Academic literature on the topic 'Areas of the plane figures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Areas of the plane figures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Areas of the plane figures"
Romakina, L. N. "K teorii ploscadej giperboliceskoj ploskosti polozitel'noj krivizny." Publications de l'Institut Math?matique (Belgrade) 99, no. 113 (2016): 139–54. http://dx.doi.org/10.2298/pim1613139r.
Full textKorenovskyi, A. A. "Calculations for one illustration of the Pythagorean Theorem." BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series 133, no. 4 (2020): 40–53. http://dx.doi.org/10.32523/2616-7182/2020-133-4-40-53.
Full textYurkov, V. "Images of Linear Conditions on a Manhattan Plane." Geometry & Graphics 8, no. 1 (April 20, 2020): 3–14. http://dx.doi.org/10.12737/2308-4898-2020-3-14.
Full textTAKAHASHI, KAZUKO, and TAKAO SUMITOMO. "THE QUALITATIVE TREATMENT OF SPATIAL DATA." International Journal on Artificial Intelligence Tools 16, no. 04 (August 2007): 661–82. http://dx.doi.org/10.1142/s0218213007003497.
Full textEasterday, Kenneth, and Tommy Smith. "A Monte Carlo Application to Approximate Pi." Mathematics Teacher 84, no. 5 (May 1991): 387–90. http://dx.doi.org/10.5951/mt.84.5.0387.
Full textPorto, Anderson Luiz Pedrosa, Douglas Frederico Guimarães Santiago, Leonardo Gomes, and Márcio Henrique Marques Macedo. "Do círculo ao quadrado, um estudo sobre a convergência de uma sequência de curvas." Ciência e Natura 41 (July 16, 2019): 23. http://dx.doi.org/10.5902/2179460x32231.
Full textFeng, Jian, Stefan Barth, and Marc Wettlaufer. "Symmetry Breakdown Related Fracture in 42CrMo4 Steel." Metals 11, no. 2 (February 18, 2021): 344. http://dx.doi.org/10.3390/met11020344.
Full textPetrovici, Norbert. "The Politics of Mobilizing Local Resources for Growth: ‘Urban Areas’ in Romania." Studia Universitatis Babes-Bolyai Sociologia 62, no. 1 (June 27, 2017): 37–64. http://dx.doi.org/10.1515/subbs-2017-0004.
Full textWróbel, M., S. Dymek, M. Blicharski, and S. Gorczyca. "The Development of Dislocation Structure and Texture in Rolled Copper (001)[110] Single Crystals." Textures and Microstructures 10, no. 1 (January 1, 1988): 67–75. http://dx.doi.org/10.1155/tsm.10.67.
Full textFan, Neng-wei. "The Aesthetic Features and Significance of the Veritism in Garland’s Short Stories - A Study on Main-Travelled Roads." English Linguistics Research 9, no. 1 (February 11, 2020): 20. http://dx.doi.org/10.5430/elr.v9n1p20.
Full textDissertations / Theses on the topic "Areas of the plane figures"
Brazão, Andre Luiz. "Geometria euclidiana plana e suas aplicações no ensino básico." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-30082016-161719/.
Full textIn this work, we present the main concepts and results of the Euclidean Plane Geometry, presenting the basic definitions, axioms, as well the main results of this theory. Also, we bring some ways to present these concepts in the elementary education, using technological tools (as geogebra) as well ludic tools (such as folding and geoplane). This dissertation is divided into ten chapters . Chapters 2, 3 , 4, 5 , 6, 7 and 8 are devoted to present the basic concepts and the main results of this theory. In Chapter 9, we present proposals of activities using the technological tool called geogebra which treats about the main concepts and results in Euclidean Plane Geometry. The described activities were made with the students of the school Profa. Dolores Martins de Castro at the Department of Computation and Mathematics of the University of São Paulo, campus Ribeirão Preto. In Chapter 10, we present several proposals for activities using ludic tools. The used tools were folding and Geoplane. This work is presented as a script, which can be followed by the professor throughout elementary education and presents several pedagogical proposals to be applied in classrooms. Our goal is to offer to the reader a contextualized and didatical approach of the contents, which can be easily followed.
Souza, Gilsimar Francisco de. "Resolução de problemas envolvendo o cálculo de áreas de figuras planas via polígonos equidecomponíveis." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6242.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-21T11:55:12Z (GMT) No. of bitstreams: 2 Dissertação - Gilsimar Francisco de Souza - 2016.pdf: 5111737 bytes, checksum: 2e0ffd66e7c26eab9faf95d0c82c5b4c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-09-21T11:55:12Z (GMT). No. of bitstreams: 2 Dissertação - Gilsimar Francisco de Souza - 2016.pdf: 5111737 bytes, checksum: 2e0ffd66e7c26eab9faf95d0c82c5b4c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-09-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The geometry study is important because it allows people to think more logically and opens the mind to a new level of thinking and reasoning skills. However, for various reasons, this area of mathematics is little explored in the classes of basic education. In this sense, it woke up the interest in developing studies that could be interesting and relevant to the geometry teaching in basic education, in order to collaborate with the classes. And the theme was the area of plane figures and equidecomposable polygons. Thus, the main objective of this work is the proposal of problems that can be solved with the decomposition of polygons, as suggested activities for the general education teacher can apply them in their practice. The methodology used was the development of bibliographic research relating to fundamental concepts of geometry, as well as equidecomposable polygons, followed the presentation of activities involving area of plane figures and decomposition of polygons. It is expected this work, assisting the work of teachers of basic education and thus contribute to the improvement of geometry teaching in basic school.
O estudo de geometria é importante porque permite às pessoas pensar com mais lógica e abre a mente para um novo nível de pensamento e capacidade de raciocínio. No entanto, por diversos motivos, essa área da matemática é pouca explorada nas aulas do ensino básico. Neste sentido, espertou-se o interesse em desenvolver estudos que poderiam ser interessantes e relevantes para o ensino de geometria na educação básica, de modo a colaborar com as aulas. E o tema escolhido foi área de figuras planas e polígonos equidecomponíveis. Assim, o objetivo principal deste trabalho é a proposta de problemas que possam ser resolvidos com a decomposição de polígonos, como sugestões de atividades para que o professor do ensino básico possa aplicá-las em sua prática pedagógica. A metodologia utilizada foi o desenvolvimento de pesquisa bibliográfica referentes a conceitos fundamentais de geometria, bem como de equidecomposição de polígonos, seguidos da apresentação de atividades que envolvem área de figuras planas e decomposição de polígonos. Espera-se, com este trabalho, auxiliar o trabalho do professor do ensino básico e, consequentemente, contribuir para a melhoria do ensino de geometria na escola básica.
DIAS, ALTAMIR. "NESTING OF GENERAL PLANE FIGURES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19764@1.
Full textO uso cada vez mais corrente de métodos heurístico tem permitido contribuir para a automação e otimização de inúmeros processos industriais complexos. Um dos processos que vem sendo beneficiado é o corte de roupas na indústria do vestuário, onde o encaixe de moldes deve ser feito de forma a minimizar o desperdício de tecido. Este trabalho visa a dar uma contribuição ao problema geral de encaixe de figuras planas irregulares. Assim, busca-se resolver este problema através do uso de regras heurísticas implementadas num algoritmo computacional. Como ponto principal, o apresenta uma sistemática de construção de alternativas de encaixe, em forma de uma árvore, facilitando a busca de um encaixe solução, de alto rendimento, entre as praticamente infinitas possibilidades. A viabilização do algoritmo de encaixe é alcançada através de duas técnicas de posicionamento dos moldes que previnem sua superposição. As vantagens das duas técnicas são combinadas para melhor proveito do algoritmo. Nas conclusões são discutidas as dificuldades encontradas e formulados novos caminhos para a investigação.
The increasing use of heuristical methods has advanced the frontier of application of optimization and automatization techniques in complex industrial processes. One emerging utilization for these methods in the pattern nesting process in the garment industry. The aim is to nest the pattern in such a way as to minimize the waste of fabric. The present work aims to contribute to the optimal nesting of general planes figures. The methods which will be discussed, employ heustical rules implemented thorough computacional algorithms. The focal point of the work is a methodology of obtaining a sequence of partial and complete nesting from which the best one can be selected. The computacional algorithm embodies two distinct methods for the placement of the figures on the nesting plane avoiding superposition. Both methods are used in such way that the resulting algorithm profits from their advantages. Present diffuclties and future trends are outlined in the conclusions.
Nunes, José Messildo Viana. "A prática da argumentação como método de ensino: o caso dos conceitos de área e perímetro de figuras planas." Pontifícia Universidade Católica de São Paulo, 2011. https://tede2.pucsp.br/handle/handle/10891.
Full textThis research treats the practice of the argumentation as teaching method, focusing the concepts of area perimeter of plane figures. Studies in national and international levels have already broached the subject, many times using the practice of the argumentation as method, not proposing, however, ways that demonstrate the functionality of that method. So this work answers the following question: in what measure the practice of the argumentation can present itself as method that contributes to the comprehension of concepts in mathematics taking as reference the case of the area and the perimeter of plane figures? To answer our question, we propose a didactic sequence modeled and analyzed with basis in the phases that compose the argumentative process, according to Toulmin (1996). The methodology of the study have been supported in Didactic Engineering purposes, the intervention have been effectuated with pupils at the fifth grade in Ensino Fundamental (students aged 10-11), using two argumentative institutions: the classroom and the informatics laboratory where we used the Geogebra software. The theoretical foundation have been based in speculative reflections by Toulmin (1996), in argumentative classification by Pedemonte (2002) and Cabassut (2005) and in the idea of argumentative convergence by Perelman and Olbrechts-Tyteca (2005). The analysis of the activities have evidenced that the practice of the argumentation contribute to the comprehension of the concepts of area and perimeter of plane figures, habilitating this practice as teaching method. The argumentative competences acquired by the pupils through the interactions with their classmates and the researchers about the subject allowed them have more autonomy to communicate and defend their ideas, respecting the opinion of the other classmates during the discussions, pay attention to the functionality and the possible validity of their argument, besides to learn specific symbols and language of mathematics
Esta pesquisa trata da prática da argumentação como método de ensino, focalizando os conceitos de área e perímetro de figuras planas. Estudos em níveis nacionais e internacionais já abordaram o assunto, muitas das vezes utilizando a prática da argumentação como método, sem, no entanto, propor caminhos que demonstrassem a funcionalidade dessa abordagem. Assim, este trabalho responde à seguinte questão: em que medida a prática da argumentação pode se apresentar como método que favoreça a compreensão de conceitos em matemática, tomando como referência o caso da área e perímetro de figuras planas? Como resposta, propomos uma sequência didática modelada e analisada com base nas fases que compõem o processo argumentativo segundo Toulmin (1996). A metodologia do estudo apoiou-se em pressupostos da Engenharia Didática e a intervenção foi efetivada com alunos do quinto ano do Ensino Fundamental (alunos de 10 a 11 anos), utilizando duas instituições argumentativas: a sala de aula e o laboratório de informática, no qual usamos o software Geogebra. A fundamentação teórica baseou-se nas reflexões teóricas de Toulmin (1996), na classificação de argumentos de Pedemonte (2002) e Cabassut (2005) e na idéia de convergência argumentativa de Perelman e Olbrechts-Tyteca (2005). As análises das atividades evidenciaram que a prática da argumentação favoreceu a compreensão dos conceitos de área e perímetro de figuras planas, habilitando essa prática como método de ensino. As competências argumentativas adquiridas pelos discentes, a partir das interações com colegas e pesquisador sobre o assunto em questão, possibilitaram- lhes ter mais autonomia para comunicar e defender suas ideias, respeitando a opinião do colega no decorrer das discussões, ficar atentos à funcionalidade e à validade ou não de seu argumento, além de apreender símbolos e linguagem específicos da matemática
Valen?a, Josaphar Silva. "Uma an?lise cr?tica sobre o ensino de ?rea de figuras planas na educa??o de jovens e adultos: um estudo localizado no munic?pio de Angra dos Reis." Universidade Federal Rural do Rio de Janeiro, 2016. https://tede.ufrrj.br/jspui/handle/jspui/1657.
Full textMade available in DSpace on 2017-05-17T14:00:47Z (GMT). No. of bitstreams: 1 2016 - Josaphar Silva Valen?a.pdf: 4116325 bytes, checksum: 9927ecf51181d089b09309a5cdb2d8da (MD5) Previous issue date: 2016-08-25
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
This work is the result of a qualitative and quantitative analysis of the problems encountered in the teaching of plane figures in young and adult education and, even as a present activity in day-to-day lives, it is still a problem. This theme was chosen because of the student?s desires to learn that content, enabling to search where is the origin of the various difficulties encountered by them in calculating areas of plane figures and to get applied in their daily lives. The choice of this teaching modality comes from the challenge of how to work this content with a very heterogeneous group, both in age and in the motivation that led them to attend the classrooms of young and adult education. This fact causes a significant change in the methodology used by the professor in relation to the same applied in regular education. To understand all this process it is necessary to know a little of young and adult education in Brazil, its normative aspects and the historical importance of knowing how to calculate areas of flat figures. Through a questionnaire, we identified the young and adult education professor's profile, how this type of education is administered by the government and how professionals deal with such different student profiles. With this information, together with the analyzes of the questions answered by the students, we conclude that the difficulty of assigning correctly the units of area and length measurements is due to the difficulty of the student to relate the mathematical content learned in school to their daily lives. In some of the issues applied to students we had to allow the use of the calculator due to the difficulty that students have to perform at least one of the four arithmetic operations
Esse trabalho ? o resultado de uma an?lise qualitativa e quantitativa sobre os problemas encontrados no ensino de ?rea de figuras planas na EJA e que, mesmo sendo uma atividade presente no dia-a-dia deles, ainda ? um problema. Esse tema foi escolhido devido aos anseios dos alunos em aprender esse conte?do, possibilitando assim, pesquisar onde est? a origem das diversas dificuldades encontradas por eles em calcular ?reas de figuras planas e conseguirem aplicar em seus cotidianos. A escolha dessa modalidade de ensino surge do desafio de como trabalhar esse conte?do com um grupo muito heterog?neo, tanto na faixa et?ria quanto na motiva??o que os levaram a frequentar as salas de aula da EJA. Este fato provoca uma mudan?a significativa na metodologia aplicada pelo professor em rela??o ? mesma metodologia aplicada no ensino regular. Para entender todo esse processo faz-se necess?rio conhecer um pouco da EJA no Brasil, seus aspectos normativos e a import?ncia hist?rica de saber calcular ?reas de figuras planas. Por meio de um question?rio, identificamos o perfil do professor da EJA, como essa modalidade de ensino ? administrada pelo poder p?blico e como os profissionais lidam com perfis t?o diferentes de alunos. De posse dessas informa??es, somadas as an?lises das quest?es respondidas pelos alunos, conclu?mos que a dificuldade de atribuir de forma correta as unidades de medidas de ?rea e de comprimento devem-se ? dificuldade do aluno em relacionar o conte?do matem?tico aprendido na escola ao seu cotidiano. Em algumas das quest?es aplicadas aos alunos tivemos que permitir o uso da calculadora devido ? dificuldade que os alunos possuem em realizar pelo menos uma das quatro opera??es da aritm?tica.
FERREIRA, JOAO CARLOS ESPINDOLA. "COMPUTER GRAPHICS SYSTEM FOR THE NESTING OF PLANE FIGURES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1986. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33308@1.
Full textEste trabalho teve por objetivo o desenvolvimento de um Sistema de Encaixe de Figuras Planas utilizando a computação gráfica como ferramenta. Além do sistema de edição e encaixe, foi, também, desenvolvido um sub-sistema para o escalonamento automático de figuras. O sistema é todo guiado por menus, com plenas facilidades de correção de erros de entrada. Após a descrição do sistema, são apresentadas algumas saídas gráficas que ilustram a capacidade do programa. Finalmente, apresentam-se algumas conclusões sobre o trabalho, onde são discutidas as vantagens da utilização deste sistema em relação aos métodos tradicionais de encaixe.
A computer graphics system for the nesting of plane figures was developed. The system consists of three programs. The first is for figure drawing and editing. The second is for pattern grading, while the last is for figure nesting. The system is user friendly, guided by menus with many error checking capabilities. Graphical examples are presented following a detailed discussion of the programs.
Oliveira, Gleidson José Dumont. "A utilização do cálculo diferencial e integral para estender os cálculos de áreas de figuras planas e comprimentos de curvas no plano." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7482.
Full textApproved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-19T19:15:44Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 3494677 bytes, checksum: 0878c999eeda11a6a563ac8d7e8a8e2f (MD5)
Made available in DSpace on 2015-05-19T19:15:44Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3494677 bytes, checksum: 0878c999eeda11a6a563ac8d7e8a8e2f (MD5) Previous issue date: 2013-08-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we will make a brief study on the calculation of areas and lengths highlighting how these can be presented in high school, then we will use the di erential and integral calculus to extend the calculations of areas and lengths. Therefore, this study some of the developments in the history of calculus concepts and their "basic", beyond the definitions of areas, lengths, and applications of limit, derivative and integral. We emphasize that the provision contained in this learning material is not in a single textbook adopted in schools.
Neste trabalho faremos um breve estudo a respeito do cálculo de áreas e comprimentos destacando como esses podem ser apresentados no ensino médio, em seguida faremos uso do cálculo diferencial e integral para estendermos os cálculos de áreas e comprimentos. Para isso, estudaremos um pouco da evolução do cálculo na história e seus conceitos "básicos", além das definições de áreas, comprimentos, e aplicações do limite, derivada e integral. Ressaltamos que a disposição contida neste material didático não se encontra em um único livro didático adotado nas escolas.
Abreu, Silvio Luis Amâncio de. "O uso do software régua e compasso na aprendizagem do conceito de cálculo de áreas de figuras planas no ensino fundamental." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/4462.
Full textThis research aims to use the Ruler and Compass software in performing activities that seek to build the concept of calculation of areas of plane figures at the elementary school level and to promote interaction between teacher-student and studentstudent. Also seeks to analyze the methodological ways to present concepts to calculate areas of plane figures through the use of Ruler and Compass software, worrying associate it in the school curriculum.
Este trabalho de pesquisa tem por objetivo a utilizacao do software Regua e Compasso na realizacao de atividades que buscam construir o conceito de calculo de areas de figuras planas no nivel do ensino fundamental e promover a interacao entre professor-aluno e aluno-aluno. Tambem pretende-se analisar a forma metodologica de apresentar conceitos de calculo de areas de figuras planas atraves do uso do software Regua e Compasso, preocupando-se em associa-lo ao curriculo escolar.
Almeida, Francisco Wescley Cunha de. "Integral definida: uma abordagem para o ensino mÃdio com o auxÃlio do software GeoGebra." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12328.
Full textEste trabalho tem como objetivo principal inserir, no Ensino MÃdio, a ideia intuitiva da Integral Definida, o cÃlculo de Ãreas abaixo do grÃfico de funÃÃes positivas, limitadas pelo eixo das abscissas e por retas verticais, ou atà mesmo entre funÃÃes positivas em um intervalo determinado pelo domÃnio das mesmas, por exemplo. Para facilitar o entendimento dessas ideias, aliado ao estudo de funÃÃes, pode-se fazer o uso de um recurso computacional como o Geogebra, software utilizado como ferramenta de apoio a aprendizagem nas atividades sugeridas nesse trabalho. As atividades aqui propostas destinam-se a alunos do ensino mÃdio. Destaca-se a importÃncia da introduÃÃo dessas ideias por estimular a construÃÃo de conhecimentos mais sÃlidos sobre o comportamento de funÃÃes. Acredita-se que, assim, a longo prazo, os alunos que ingressarem no Ensino Superior nas disciplinas de CÃlculo terÃo condiÃÃes melhores de compreender os conceitos necessÃrios e, assim, os Ãndices de reprovaÃÃo nessas disciplinas serÃo reduzidos. O trabalho a seguir apresenta uma proposta de atividades sobre o ensino desses tÃpicos com auxÃlio do software GeoGebra. Verificou-se que à possÃvel abrir os horizontes no Ãmbito do ensino e aprendizagem de MatemÃtica no Ensino MÃdio, com as ideias intuitivas de CÃlculo, fazendo o uso de ferramentas diversas, como a utilizaÃÃo de tecnologias apropriadas e que à possÃvel, inclusive, proporcionar aos estudantes novas tÃcnicas de ensino que favoreÃam a aprendizagem desses e demais conceitos matemÃticos.
This work aims to incorporate in high school, the intuitive idea of the Definite Integral, calculation of areas below the positive functions, bounded by the x-axis and vertical lines, or even between positive graph functions in a certain range the area of the same, for example. To facilitate the understanding of these ideas, combined with the study of functions, you can make use of a computational resource such as Geogebra, software used to support learning activities suggested in this work tool. The activities proposed here are intended for high school students. Highlights the importance of introducing these ideas to stimulate the construction of more accurate information on the behavior of functions. It is believed that thus the term, students who enter higher education in the disciplines of calculation will be better able to understand the necessary and thus the failure rates in these disciplines will be reduced concepts. The following work presents a proposal of activities for teaching these topics with the help of GeoGebra software. It was found that you can open the horizons within the teaching and learning of Mathematics in Secondary Education, with intuitive ideas of Calculus, making the use of various tools such as the use of appropriate technologies and that is even possible to provide students new teaching techniques that encourage learning these and other mathematical concepts.
Moyon, Marc. "La géométrie pratique en Europe en relation avec la tradition arabe, l'exemple du mesurage et du découpage : contribution à l'étude des mathématiques médiévales." Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10104/document.
Full textThe object of our work is the critical edition, the French translation and the mathematical analysis of the Liber mensurationum of Abu Bakr, of the Liber Saydi Abuothmi, of the Liber Aderameti and of the De superficierum divisionibus liber of Mulhammad al-Baghdadï. These four texts of the Arabian tradition are about two chapters of practical geometry : the measurement and the division of figures. The measurement has for object the determination of unknown quantities (lengths, areas, volumes) from quantities data. The division of figures consists in dividing a geometric figures in several parts according to properties and constraints fixed a priori. Our work takes in account sorne previous mathematical traditions - mesopotamian one, Greek and Latin of the late Antiquity - describing their activities of measurement and division of figures. We complete this description with a presentation of the practices of the muslim Orient and Occident. Thus, we put in evidence sorne characteristic elements of the practices of the Muslim west. These would suggest the existence of a tradition of the measurement and the division of figures to this region. Finally, the corpus that we present is a vector of the diffusion of the practices of geometry of the Arabian tradition in the Latin world. Indeed, the four texts are arabo-Latin translations that seem have been achieved in Andalus around the 12th century. Their analyses allow us to study an aspect of the appropriation of the Arabian science by the Latin
Books on the topic "Areas of the plane figures"
Exploring plane figures: Understand concepts of area. New York: Rosen Classroom, 2015.
Find full textErickson, George. True north: Exploring the great wilderness by bush plane. Guilford, Conn: Lyons Press, 2002.
Find full textTrue North: Exploring the great Canadian wilderness by bush plane. Toronto: Thomas Allen, 2000.
Find full textRatouis, Olivier. La plateforme du rêve: Figures américaines de la fonction de loisir. [Strasbourg]: Ecole supérieure des arts décoratifs de Strasbourg, 2004.
Find full textM, Sergio González. La sociedad del salitre: Protagonistas, migraciones, cultura urbana y espacios públicos, 1870-1940 = The nitrate society : main figures, migration, urban culture and public areas, 1870-1940. Santiago de Chile: Universidad Arturo Prat del Estado de Chile, 2013.
Find full textSally, Judith D. Geometry: A guide for teachers. Berkeley, Calif: Mathematical Sciences Research Institute, 2011.
Find full textKuffner, Emily. Fictions of Containment in the Spanish Female Picaresque. NL Amsterdam: Amsterdam University Press, 2019. http://dx.doi.org/10.5117/9789462986800.
Full textSusanne, Holtkamp, ed. Technical cooperation in rural areas: Plant and post-harvest protection, facts and figures, 1986. Eschborn: Deutsche Gesellschaft für Technische Zusammenarbeit, 1986.
Find full textEuclid, Wöpcke Franz 1826-1864, and Fibonacci, Leonardo, ca. 1170-ca. 1240., eds. Euclid's book On divisions of figures. Cambridge [Eng.]: The University press, 1990.
Find full textBook chapters on the topic "Areas of the plane figures"
Caminha Muniz Neto, Antonio. "Area of Plane Figures." In Problem Books in Mathematics, 151–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77974-4_5.
Full textKripfganz, Anita. "Isoperimetric and Isodiametric Area-minimal Plane Convex Figures." In Variational Calculus, Optimal Control and Applications, 261–70. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8802-8_26.
Full textSabba, Claudia Georgia, and Ubiratan D’Ambrosio. "An Ethnomathematical Perspective on the Question of the Idea of Multiplication and Learning to Multiply: The Languages and Looks Involved." In Teaching Multiplication with Lesson Study, 199–213. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28561-6_8.
Full textRathnam, K. "Projections of Plane Figures." In A First Course in Engineering Drawing, 155–69. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5358-0_8.
Full textBreach, Mark. "Areas of irregular figures." In Fundamental Maths, 232–36. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-36624-4_21.
Full textMoczurad, Włodzimierz. "Plane-Filling Properties of Directed Figures." In Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, 255–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21204-8_28.
Full textIshikawa, Toshiharu. "Market Areas of Retailers in Plane Space." In Dynamic Locational Phases of Economic Activity in the Globalized World, 15–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0524-4_2.
Full textKaneko, Akira, and Lei Huang. "Reconstruction of Plane Figures from Two Projections." In Discrete Tomography, 115–35. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1568-4_5.
Full textMusā, Banu. "The Measurement of Plane and Solid Figures (~850)." In Pi: A Source Book, 36–44. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2736-4_6.
Full textRahman, Md Saidur, Kazuyuki Miura, and Takao Nishizeki. "Octagonal Drawings of Plane Graphs with Prescribed Face Areas." In Graph-Theoretic Concepts in Computer Science, 320–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30559-0_27.
Full textConference papers on the topic "Areas of the plane figures"
Montenegro, Paula, Helena Campos, and Ana Paula Aires. "TASKS INVOLVING PERIMETER AND AREA OF PLANE FIGURES: ANALYSIS OF A MATHEMATICAL TEXTBOOK." In International Conference on Education and New Learning Technologies. IATED, 2017. http://dx.doi.org/10.21125/edulearn.2017.1518.
Full textKitahara, Takashi, Yuichi Yamamoto, and Yasutaka Tagawa. "Calculation Approach of Optimum Cutting Surfaces of Extra Length of Pipe Spools." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97689.
Full textHUNT, JAMES, and JOHN MARTIN. "Aero-space plane figures of merit." In AlAA 4th International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-5058.
Full textFeng, Tianxiao, Xiaoqing Lu, Lu Liu, Keqiang Li, and Zhi Tang. "Structure analysis for plane geometry figures." In IS&T/SPIE Electronic Imaging, edited by Bertrand Coüasnon and Eric K. Ringger. SPIE, 2013. http://dx.doi.org/10.1117/12.2042462.
Full textZhu Yun and Liang Shuang. "Initial exploration of Escher's regular plane figures." In 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design. IEEE, 2009. http://dx.doi.org/10.1109/caidcd.2009.5374896.
Full textYu, Xinguo, Wenbin Gan, Danfeng Yang, and Sichao Lai. "Automatic Reconstruction of Plane Geometry Figures in Documents." In 2015 International Conference of Educational Innovation through Technology (EITT). IEEE, 2015. http://dx.doi.org/10.1109/eitt.2015.16.
Full textLi, Keqiang, Xiaoqing Lu, Haibin Ling, Lu Liu, Tianxiao Feng, and Zhi Tang. "Detection of Overlapped Quadrangles in Plane Geometric Figures." In 2013 12th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2013. http://dx.doi.org/10.1109/icdar.2013.59.
Full textMcLain, Rachelle M., and Hannah McKelvey. "The Time Has Come... To Move Many Things: Inventorying and Preparing a Collection for Offsite Storage." In Charleston Library Conference. Purdue Univeristy, 2020. http://dx.doi.org/10.5703/1288284317169.
Full textD, Zuhri, and Sehatta Saragih. "Applying Bruner's Theory using Mini Laboratory on Plane Figures Topic." In First Indonesian Communication Forum of Teacher Training and Education Faculty Leaders International Conference on Education 2017 (ICE 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/ice-17.2018.127.
Full textBímová, Daniela, and Daniela Bittnerová. "Application problems for computing areas of figures by the alternative method." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4902462.
Full textReports on the topic "Areas of the plane figures"
Sheridan, Anne. Annual report on migration and asylum 2016: Ireland. ESRI, November 2017. http://dx.doi.org/10.26504/sustat65.
Full textYatsymirska, Mariya. SOCIAL EXPRESSION IN MULTIMEDIA TEXTS. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11072.
Full textNational report 2009-2019 - Rural NEET in Croatia. OST Action CA 18213: Rural NEET Youth Network: Modeling the risks underlying rural NEETs social exclusion, December 2020. http://dx.doi.org/10.15847/cisrnyn.nrhr.2020.12.
Full text