Academic literature on the topic 'ARIMAX'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ARIMAX.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ARIMAX"
Amelia, R., D. Y. Dalimunthe, E. Kustiawan, and I. Sulistiana. "ARIMAX model for rainfall forecasting in Pangkalpinang, Indonesia." IOP Conference Series: Earth and Environmental Science 926, no. 1 (November 1, 2021): 012034. http://dx.doi.org/10.1088/1755-1315/926/1/012034.
Full textChen, Yun-Peng, Le-Fan Liu, Yang Che, Jing Huang, Guo-Xing Li, Guo-Xin Sang, Zhi-Qiang Xuan, and Tian-Feng He. "Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China." International Journal of Environmental Research and Public Health 19, no. 9 (April 28, 2022): 5385. http://dx.doi.org/10.3390/ijerph19095385.
Full textALKALI, MUSA ABUBAKAR. "ASSESSING THE FORECASTING PERFORMANCE OF ARIMA AND ARIMAX MODELS OF RESIDENTIAL PRICES IN ABUJA NIGERIA." Asia Proceedings of Social Sciences 4, no. 1 (April 17, 2019): 4–6. http://dx.doi.org/10.31580/apss.v4i1.528.
Full textPutera, Muhammad Luthfi Setiarno. "PERAMALAN TRANSAKSI PEMBAYARAN NON-TUNAI MENGGUNAKAN ARIMAX-ANN DENGAN KONFIGURASI KALENDER." BAREKENG: Jurnal Ilmu Matematika dan Terapan 14, no. 1 (March 1, 2020): 135–46. http://dx.doi.org/10.30598/barekengvol14iss1pp135-146.
Full textTAMUKE, Edmund, Emerson Abraham JACKSON, and Abdulai SILLAH. "FORECASTING INFLATION IN SIERRA LEONE USING ARIMA AND ARIMAX: A COMPARATIVE EVALUATION. MODEL BUILDING AND ANALYSIS TEAM." Theoretical and Practical Research in the Economic Fields 9, no. 1 (June 30, 2018): 63. http://dx.doi.org/10.14505/tpref.v9.1(17).07.
Full textKurnia, Alma, and Ibnu Hadi. "Peramalan Nilai Ekspor Produk Industri Alas Kaki Menggnakan Model ARIMAX dengan Efek Variasi Kalender." Jurnal Statistika dan Aplikasinya 3, no. 2 (December 30, 2019): 25–34. http://dx.doi.org/10.21009/jsa.03204.
Full textBielak, Jarosław. "Prognozowanie rynku pracy woj. lubelskiego z wykorzystaniem modeli ARIMA i ARIMAX." Barometr Regionalny. Analizy i Prognozy, no. 1 (19) (May 13, 2010): 27–44. http://dx.doi.org/10.56583/br.1379.
Full textRizalde, Fadlika Arsy, Sri Mulyani, and Nelayesiana Bachtiar. "Forecasting Hotel Occupancy Rate in Riau Province Using ARIMA and ARIMAX." Proceedings of The International Conference on Data Science and Official Statistics 2021, no. 1 (January 4, 2022): 578–89. http://dx.doi.org/10.34123/icdsos.v2021i1.199.
Full textPutera, Muhammad Luthfi Setiarno. "IMPROVISASI MODEL ARIMAX-ANFIS DENGAN VARIASI KALENDER UNTUK PREDIKSI TOTAL TRANSAKSI NON-TUNAI." Indonesian Journal of Statistics and Its Applications 4, no. 2 (July 31, 2020): 296–310. http://dx.doi.org/10.29244/ijsa.v4i2.603.
Full textDiksa, I. Gusti Bagus Ngurah. "Forecasting the Existence of Chocolate with Variation and Seasonal Calendar Effects Using the Classic Time Series Approach." Jurnal Matematika, Statistika dan Komputasi 18, no. 2 (January 1, 2022): 237–50. http://dx.doi.org/10.20956/j.v18i2.18542.
