los sensores y demás componentes usados.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Arduino NANO"

1

Kurniawan, Agus. "Arduino IoT Cloud." In Beginning Arduino Nano 33 IoT, 131–55. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurniawan, Agus. "Arduino Nano 33 IoT Networking." In Beginning Arduino Nano 33 IoT, 103–29. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurniawan, Agus. "Arduino Nano 33 IoT Board Development." In Beginning Arduino Nano 33 IoT, 23–78. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kurniawan, Agus. "Setting up Development Environment." In Beginning Arduino Nano 33 IoT, 1–21. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kurniawan, Agus. "IMU Sensor: Accelerator and Gyroscope." In Beginning Arduino Nano 33 IoT, 79–102. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kurniawan, Agus. "Bluetooth Low Energy (BLE)." In Beginning Arduino Nano 33 IoT, 157–81. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6446-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurniawan, Agus. "Arduino Nano 33 BLE Sense Board Development." In IoT Projects with Arduino Nano 33 BLE Sense, 21–74. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kurniawan, Agus. "Setting up a Development Environment." In IoT Projects with Arduino Nano 33 BLE Sense, 1–19. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kurniawan, Agus. "Sensor Programming." In IoT Projects with Arduino Nano 33 BLE Sense, 75–110. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kurniawan, Agus. "Bluetooth Low Energy." In IoT Projects with Arduino Nano 33 BLE Sense, 111–36. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6458-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Arduino NANO"

1

Sivapriyan, R., K. V. Ajay, and N. Ashwath Koorse. "Arduino-Nano Based Low Cost Power Converter Learning Kit." In 2020 Fourth International Conference on Inventive Systems and Control (ICISC). IEEE, 2020. http://dx.doi.org/10.1109/icisc47916.2020.9171132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goranov, Goran, and Pavel Hubenov. "Arduino Nano Signal Processing Board for CoolRunner-2 PLD." In The 6th Virtual Multidisciplinary Conference. Publishing Society, 2018. http://dx.doi.org/10.18638/quaesti.2018.6.1.396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maro, Ekaterina, Vadim Girichev, and Ivan Us. "Power Analysis of Kuznyechik cipher on Arduino Nano board." In 2021 IEEE Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2021. http://dx.doi.org/10.1109/usbereit51232.2021.9455095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ibanez, Adrian Lendinez, Renxi Qiu, and Dayou Li. "An implementation of SLAM using ROS and Arduino." In 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2017. http://dx.doi.org/10.1109/3m-nano.2017.8286298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fikri, Desfi Nur, Prawito Prajitno, and Sastra Kusuma Wijaya. "Development of Microwave Tomography System Based on Arduino NANO and PocketVNA." In 2019 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2019. http://dx.doi.org/10.1109/cama47423.2019.8959618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hutauruk, Andi Ray, Jomen Pardede, Pangeran Aritonang, Rosari Fernanda Saragih, and Albert Sagala. "Implementation of Wireless Sensor Network as Fire Detector using Arduino Nano." In 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM). IEEE, 2019. http://dx.doi.org/10.1109/icosnikom48755.2019.9111537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, N. Komal, D. Vigneswari, and C. Rogith. "An Effective Moisture Control based Modern Irrigation System (MIS) with Arduino Nano." In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE, 2019. http://dx.doi.org/10.1109/icaccs.2019.8728446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Waqar, Dania Maryam, Teddy Surya Gunawan, Malik Arman Morshidi, and Mira Kartiwi. "Design of a Speech Anger Recognition System on Arduino Nano 33 BLE Sense." In 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). IEEE, 2021. http://dx.doi.org/10.1109/icsima50015.2021.9526323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dutta, Pushan Kumar, Kirtiman Das, Protyush De, Prithvi Guha, and Kumareshwar Patra. "An Automated Light Control with Voltage Triggered Sensing and Monitoring Objects Using Arduino." In 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). IEEE, 2019. http://dx.doi.org/10.1109/iementech48150.2019.8981281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Krishnan, P. L. Santhana, R. Valli, R. Priya, and V. Pravinkumar. "Smart Luggage Carrier system with Theft Prevention and Real Time TrackingUsing Nano Arduino structure." In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). IEEE, 2020. http://dx.doi.org/10.1109/icscan49426.2020.9262445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography