Dissertations / Theses on the topic 'ARIMAX'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'ARIMAX.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Barrera, González Francisco Javier. "Determinación de óptimos de Rolling, en modelos Arimax." Tesis, Universidad de Chile, 2006. http://www.repositorio.uchile.cl/handle/2250/112089.
Full textNo disponible a texto completo
Durante la presente Tesis comprenderemos como la importancia de predecir el Futuro es importante, pero es vital la exactitud y/o cercanía del pronóstico dado. Por medio del Modelo de Optimos de Rolling, nos daremos cuenta que cada vez requerimos de información correcta, actual y oportuna que definitivamente nos ayudará a tomar nuestra mejor decisión, no solo el las Finanzas, sino en todas nuestras actividades que requieran de un pronóstico. Seleccioné la empresa Wal-Mart por que de una manera personal, considero que es una de las empresas de mayor éxito que conozco. Tenemos información del precio de sus acciones a la mano, tenemos el modelo en matriz del Optimo de Rolling y contamos con el conocimiento necesario para corroborar la importancia de manejar la información y sobre todo llegar a un modelo óptimo que me permitirá, para esas acciones, tomar la mejor de las decisiones en el mercado bursátil. A través de una serie de gráficas que presento, podremos ver la comparativa de varios modelos y la secuencia de cómo elegir la información y llegar a la mejor opción.
Uppling, Hugo, and Adam Eriksson. "Single and multiple step forecasting of solar power production: applying and evaluating potential models." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384340.
Full textFracaro, Nelize. "Estacionariedade das séries temporais do modelo matemático arimax de propulsores eletromecânicos." reponame:Repositório Institucional da UNIJUI, 2018. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5565.
Full text88 f.
Ballesteros, Lozano Horacio. "Determinación de óptimo de Rolling bajo modelo Arimax para ADR mexicana TMM." Tesis, Universidad de Chile, 2006. http://www.repositorio.uchile.cl/handle/2250/112088.
Full textNo disponible a texto completo
A través del tiempo tanto las empresas como los mercados enfrentan cada día nuevos retos o desafíos relacionados con demandas estables, competencia intensa, consumidores exigentes y nuevos fenómenos sociales. Estos desafíos requieren en situaciones su previa predicción; debido a esto se han implementado nuevos conceptos y técnicas con el propósito de obtener resultados con mayor eficiencia, disminuyendo la aversión al riesgo para una mejor toma de decisiones. Para el caso de la decisiones financieras las técnicas de pronósticos estadísticos han ayudado a que las personas busquen maneras para poder acceder a mayor información, que les permita poder tomar decisiones de una forma correcta, en donde las posibilidades de equivocarse sean las mínimas y el éxito en la toma de decisiones sea lo más alto posible. La predicción de los fenómenos futuros, están basados en premisas de que los elementos que suceden en la práctica, no son un efecto aleatorio, sino que representan tendencias que podrían ser explicadas de cierta forma por algún modelo; algunas de estas tendencias han servido de mucha ayuda para los inversionistas en sus decisiones. El surgimiento de modelos con comportamiento lineal puede crear cierta certeza en la predicción de resultados, solo que el planteamiento del problema va a ser un elemento clave para lograr una mayor capacidad predictiva junto con la manera de utilizar la información en el modelo
Liendeborg, Zaida, and Mattias Karlsson. "Prognostisering av försäljningsvolym med hjälp av omvärldsindikatorer." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129572.
Full textRibeiro, Liliana Patrícia Teixeira. "Aplicação de modelos econométricos na previsão de preço de azeites." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20862.
Full textO presente relatório tem por base as atividades desenvolvidas no estágio na empresa Gallo Worldwide, nomeadamente a análise das bases de dados da empresa de modo a efetuar a previsão do preço do azeite extra-virgem, azeite virgem e lampante. Uma vez que a modelação dos preços dos azeites é realizada através da modelação de séries temporais, existem diversos modelos que podem ser aplicados. Segundo a literatura científica analisada, a estimação das séries temporais utilizadas pode ser realizada através do modelo ARIMA, ARIMAX, GARCH e SUR. Neste sentido, será apresenta de uma forma detalhada a análise dos modelos econométricos em estudo para a obtenção das previsões pretendidas. Os modelos utilizados foram aplicados a conjuntos de dados com diferentes periodicidades: semanal e mensal. Sendo os modelos aplicados a conjuntos de dados com diferentes periodicidades também foram efetuadas previsões através de todos os modelos aplicados aos dois conjuntos de dados, existindo conclusões para ambos os casos.
The current report was built around the tasks performed during the internship on the company Gallo Worldwide, where the main responsibilities consisted in the analysis of the database to be able to forecast extra-virgin olive oil, virgin olive oil and lampante prices. Considering the olive oil pricing modelling is achieved through the modelling of time series, several models can be applied. According to the scientific literature reviewed, the estimation of time series may be accomplished using the ARIMA, ARIMAX, GARCH and SUR models. In this sense, it will be presented, in a detailed manner, the analysis of the econometrical models being studied as a resource to obtain the intended predictions. The models utilized were applied to a group of data with different periodicities: data with weekly periodicity and data with monthly periodicity. Considering the models are employed over a set of data with different periodicities, similarly the predictions were made through all the models used in both sets of data, resulting in the existence ofconclusions for both cases.
info:eu-repo/semantics/publishedVersion
Valer, Leila Ana. "Modelo matemático ARIMAX de um propulsor eletromecânico utilizado em naves do tipo multirrotor." reponame:Repositório Institucional da UNIJUI, 2016. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/3628.
Full text111 f.
Post, Eduardo. "Análise dos critérios de erros na validação do modelo matemático Arimax de propulsores eletromecânicos." reponame:Repositório Institucional da UNIJUI, 2018. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5526.
Full text83 f.
Lee, Ming-Tsung [Verfasser], and Bernhard [Akademischer Betreuer] Friedrich. "Short-term Freeway Traffic Flow Forecasting with ARIMAX Modeling / Ming-Tsung Lee ; Betreuer: Bernhard Friedrich." Braunschweig : Technische Universität Braunschweig, 2010. http://d-nb.info/1175827878/34.
Full textFredén, Daniel, and Hampus Larsson. "Forecasting Daily Supermarkets Sales with Machine Learning." Thesis, KTH, Optimeringslära och systemteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276483.
Full textFörbättrade försäljningsprognoser för individuella produkter inom detaljhandeln kan leda till både en miljömässig och ekonomisk förbättring. Historiskt sett har dessa utförts genom en kombination av statistiska metoder och erfarenhet. Med den ökade beräkningskraften hos dagens datorer har intresset för att applicera maskininlärning på dessa problem ökat. Målet med detta examensarbete är därför att undersöka vilken maskininlärningsmetod som kunde prognostisera försäljning bäst. De undersökta metoderna var XGBoost, ARIMAX, LSTM och Facebook Prophet. Generellt presterade XGBoost och LSTM modellerna bäst då dem hade ett lägre mean absolute value och symmetric mean percentage absolute error jämfört med de andra modellerna. Dock, gällande root mean squared error hade Facebook Prophet bättre resultat under högtider, vilket indikerade att Facebook Prophet var den bäst lämpade modellen för att förutspå försäljningen under högtider. Dock, kunde LSTM modellen snabbt anpassa sig och förbättrade estimeringarna. Inkluderingen av väderdata i modellerna resulterade inte i några markanta förbättringar och gav i vissa fall även försämringar. Övergripande, var resultaten tvetydiga men indikerar att den bästa modellen är beroende av prognosens tidsperiod och mål.
Balderas, Elizondo Genaro. "Determinación del óptimo de Rolling en modelos Arimax para el precio de la acción de Magna Internacional, Inc." Tesis, Universidad de Chile, 2006. http://www.repositorio.uchile.cl/handle/2250/112087.
Full textNo disponible a texto completo
La necesidad de contar con información oportuna y acertada que permita a los inversionistas y/o corporaciones tomar decisiones de manera efectiva ha ido en aumento en recientes años; hoy no solo es necesario contar con información de calidad sino que además esta permita anticiparse a los hechos y/o situaciones que pongan en riesgo el patrimonio del inversionista. A lo largo de la historia el ser humano ha hecho esfuerzos importantes en las diferentes disciplinas de la ciencia para determinar y anticipares con mayor certeza a los fenómenos a los que nos vemos expuestos; sin lugar a duda esto mismo sucede en el ambito de las finanzas; pues el objetivo es reducir el riesgo al que se ven expuestos los inversionistas y con ello garantizar el éxito en su toma de desiciones al evaluar sus opciones. Hoy en dia existen diversas técnicas para poder predecir los fenómenos futuros, estas se basan en la premisa de que los elementos que suceden en la práctica, no son un efecto aleatorio, sino que representan de alguna manera tendencias que podrían ser explicadas de cierta forma por algún modelo. En primer término el presente trabajo pretende enunciar y describir los modelos ARIMA y del optimo de rolling para la predicion del signo y corportamiento futuro de las acciones. En segundo término aplicar la tecnica del tamano óptimo de rolling para la predición del signo del precio de la accion de la empresa Magna Internacional, Inc permitiendo al lector de una manera sencilla entender el modelo y que al concluir el trabajo tenga los conocimientos necesarios para emitir su propia opinión respecto a los temas tratados fortalenciedo al mismo tiempo sus conocimientos.
Almeida, Leonardo Lourenço de. "Aplicação de modelos preditivos para o setor alimentar : um estudo comparativo." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20761.
Full textNa sociedade atual a inovação surge como um papel cada vez mais preponderante nas empresas. O presente relatório surge no âmbito de um estágio curricular desenvolvido numa empresa líder a nível mundial no comércio grossista de azeites, com o principal objetivo de encontrar um modelo capaz de prever os preços das suas mercadorias. Para tal, foram analisadas várias metodologias, fazendo uma junção entre modelos tradicionais e mais inovadores e recentes. Sendo por isso, analisados os modelos ARIMA; ARIMAX; VAR como modelos mais tradicionais, em contradição às redes neuronais artificiais do tipo MLP; GMDH. Para o estudo de caso foram utilizados os dados dos três azeites de mais interesse para a empresa, distribuídos por dois conjuntos temporais diferentes, permitindo assim a análise do impacto da dimensão da amostra nas previsões. Estudou-se o impacto de variáveis independentes (nomeadamente meteorológicas, macroeconómicas, entre outras que afetam a produção da azeitona), têm nos preços de compra do azeite. Os resultados apontam para um melhor desempenho do modelo VAR em todos os grupos de dados em análise, obtendo assim as melhores previsões dentro do conjunto de modelos. Destaca-se ainda, a preferência de modelos mais tradicionais quando a série tem um menor comprimento temporal, e uma melhor eficácia das redes neuronais em conjuntos de dados mais elevados, destacando ainda a preferência da rede do tipo GMDH face à rede MLP. Conclui-se ainda, que dentro do vasto conjunto de variáveis em análise, é uma variável binária que influencia a produção (safra), a que possuí maior impacto nas previsões.
In today's society, innovation appears as an increasingly prevalent role in companies. This report comes as a part of a curricular internship developed at a world leader in the wholesale of olive oil with the main objective of finding a model capable of predicting the prices of its goods. To this end, several methodologies were analyzed, making a junction between traditional and more innovative and recent models. Therefore, the ARIMA models were analyzed; ARIMAX; VAR as more traditional models, in contradiction to artificial neural networks of the MLP type; GMDH. For the case study, data from the three olive oils of most interest to the company was used, distributed over two different time sets. Thus, allowing the analysis of the impact of the sample size on the forecasts. The impact of independent variables (namely meteorological, macroeconomic, among others that affect olive production) was studied on the purchase prices of olive oil. The results point to a better performance of the VAR model in all groups of data under analysis, thus obtaining the best forecasts within the set of models. Also, noteworthy is the preference for more traditional models when the series has a shorter time length, and a better efficiency of neural networks in higher data sets, also highlighting the preference of the GMDH type network over the MLP network. It is also concluded that, within the vast set of variables under analysis, it is a binary variable that influences production (safra), which has the greatest impact on forecasts.
info:eu-repo/semantics/publishedVersion
Логін, Вадим Вікторович. "Моделі для прогнозування характеристик трафіка цифрової реклами." Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/23748.
Full textModels for forecasting parameters of digital advertising traffic. Master's thesis: 112 p., 48 fig., 40 tabl., 3 appendixes and 30 sources. The object of study – digital advertising traffic in the form of statistical data. Subject of research – models and methods of analysis of data in the form of time series, methods of applied statistics. Purpose – constructing time series models for forecasting the most important characteristics of digital advertising traffic. Methods of research – time series models for forecasting data and comparative analysis of the obtained models. This paper presents the results of construction of time series models, which are intended for forecasting of the most important characteristics of digital advertising traffic. Described the results of the comparative analysis of the obtained models with the help of information criteria, and also in terms of their accuracy. Was found that for our task, the best model is the ARIMAX model (Autoregressive integrated moving-average model with exogenous inputs). Therefore, it is recommended to use this model for further research. Based on master's dissertation were written theses as well as a scientific article. The theses will be published in the SAIT-2018 conference Book of Abstracts. The scientific article will be published in the electronic collection of reports at the CEUR publishing house (CEUR Workshop Proceedings). The further development of the research object – is the construction of new ones, as well as the improvement of existing time series models for forecasting the most important characteristics of digital advertising traffic. And also – it is a generalization of the research, conducted in this paper, on the analysis of individual sites from the digital advertising traffic.
Souza, Thiago Rodrigues de. "Previs?o sazonal da precipita??o para o Nordeste do Brasil: um contraste entre as metodologias de Box-Jenkins e Box-Tiao." PROGRAMA DE P?S-GRADUA??O EM CI?NCIAS CLIM?TICAS, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/23459.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-06-09T20:35:17Z (GMT) No. of bitstreams: 1 ThiagoRodriguesDeSouza_DISSERT.pdf: 4007098 bytes, checksum: b98a621f29e991b3bc26a68f0060557f (MD5)
Made available in DSpace on 2017-06-09T20:35:17Z (GMT). No. of bitstreams: 1 ThiagoRodriguesDeSouza_DISSERT.pdf: 4007098 bytes, checksum: b98a621f29e991b3bc26a68f0060557f (MD5) Previous issue date: 2017-02-21
O objetivo deste trabalho ? realizar um estudo comparativo com ajustes de modelos de previs?es pelo m?todo de Box-Jenkins (ARIMA) e Box-Tiao (ARIMAX) para precipita??o acumulada mensal em seis cidades do Nordeste do Brasil, sendo escolhida de acordo com a classifica??o clim?tica de K?ppen. Tendo como vari?veis ex?genas: temperaturas da superf?cie do mar do oceano Atl?ntico e Pac?fico. Em todas as s?ries de precipita??o acumulada verificou-se a presen?a do componente sazonal, al?m disso, devido ao pressuposto de vari?ncia constante e normalidade dos dados n?o serem atendida, foi aplicado na s?rie original ? transforma??o Box Cox. Atrav?s das medidas de qualidade dos ajustes dos modelos pelo m?todo ARIMA e ARIMAX, temos que o modelo ARIMAX evidenciou como o melhor ajuste aos dados em estudo, apresentando menores valores para os crit?rios de informa??o AIC, erro m?dio e erro quadr?tico m?dio.
The objective this work is realize a comparative study with adjustment of previsions models by Box-Jenkins (ARIMA) and Box-Tiao (ARIMAX) methods for monthly accumulated precipitation in six cities of Brazilian northeast, choosing the cities according with K?ppen climatic classification. We've exogenes variables: sea surface temperature of Atlantic and Pacific Ocean.In all precipitations accumulated series were observerd the presence of sazonal component, besides that, due to assumption of the constante variance and data normality isn't reached, was applied in original serie the Box Cox transformation.By the measures of quality of the models adjustments by ARIMA and ARIMAX method, we've the ARIMAX model evidencied like the better adjustment to data, showing lower values to AIC information criteria, mean error and mean square error.
Norouzi, Mehdi. "Tracking Long-Term Changes in Bridges using Multivariate Correlational Data Analysis." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416570591.
Full textMatos, Dionatan Breskovit de. "Técnicas de estimação de parâmetros utilizadas para a modelagem matemática de propulsores eletromecânicos." reponame:Repositório Institucional da UNIJUI, 2018. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5571.
Full text107 f.
Abalos, Choque Melisa. "Modelo Arima con intervenciones." Universidad Mayor de San Andrés. Programa Cybertesis BOLIVIA, 2009. http://www.cybertesis.umsa.bo:8080/umsa/2009/abalos_cme/html/index-frames.html.
Full textRostami, Tabar Bahman. "ARIMA demand forecasting by aggregation." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00980614.
Full textMariotti, Mara Terezinha. "Análise arima de dados meteo-oceanográficos." Florianópolis, SC, 2003. http://repositorio.ufsc.br/xmlui/handle/123456789/84655.
Full textMade available in DSpace on 2012-10-20T11:18:26Z (GMT). No. of bitstreams: 1 196113.pdf: 2449450 bytes, checksum: 56b01ccb27ccad38aa728c00dc2045ee (MD5)
Um estudo do mecanismo gerador das componentes meteorológicas que afetam o nível do mar é proposto através da utilização de modelos ARIMA (autorregressive integrated moving average). Séries temporais da temperatura do ar, pressão atmosférica, da componente meridional do vento e do nível do mar foram aquisitadas em São Francisco do Sul-SC, no período de 14 de julho a 15 de dezembro de 1996, e reamostradas a cada seis horas para melhor avaliar as componentes de baixa freqüência. As séries se mostraram não estacionárias na média, impondo a necessidade de integração. Não foi possível identificar uma não estacionaridade da variância devido ao comprimento insuficiente dos registros utilizados. Nos modelos de ordem 2 a estrutura de recorrência entre dois sistemas frontais é reconhecida através do modo associado aos dois pólos do polinômio. Os modelos AR(4) de todas as variáveis consideradas conseguem reconstruir também a evolução do sistema in situ, de período aproximado de 2,5 dias, por meio da segunda dupla de pólos. Modelos autorregressivos de ordem superior poderiam melhorar a identificação e a reconstrução desses ciclos, mas não conseguem convergir devido a não estacionaridade. Apesar disso, modelos de baixa ordem, com dois parâmetros apenas, conseguem fazer previsões aceitáveis até 24 horas, o que demonstra as possibilidades da metodologia.
Örneholm, Filip. "Anomaly Detection in Seasonal ARIMA Models." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388503.
Full textФілатова, Ганна Петрівна, Анна Петровна Филатова, and Hanna Petrivna Filatova. "Прогнозування державного боргу з використанням ARIMA моделі." Thesis, ЦФЕНД, 2020. https://essuir.sumdu.edu.ua/handle/123456789/84293.
Full textGuimarães, Rita Cabral Pereira de Castro. "Modelização ARIMA de sucessões cronológicas: aplicação na previsão de escoamentos mensais." Master's thesis, Universidade de Évora, 1997. http://hdl.handle.net/10174/13282.
Full textIsbister, Tim. "Anomaly detection on social media using ARIMA models." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269189.
Full textCardoso, Neto Jose. "Agregação temporal de variavel fluxo em modelos Arima." [s.n.], 1990. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305854.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação
Made available in DSpace on 2018-07-14T02:03:40Z (GMT). No. of bitstreams: 1 CardosoNeto_Jose_M.pdf: 1451231 bytes, checksum: 825d0beda95d7e2c6988f58b7c49500a (MD5) Previous issue date: 1990
Resumo: Não informado
Abstract: Not informed
Mestrado
Mestre em Estatística
Landström, Johan, and Patric Linderoth. "Precisionsbaserad analys av trafikprediktion med säsongsbaserad ARIMA-modellering." Thesis, Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-14336.
Full textIntelligent Transport Systems (ITS) today are a key part of the effort to try to improve the quality of transport networks, for example by supporting the real-time traffic management and giving road users greater opportunity to take informed decisions regarding their driving. Short-term prediction of traffic data, including traffic volume, plays a central role in the services delivered by ITS systems. The strong technological development has contributed to an increased opportunity to use data-driven modeling to perform short-term predictions of traffic data. Seasonal ARIMA (SARIMA) is one of the most common models for modeling and predicting traffic data, which uses patterns in historical data to predict future values. When modeling with SARIMA, a variety of decisions are required regarding he data used. Examples of such decisions are the amount of training data to be used, the days to be included in training data and the aggregation interval to be used. In addition, one-step predictions are performed most often in previous studies of SARIMA modeling of traffic data, although the model supports multi-step prediction into the future. Often, in previous studies, decisions are made concerning mentioned variables without theoretical motivation, while it is highly probable that these decisions affect the accuracy of the predictions. Therefore, this study aims at performing a sensitivity analysis of these parameters to investigate how different values affect the accuracy of traffic volume prediction. The study developed a model with which data could be imported, preprocessed and then modeled using a SARIMA model. Traffic volume data was used, which was collected during January and February 2014, using cameras located on highway 40 on the outskirts of Gothenburg. After differentiation of data, autocorrelation and partial autocorrelation graphs as well as information criteria are used to define appropriate SARIMA models, with which predictions could be made. With defined models, an experiment was conducted in which eight unique scenarios were tested to investigate how the prediction accuracy of traffic volume was influenced by different amount of exercise data, what days was included in training data, length of aggregation intervals, and how many steps into the future were predicted. To evaluate the accuracy of the predictions, MAPE, RMSE and MAE were used. The results of the experiment show that developed SARIMA models are able to predict current data with good precision no matter what values were set for the variables studied. However, the results showed indications that a training volume of five days can generate a model that provides more accurate predictions than when using 15 or 30-day volumes, which can be of great practical importance in real-time analysis. In addition, the results indicate that all weekdays should be included in the training data set when daily seasonality is used, SARIMA modeling handles aggregation intervals of 60 minutes better than 30 or 15 minutes, and that one-step predictions are more accurate than when one or two days horizons are used. The study has focused only on the impact of the four parameters separately and not if a combined effect could be found. Further research is proposed for investigating if combined effects could be found, as well as further investigating whether a lesser training volume can continue to generate more accurate predictions even for other periods of the year.
Nayeri, Negin. "Option strategies using hybrid Support Vector Regression - ARIMA." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275719.
Full textI denna uppsats utvärderas användningen av maskininlärning i optionsstrategier med fokus på S&P 500 Index. Den första delen av uppsatsen fokuserar på att testa prognos kraften av Support Vector Regression (SVR) metoden för den realiserade volatiliteten med ett fönster på 20 dagar. Prognos kommer att ske för 1 månad framåt (20 trading dagar). Den andra delen av uppsatsen fokuserar på att skapa en ARIMA-modell som prognostiserar nästa värdet i tidsserien som baseras på skillnaden mellan de erhållna prognoserna samt sanna värdena. Detta görs för att skapa en hybrid SVR-ARIMA-modell. Den nya modellen består nu av ett realiserat volatilitetsvärde härrörande från SVR samt den error som erhållits från ARIMA- modellen. Avslutningsvis kommer de två metoderna, det vill säga SVR och hybrid SVR-ARIMA, jämföras och den modell med bäst resultat användas inom två options strategier. Resultaten visar den lovande prognotiseringsförmågan för SVR-metoden som för denna dataset hade en noggrannhetsnivå på 67 % för realiserad volatiliteten. ARIMA- modellen visar också en framgångsrik prognosförmåga för nästa punkt i tidsserien. Dock överträffar Hybrid SVR-ARIMA-modellen SVR-modellen för detta dataset. Det kan diskuteras ifall framgången med dessa metoder kan bero på att denna dataset täcker åren mellan 2010-2018 och det mycket volatila tiden under finanskrisen 2008 är uteslutet. Detta kan ifrågasätta modellernas prognotiseringsförmåga på högre volatilitetsmarknader. Dock ger användningen av hybrid-SVR-ARIMA-modellen som används inom de två option strategierna en genomsnittlig avkastning på 0,37 % och 1,68 %. Det bör dock noteras att de tillkommande kostnaderna för att handla optioner samt premiekostnaden som skall betalas i samband med köp av optioner inte ingår i avkastningen då dessa kostnader varierar beroende på plats av köp. Denna uppsats har gjorts i samarbete med Crescit Asset Management i Stockholm.
Andréasson, David, and Blomquist Jesper Mortensen. "Forecasting the OMXS30 - a comparison between ARIMA and LSTM." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413793.
Full textKoliadenko, Pavlo <1998>. "Time series forecasting using hybrid ARIMA and ANN models." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19992.
Full textBahri, El Mostafa. "L'identification automatique des processus ARIMA : une approche par système expert." Aix-Marseille 3, 1991. http://www.theses.fr/1991AIX32043.
Full textArima approach is an important contribution in fore casting economic time series but indentifying such processes is a crucial task, both manualy ans automatically we suggest that the expert system approach is an adequate solution for this problem. We have written a prototype in poss for this purpose and we propose neural network as complementary technique for automatic identification of series procecesses
Heed, Ingrid, and Karl Lindberg. "Forecasting COVID-19 hospitalizations using dynamic regression with ARIMA errors." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446310.
Full textUrettini, Edoardo <1997>. "Combination of forecasts from ARIMA, Neural Networks and Hybrid models." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19877.
Full textYang, Hyun Joo. "Which arias better represent Susanna's character : the original or replaced arias? /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/11199.
Full textOdencrants, Martin, and Fredrik Rahm. "Säsongsrensning : En komparativ studie av TRAMO/SEATS och X-12 ARIMA." Thesis, Örebro University, Department of Business, Economics, Statistics and Informatics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-1760.
Full textEtt syfte med tidserieteori är att dekomponera en observerad tidsserie i en summa icke observerbara komponenter. Dessa komponenter är Trend, Cykel, Säsong, Kalendereffekter, Extremvärden samt Irreguljära effekter.
Det finns två olika teorier för dekomponering av tidsserier, modellbaserad dekomponering och icke modellbaserad dekomponering. De två olika teorierna skiljer sig åt i grunden. Den här uppsatsen syftar till att utvärdera de två säsongsrensningsmetoderna TRAMO/SEATS och X-12 ARIMA samt att säsongsrensa tidsserien över den totala lönesumman, vilken är en del av statistikprodukten Lönesummor arbetsgivaravgifter och preliminär A-skatt (LAPS) producerad av SCB.
Gustavsson, André. "Elpriserna på den nordiska elbörsen : Prognosmodellering med hjälp av ARIMA-modeller." Thesis, Umeå University, Department of Statistics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34820.
Full textHolens, Gordon Anthony. "Forecasting and selling futures using ARIMA models and a neural network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23343.pdf.
Full textPutzulu, Matteo. "Modelli ARIMA implementati in ambiente Python applicati a serie temporali GNSS." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25884/.
Full textAkonom, Jacques. "Processus transformés d'un ARIMA ou d'un processus de Wiener : Problèmes d'estimation." Lille 1, 1988. http://www.theses.fr/1988LIL10112.
Full textAkonom, Jacques. "Processus transformés d'un ARIMA ou d'un processus de Wiener problèmes d'estimation /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376111363.
Full textRamos, Baltolu Mauricio. "Centro Cívico Regional de Arica y Parinacota Gobierno Regional de Arica - Parinacota." Tesis, Universidad de Chile, 2011. http://www.repositorio.uchile.cl/handle/2250/100449.
Full textRiesco, B. Joaquín. "Planta desaladora Arica [PDA]." Tesis, Universidad de Chile, 2010. http://repositorio.uchile.cl/handle/2250/100203.
Full textSilva, Alyne Neves. "Detecção de outliers em séries espaço-temporais: análise de precipitação em Minas Gerais." Universidade Federal de Viçosa, 2012. http://locus.ufv.br/handle/123456789/4061.
Full textFundação de Amparo a Pesquisa do Estado de Minas Gerais
Time series are sometimes influenced by disruptions of events, such as strikes, the outbreak of war, among others. These interrupts originate atypical observations or outliers that directly influence the homogeneity of the series, leading to erroneous inferences and interpretations of the variable under study, being very common in climatological data. So, in the interest of detecting outliers in time series of precipitation, this study aimed to establish a method of detecting outliers. For this, there was the junction of ARIMA models and methodologies of the classical geostatistics, the self-validation. The proposed criterion compares waste of time series analysis with confidence intervals of the residue of self-validation. We analyzed time series of average monthly rainfall for rainy days of 43 rainfall stations in the state of Minas Gerais, between the years 2000 to 2005. The analysis procedures ranging from the description of the periodicity through the periodogram to obtain validation, from the estimation of the semivariogram models by ordinary least squares methods and maximum likelihood. The results for the period under study, 165 were detected outliers, spread between the 43 rainfall stations. The station Campo Grande Ranch, located in the municipality of Passa Tempo, was the season in which they recorded the highest number of outliers, 45 in total. As the results, we considered the proposed method very efficient in detecting outliers, and therefore the analysis of the homogeneity of observations.
Séries temporais são algumas vezes influenciadas por interrupções de eventos, tais como greves, eclosão de guerras, entre outras. Estas interrupções originam observações atípicas ou outliers que influenciam diretamente na homogeneidade da série, ocasionando interpretações e inferências errôneas da variável sob estudo, sendo muito comum em dados climatológicos. Assim, com o interesse de detectar outliers em séries temporais de precipitação, o presente trabalho teve por objetivo estabelecer um método de detecção outliers. Para tal, realizou-se a junção da modelagem ARIMA e de uma das metodologias clássicas de geoestatística, a autovalidação. O critério proposto compara os resíduos da análise de séries temporais com intervalos de confiança dos resíduos da autovalidação. Foram analisadas séries temporais da precipitação média mensal por dias chuvosos de 43 estações pluviométricas localizadas no estado de Minas Gerais, entre os anos de 2000 a 2005. Os procedimentos de análise vão da descrição da periodicidade por meio do periodograma até a obtenção da autovalidação, à partir da estimação dos modelos de semivariograma pelos métodos de mínimos quadrados ordinários e máxima verossimilhança. Pelos resultados, para o período sob estudo, foram detectado 165 outliers, espalhados entre as 43 estações pluviométricas. A estação Fazenda Campo Grande, localizada no município de Passa Tempo, foi a estação em que se registrou o maior número de outliers, 45 no total. Conforme os resultados obtidos considerou-se o método proposto muito eficiente na detecção de outliers e, consequentemente, na análise da homogeneidade das observações.
Mohamed, Fadil B. "Space-time ARIMA and transfer function-noise modeling of rainfall-runoff process." Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/4723.
Full textAlmeida, Silvana Gonçalves de. "ANÁLISE DO CUSTO DE MEDICAMENTOS QUIMIOTERÁPICOS, POR MEIO DE MODELOS ARIMA - ARCH." Universidade Federal de Santa Maria, 2011. http://repositorio.ufsm.br/handle/1/8196.
Full textToday's medical treatments are becoming more expensive, in view of this plan and control costs are mechanisms that can ensure the survival of hospitals. The present study analyzed the cost of medications relevant financial, between January 2003 and November 2010, at University Hospital of Santa Maria. Since not all items have the same degree of importance, the drugs were classified by the ABC method which provided work with capecitabine and imatinib, the total cost of these drugs in 2010, representing about 18% compared to total expenditure on drugs and materials. The models found for the series of the cost of capecitabine and imatinib were ARIMA (0,1,1)-ARCH (1) and ARIMA (1,1,0)-ARCH (1), respectively. These models were used to analyze the behavior of the series under study and make predictions in order to assist hospital managers in decision making in hospital inventory management.
Atualmente os tratamentos médicos estão cada vez mais caros, em vista disso planejar e controlar custos são mecanismos que podem garantir a sobrevivência das instituições hospitalares. O presente estudo analisou o custo com medicamentos de relevância financeira, entre janeiro de 2003 e novembro de 2010, no Hospital Universitário de Santa Maria. Como nem todos os itens têm o mesmo grau de importância, os medicamentos foram classificados pelo método ABC o que proporcionou trabalhar com a Imatinibe e Capecitabina, cujo custo total em 2010 destes medicamentos, representou cerca de 18% em relação ao gasto total com medicamentos e materiais. Os modelos encontrados para as séries do custo de Imatinibe e Capecitabina foram, ARIMA(0,1,1)-ARCH(1) e ARIMA(1,1,0)-ARCH(1), respectivamente. Tais modelos foram utilizados para analisar o comportamento das séries em estudo e realizar previsões com o objetivo de auxiliar os gestores hospitalares nas tomadas de decisões no gerenciamento de estoque hospitalar.
Elmasdotter, Ajla, and Carl Nyströmer. "A comparative study between LSTM and ARIMA for sales forecasting in retail." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229747.
Full textMatsvinn är ett stort problem för miljön. Utgångna produkter slängs, vilket implicerar att för mycket mat beställs jämfört med hur mycket butikerna säljer. En mer precis modell för att förutsäga försäljningssiffrorna kan minska matsvinnet. Denna studie jämför modellerna Long Short-Term Memory (LSTM) och Autoregressive Integrated Moving Average (ARIMA) i deras precision i två scenarion. Givet försäljningssiffror för olika matvaruprodukter, undersöks ifall LSTM är en modell som kan konkurrera mot ARIMA-modellen när modellerna ska förutsäga försäljningssiffror för matvaruprodukter. Det första scenariot var att förutse försäljningen en dag i framtiden baserat på given data, medan det andra scenariot var att förutse försäljningen varje dag under en vecka i framtiden baserat på given data. Genom att använda måtten RMSE och MAE tillsammans med ett T-Test visade resultaten av studien att skillnaden mellan LSTM- och ARIMA-modellen inte var av statistik signifikans i fallet då modellerna skulle förutsäga försäljningen en dag i framtiden. Däremot visar resultaten på att skillnaden mellan modellerna är av signifikans när modellerna skulle förutsäga försäljningen under en vecka, vilken implicerar att LSTM-modellen har en högre precision i detta scenario. Denna studie drar därmed slutsatsen att LSTM-modellen är lovande och kan konkurrera mot ARIMA-modellen när det kommer till försäljningssiffror av matvaruprodukter.
Borneklint, Niklas. "Forecasting prices of Bitcoin and Google stock with ARIMA vs Facebook Prophet." Thesis, Högskolan Väst, Avd för juridik, ekonomi, statistik och politik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-17345.
Full textI denna avhandling har vi presenterat ekonometriska modeller och prognoserade prisnivåer av Bitcoins och Googles (GOOG). Vi har implementerat två modeller, en traditionell, "ARIMA" samt en relativt ny modell, "Profetmodellen" med Facebook Prophet (ML). Maskininlärning är fortfarande nytt inom det ekonomiska området och det har varit givande att förstå dess förmåga. Vi vill jämföra två typer av tillgångar, Bitcoin som är volatile mot Google som är förhållandevis stabil för att se om våra modeller skiljer sig åt. Vi har utvärderat modellens prestanda med hjälp av root mean square error (RMSE) och jämförde resultatet vilken modell som var mest exakt. Vi fann att ARIMA-modellen gav oss bäst resultat. Vi undersöker också effekterna av rationella förväntningar och dess inverkan på pris av tillgång. Vi fann att nyheter om Bitcoin influerar dess pris och hade en inverkan på modellernas prestanda.
Wågberg, Max. "Att förutspå Sveriges bistånd : En jämförelse mellan Support Vector Regression och ARIMA." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36479.
Full textUnder det senaste åren har användningen av maskininlärning ökat markant. Dess användningsområden varierar mellan allt från att göra vardagen lättare med röststyrda smarta enheter till bildigenkänning eller att förutspå börsvärden. Att förutspå ekonomiska värden har länge varit möjligt med hjälp av andra metoder än maskininlärning, såsom exempel statistiska algoritmer. Dessa algoritmer och maskininlärningsmodeller använder tidsserier, vilket är en samling datapunkter observerade konstant över en given tidsintervall, för att kunna förutspå datapunkter bortom den originella tidsserien. Men vilken av dessa metoder ger bäst resultat? Projektets övergripande syfte är att förutse sveriges biståndskurva med hjälp av maskininlärningsmodellen Support Vector Regression och den klassiska statistiska algoritmen autoregressive integrated moving average som förkortas ARIMA. Tidsserien som används vid förutsägelsen är årliga summeringar av biståndet från openaid.se sedan år 1998 och fram till 2019. SVR och ARIMA implementeras i python med hjälp av Scikit-learn och Statsmodelsbiblioteken. Resultatet från SVR och ARIMA mäts i jämförelse mellan det originala värdet och deras förutspådda värden medan noggrannheten mäts i root square mean error och presenteras under resultatkapitlet. Resultatet visar att SVR med RBF kärnan är den algoritm som ger det bästa testresultatet för dataserien. Alla förutsägelser bortom tidsserien presenteras därefter visuellt på en openaid prototypsida med hjälp av D3.js.
Wilczek, Andrej, and Oskar Erlandsson. "Evaluering av LASSO och ARIMA algoritmerna för prognostisering i den finansiella marknaden." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255711.
Full textStock market forecasting is considered to be a particularly challenging task due to the complexity and volatility of the stock market. In this project we evaluate the performance of existing machine learning techniques as methods for modeling and predicting patterns in the financial market. In our attempt to predict the Nestl\'e stock closing price point, linear LASSO and ARIMA models were implemented based on the assumption that the volatile data has some type of linear dependency. The methods was evaluated by calculating the Mean Absolute Deviation, Mean Squared Error and Mean Absolute Percentage Error values based on their performance in making short and long-term predictions. Our results suggest that the LASSO algorithm performs better in regards to short-term predictions whereas the ARIMA provides more accurate long-term predictions. In terms of prediction of future trends, both methods show good overall performance. Finally, we propose interesting areas to consider in order to make more precise predictions on volatile data.
Cruz, Cristovam Colombo dos Santos. "AnÃlise de sÃries temporais para previsÃo mensal do icms: o caso do PiauÃ." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1648.
Full textEsta DissertaÃÃo trata de pesquisa sobre a anÃlise de sÃries temporais para previsÃo mensal do Imposto Sobre CirculaÃÃo e Mercadorias e PrestaÃÃo de ServiÃos â ICMS no estado do PiauÃ. Objetiva-se com essa pesquisa oferecer aos gestores do estado um modelo de previsÃo consistente e com bom poder preditivo, de forma a contribuir com a gestÃo financeira estadual. No trabalho, utilizaram-se os modelos ARIMA e FunÃÃo de TransferÃncia para realizar previsÃes, bem como o Modelo CombinaÃÃo de PrevisÃes. A dissertaÃÃo apresenta um diagnÃstico do ICMS no estado do Piauà e uma revisÃo da literatura onde sÃo abordados os principais aspectos teÃricos dos modelos utilizados no trabalho, bem como a anÃlise dos resultados empÃricos. Ao final, pode-se observar que os resultados obtidos na presente dissertaÃÃo, estÃo em sintonia com outros resultados obtidos em trabalhos semelhantes realizados sobre o tema, o que vem a confirmar a importÃncia dos modelos que utilizam a anÃlise de sÃries temporais como instrumento de prediÃÃo.
This dissertation deals with a research on the temporal series analysis for the monthly forecast of the turnover and services tax â ICMS in Brazil â in the state of PiauÃ. The aim of this research is to offer the statewide policymakers a consistent forecast and powerfully predictive model, so as to contribute to the state finance management. In this work, the ARIMA and Assignment Function models were used to carry out forecasts, as well as Forecast Combination. The dissertation presents a diagnosis of the ICMS in the state of PiauÃ, a review on the literature where the main theoretical aspects of the models carried out in the work are addressed, in addition to the empirical findings analysis. As a conclusion, it can be observed that the findings carried out in this dissertation are in harmony with other results of similar works carried out on the theme, which corroborates the importance of the models using the temporal series analysis as a forecasting instrument.
Huang, Pao Hsiung, and 黃柏雄. "Keyword Selection for Google Trends in Forecasting Sales by ARIMAX." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/43478672589707707870.
Full text國立暨南國際大學
資訊管理學系
104
What is an expert? In 2007 Harvard Business Reviews published an article “The making of an expert,” “It takes time to become an expert. Even the most gifted performers need a minimum of ten years of intense training before they win international competitions.” (Ericsson, et al. 2007). A forecast analyst could be experts at using the best modeling to make accurate predictions, but will face many different kinds of products, and services. Many times to make accurate assessment would require knowing the product or services really well. However, it would require a lot of time to survey the product or service. Hence we come up with a method that could shorten the time for accurate forecasting by choosing the most relevant keywords for the product. Our task is performed in three steps: (1) Text mining reviews and/or blogs about the products or service, use the data to extract keywords; (2) Use the keywords in Google Trends for forecasting; (3) With the product’s sales data and Google Trends data to get an accurate sale forecast model. Our experimental results using text mining data to find keywords is more accurate than just using Google’s own data for forecasting.
Chen, Hung-Shuo, and 陳泓碩. "Runoff Simulation of Fushan Forest Watershed Using ARIMAX and ANFIS Models." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/55207826295533605677.
Full text國立臺灣大學
森林環境暨資源學研究所
100
Rainfall-runoff model is an important issue of hydrological field. In this study, rainfall-runoff models were investigated by applying ARIMAX (ARIMA with exogenous input) and ANFIS (adaptive network-based fuzzy inference system) model. To illustrate the applicapability and capability of these two models in forest watershed, Fushan experimental watershed No.1 was chosen as a case study area. Ten years of daily rainfall and flow data, from 2002 to 2011, were analyzed. There were three types of ARIMAX models developed by 10 years, 5 years and 1 year flow data individually, which are ARIMAX10, ARIMAX5 and ARIMAX1. In the other hand, 15 types of ANFIS model were developed by different data period, membership function and input variables, which are ANFIS110 - ANFIS510, ANFIS15 - ANFIS55 and ANFIS11 - ANFIS51. Results showed that ARIMAX5 model performed well in both simulating and verifying. Also, the best ANFIS model is ANFIS310 model, which was developed by 10 years data from 2002 to 2011, using four input variables: Rt-1, Rt-2, Qt-1, Qt-2 and bell-shaped membership function. ANFIS310 performed well in both simulating and verifying. Besides, the MAE of ARIMAX model is 0.004 - 0.012 m3/sec, RMSE is 0.007 - 0.023 m3/sec, and CE is 86.2 - 93.1%. The MAE of ANFIS model is 0.001 - 0.007 m3/sec, RMSE is 0.003 - 0.031 m3/sec, CE is 74.3 - 98.6 %。All the evaluation indexes of ANFIS model have a larger range than ARIMAX model, because ARIMAX are more stable in simulation and verification on lower flow period. However, ANFIS still can get accurate simulation and verification even on higher flow period, which ARIMAX can’t. In the future, a hybrid model of ARIMAX and ANFIS is a possible method to be applied.