Full textDissertations / Theses on the topic "ARIMAX"
Barrera, González Francisco Javier. "Determinación de óptimos de Rolling, en modelos Arimax." Tesis, Universidad de Chile, 2006. http://www.repositorio.uchile.cl/handle/2250/112089.
Full textNo disponible a texto completo
Durante la presente Tesis comprenderemos como la importancia de predecir el Futuro es importante, pero es vital la exactitud y/o cercanía del pronóstico dado. Por medio del Modelo de Optimos de Rolling, nos daremos cuenta que cada vez requerimos de información correcta, actual y oportuna que definitivamente nos ayudará a tomar nuestra mejor decisión, no solo el las Finanzas, sino en todas nuestras actividades que requieran de un pronóstico. Seleccioné la empresa Wal-Mart por que de una manera personal, considero que es una de las empresas de mayor éxito que conozco. Tenemos información del precio de sus acciones a la mano, tenemos el modelo en matriz del Optimo de Rolling y contamos con el conocimiento necesario para corroborar la importancia de manejar la información y sobre todo llegar a un modelo óptimo que me permitirá, para esas acciones, tomar la mejor de las decisiones en el mercado bursátil. A través de una serie de gráficas que presento, podremos ver la comparativa de varios modelos y la secuencia de cómo elegir la información y llegar a la mejor opción.
Uppling, Hugo, and Adam Eriksson. "Single and multiple step forecasting of solar power production: applying and evaluating potential models." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384340.
Full textFracaro, Nelize. "Estacionariedade das séries temporais do modelo matemático arimax de propulsores eletromecânicos." reponame:Repositório Institucional da UNIJUI, 2018. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5565.
Full text88 f.
Ballesteros, Lozano Horacio. "Determinación de óptimo de Rolling bajo modelo Arimax para ADR mexicana TMM." Tesis, Universidad de Chile, 2006. http://www.repositorio.uchile.cl/handle/2250/112088.
Full textNo disponible a texto completo
A través del tiempo tanto las empresas como los mercados enfrentan cada día nuevos retos o desafíos relacionados con demandas estables, competencia intensa, consumidores exigentes y nuevos fenómenos sociales. Estos desafíos requieren en situaciones su previa predicción; debido a esto se han implementado nuevos conceptos y técnicas con el propósito de obtener resultados con mayor eficiencia, disminuyendo la aversión al riesgo para una mejor toma de decisiones. Para el caso de la decisiones financieras las técnicas de pronósticos estadísticos han ayudado a que las personas busquen maneras para poder acceder a mayor información, que les permita poder tomar decisiones de una forma correcta, en donde las posibilidades de equivocarse sean las mínimas y el éxito en la toma de decisiones sea lo más alto posible. La predicción de los fenómenos futuros, están basados en premisas de que los elementos que suceden en la práctica, no son un efecto aleatorio, sino que representan tendencias que podrían ser explicadas de cierta forma por algún modelo; algunas de estas tendencias han servido de mucha ayuda para los inversionistas en sus decisiones. El surgimiento de modelos con comportamiento lineal puede crear cierta certeza en la predicción de resultados, solo que el planteamiento del problema va a ser un elemento clave para lograr una mayor capacidad predictiva junto con la manera de utilizar la información en el modelo
Liendeborg, Zaida, and Mattias Karlsson. "Prognostisering av försäljningsvolym med hjälp av omvärldsindikatorer." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129572.
Full textRibeiro, Liliana Patrícia Teixeira. "Aplicação de modelos econométricos na previsão de preço de azeites." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20862.
Full textO presente relatório tem por base as atividades desenvolvidas no estágio na empresa Gallo Worldwide, nomeadamente a análise das bases de dados da empresa de modo a efetuar a previsão do preço do azeite extra-virgem, azeite virgem e lampante. Uma vez que a modelação dos preços dos azeites é realizada através da modelação de séries temporais, existem diversos modelos que podem ser aplicados. Segundo a literatura científica analisada, a estimação das séries temporais utilizadas pode ser realizada através do modelo ARIMA, ARIMAX, GARCH e SUR. Neste sentido, será apresenta de uma forma detalhada a análise dos modelos econométricos em estudo para a obtenção das previsões pretendidas. Os modelos utilizados foram aplicados a conjuntos de dados com diferentes periodicidades: semanal e mensal. Sendo os modelos aplicados a conjuntos de dados com diferentes periodicidades também foram efetuadas previsões através de todos os modelos aplicados aos dois conjuntos de dados, existindo conclusões para ambos os casos.
The current report was built around the tasks performed during the internship on the company Gallo Worldwide, where the main responsibilities consisted in the analysis of the database to be able to forecast extra-virgin olive oil, virgin olive oil and lampante prices. Considering the olive oil pricing modelling is achieved through the modelling of time series, several models can be applied. According to the scientific literature reviewed, the estimation of time series may be accomplished using the ARIMA, ARIMAX, GARCH and SUR models. In this sense, it will be presented, in a detailed manner, the analysis of the econometrical models being studied as a resource to obtain the intended predictions. The models utilized were applied to a group of data with different periodicities: data with weekly periodicity and data with monthly periodicity. Considering the models are employed over a set of data with different periodicities, similarly the predictions were made through all the models used in both sets of data, resulting in the existence ofconclusions for both cases.
info:eu-repo/semantics/publishedVersion
Valer, Leila Ana. "Modelo matemático ARIMAX de um propulsor eletromecânico utilizado em naves do tipo multirrotor." reponame:Repositório Institucional da UNIJUI, 2016. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/3628.
Full text111 f.
Post, Eduardo. "Análise dos critérios de erros na validação do modelo matemático Arimax de propulsores eletromecânicos." reponame:Repositório Institucional da UNIJUI, 2018. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5526.
Full text83 f.
Lee, Ming-Tsung [Verfasser], and Bernhard [Akademischer Betreuer] Friedrich. "Short-term Freeway Traffic Flow Forecasting with ARIMAX Modeling / Ming-Tsung Lee ; Betreuer: Bernhard Friedrich." Braunschweig : Technische Universität Braunschweig, 2010. http://d-nb.info/1175827878/34.
Full textFredén, Daniel, and Hampus Larsson. "Forecasting Daily Supermarkets Sales with Machine Learning." Thesis, KTH, Optimeringslära och systemteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276483.
Full textFörbättrade försäljningsprognoser för individuella produkter inom detaljhandeln kan leda till både en miljömässig och ekonomisk förbättring. Historiskt sett har dessa utförts genom en kombination av statistiska metoder och erfarenhet. Med den ökade beräkningskraften hos dagens datorer har intresset för att applicera maskininlärning på dessa problem ökat. Målet med detta examensarbete är därför att undersöka vilken maskininlärningsmetod som kunde prognostisera försäljning bäst. De undersökta metoderna var XGBoost, ARIMAX, LSTM och Facebook Prophet. Generellt presterade XGBoost och LSTM modellerna bäst då dem hade ett lägre mean absolute value och symmetric mean percentage absolute error jämfört med de andra modellerna. Dock, gällande root mean squared error hade Facebook Prophet bättre resultat under högtider, vilket indikerade att Facebook Prophet var den bäst lämpade modellen för att förutspå försäljningen under högtider. Dock, kunde LSTM modellen snabbt anpassa sig och förbättrade estimeringarna. Inkluderingen av väderdata i modellerna resulterade inte i några markanta förbättringar och gav i vissa fall även försämringar. Övergripande, var resultaten tvetydiga men indikerar att den bästa modellen är beroende av prognosens tidsperiod och mål.
Books on the topic "ARIMAX"
Iinkai, Shibukawa-shi Kyōiku. Arima kugūmado iseki. Shibukawa: Shibukawa-shi Kyōiku Iinkai, 1997.
Find full textGunma-ken Maizō Bunkazai Chōsa Jigyōdan, ed. Arima iseki: Yayoi, Kofun Jidai. Kitatachibana-mura (Gunma-ken): Gunma-ken kōko shiryō fukyūkai, 1990.
Find full textBook chapters on the topic "ARIMAX"
Islam, Noman, Enayat Raza, Sheraz Mohsin, Ahsar Ansari, Razeen Shuja, and Darakhshan Syed. "Forecasting on Covid-19 Data Using ARIMAX Model." In Data Science with Semantic Technologies, 95–113. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003310785-5.
Full textTungtrakul, Tanaporn, Natthaphat Kingnetr, and Songsak Sriboonchitta. "An Empirical Confirmation of the Superior Performance of MIDAS over ARIMAX." In Lecture Notes in Computer Science, 601–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49046-5_51.
Full textMaggina, Anastasia. "Market-Based Accounting Research (MBAR) Models: A Test of ARIMAX Modeling." In Handbook of Financial Econometrics and Statistics, 279–98. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7750-1_10.
Full textHu, Ruixin, and Xuecheng Wang. "Linkage Analysis Between Bitcoin and Nasdaq Index Based on ARIMAX Model." In Proceedings of the 2022 3rd International Conference on Modern Education and Information Management (ICMEIM 2022), 905–12. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-044-2_113.
Full textSarpong-Streetor, Richard M. N. Y., Rajalingam Sokkalingam, Mahmod Othman, Hanita Daud, and Derrick Asamoah Owusu. "ARIMAX Modelling of Ron97 Price with Crude Oil Price as an Exogenous Variable in Malaysian." In Proceedings of the 6th International Conference on Fundamental and Applied Sciences, 679–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4513-6_59.
Full textSharma, Archit, Prakhar Tiwari, Akshat Gupta, and Pardeep Garg. "Use of LSTM and ARIMAX Algorithms to Analyze Impact of Sentiment Analysis in Stock Market Prediction." In Intelligent Data Communication Technologies and Internet of Things, 377–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9509-7_32.
Full textSuhermi, Novri, Suhartono, Regita Putri Permata, and Santi Puteri Rahayu. "Forecasting the Search Trend of Muslim Clothing in Indonesia on Google Trends Data Using ARIMAX and Neural Network." In Communications in Computer and Information Science, 272–86. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0399-3_22.
Full textGass, Saul I., and Carl M. Harris. "ARIMA." In Encyclopedia of Operations Research and Management Science, 1. New York, NY: Springer US, 2001. http://dx.doi.org/10.1007/1-4020-0611-x_5.
Full textShumway, Robert H., and David S. Stoffer. "ARIMA Models." In Springer Texts in Statistics, 75–163. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52452-8_3.
Full textGroß, Jürgen. "ARIMA Modelle." In Grundlegende Statistik mit R, 251–60. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9677-3_24.
Full textConference papers on the topic "ARIMAX"
Aji, Bimo Satrio, Indwiarti, and Aniq Atiqi Rohmawati. "Forecasting Number of COVID-19 Cases in Indonesia with ARIMA and ARIMAX Models." In 2021 9th International Conference on Information and Communication Technology (ICoICT). IEEE, 2021. http://dx.doi.org/10.1109/icoict52021.2021.9527453.
Full textLi, Chunyan, and Jun Chen. "Traffic Accident Macro Forecast Based on ARIMAX Model." In 2009 International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2009. http://dx.doi.org/10.1109/icmtma.2009.250.
Full textHe, Qing, Yong-Shen Chen, Jun Qiao, Jian-Dong Qiu, and Yang Li. "Prediction Model of Urban Traffic Performance Index Using ARIMAX." In 17th COTA International Conference of Transportation Professionals. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784480915.371.
Full textYang, Mofeng, Jiaohong Xie, Peipei Mao, Chao Wang, and Zhirui Ye. "Application of the ARIMAX Model on Forecasting Freeway Traffic Flow." In 17th COTA International Conference of Transportation Professionals. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784480915.061.
Full textAndreas, Christopher, Anifatul Faricha, Siti Maghfirotul Ulyah, Rika Susanti, Hawwin Mardhiana, M. Achirul Nanda, and Firman Adi R. "Comparison study using ARIMAX and VARX in cash flow forecasting." In 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: Mathematics of Quantum Computing. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0118519.
Full textAzhari and Pradita Eko Prasetyo Utomo. "Prediction the Crime Motorcycles of Theft using ARIMAX-TFM with Single Input." In 2018 Third International Conference on Informatics and Computing (ICIC). IEEE, 2018. http://dx.doi.org/10.1109/iac.2018.8780520.
Full textMonica, Marieta, and Agus Suharsono. "Forecasting cash outflow and inflow in Jember with ARIMAX calendar variation effect." In THE THIRD INTERNATIONAL CONFERENCE ON MATHEMATICS: Education, Theory and Application. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0039283.
Full textXu, Qiang, Wei Li, Dean Kong, Xiang Zhao, Xiaoyu Wang, Yongji Li, Yong Shen, Xiangshuo Wang, and Zheng Zhao. "Ultra-short-term Wind Speed Forecast Based on WD-ARIMAX-GARCH Model." In 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). IEEE, 2019. http://dx.doi.org/10.1109/auteee48671.2019.9033198.
Full textFan, Yingbing, Jinxiu Hu, and Xuemei Lu. "Prediction of employment and reemployment in China based on SARIMA-ARIMAX model." In 6th International Workshop on Advanced Algorithms and Control Engineering (IWAACE 2022), edited by Daowen Qiu, Xuexia Ye, and Ning Sun. SPIE, 2022. http://dx.doi.org/10.1117/12.2652499.
Full textSantana, W. C., K. Al-Haddad, S. Rahmani, F. Fnaiech, and L. E. B. da Silva. "An Active Resonance Damper for Distribution Systems Using an ARIMAX Parameter Estimator." In 2007 IEEE Canada Electrical Power Conference (EPC 2007). IEEE, 2007. http://dx.doi.org/10.1109/epc.2007.4520345.
Full textReports on the topic "ARIMAX"
Cook, Steve. Visual identification of ARIMA models. Bristol, UK: The Economics Network, January 2016. http://dx.doi.org/10.53593/n2817a.
Full textPina-Burón, María Rosa. Cerro de Ariza. Institut Català d’Arqueologia Clàssica, 2022. http://dx.doi.org/10.51417/figlinae_003.
Full textChang, J. L., H. Nazari, C. O. Font, G. C. Gilbreath, and E. Oh. Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada472169.
Full textCárdenas-Cárdenas, Julián Alonso, Deicy J. Cristiano-Botia, and Nicolás Martínez-Cortés. Colombian inflation forecast using Long Short-Term Memory approach. Banco de la República, June 2023. http://dx.doi.org/10.32468/be.1241.
Full textHafer, R. W., Scott E. Hein, and Clemens J. M. Kool. Comparing Multi-State Kalman Filter and ARIMA Forecasts: An Application to the Money Multiplier. Federal Reserve Bank of St. Louis, 1985. http://dx.doi.org/10.20955/wp.1985.001.
Full textHipp, Christine. LANL’s Digital Supply Chain Transformation with Ariba. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1823715.
Full textHopkins, Matthew Morgan, Harry K. Moffat, David R. Noble, Patrick K. Notz, and Samuel Ramirez Subia. Aria 1.5 : user manual. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/922079.
Full textEkdahl, Carl August Jr. Beam Dynamics for ARIA. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1158826.
Full textAlley, Patricia. Request to Register with LANL in Ariba www.lanl.gov/business. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1804328.
Full textHipp, Christine. LANL’s Digital Supply Chain Transformation with Ariba Part 2. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1841907.
Full text