Academic literature on the topic 'Arithmetic progressions in sumsets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arithmetic progressions in sumsets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Arithmetic progressions in sumsets"
Ruzsa, Imre. "Arithmetic progressions in sumsets." Acta Arithmetica 60, no. 2 (1991): 191–202. http://dx.doi.org/10.4064/aa-60-2-191-202.
Full textGreen, B. "Arithmetic progressions in sumsets." Geometric And Functional Analysis 12, no. 3 (August 1, 2002): 584–97. http://dx.doi.org/10.1007/s00039-002-8258-4.
Full textErdös, Paul, Melvyn B. Nathanson, and András Sárközy. "Sumsets containing infinite arithmetic progressions." Journal of Number Theory 28, no. 2 (February 1988): 159–66. http://dx.doi.org/10.1016/0022-314x(88)90063-7.
Full textSanders, Tom. "Three-term arithmetic progressions and sumsets." Proceedings of the Edinburgh Mathematical Society 52, no. 1 (February 2009): 211–33. http://dx.doi.org/10.1017/s0013091506001398.
Full textSzemerédi, Endre, and Van Vu. "Finite and infinite arithmetic progressions in sumsets." Annals of Mathematics 163, no. 1 (January 1, 2006): 1–35. http://dx.doi.org/10.4007/annals.2006.163.1.
Full textSOLYMOSI, JÓZSEF. "Arithmetic Progressions in Sets with Small Sumsets." Combinatorics, Probability and Computing 15, no. 04 (March 6, 2006): 597. http://dx.doi.org/10.1017/s0963548306007516.
Full textMEI, SHU-YUAN, and YONG-GAO CHEN. "ARITHMETIC PROGRESSIONS IN SUMSETS AND DIFFERENCE SETS." International Journal of Number Theory 09, no. 03 (April 7, 2013): 601–6. http://dx.doi.org/10.1142/s1793042112501503.
Full textSzemerédi, E., and V. Vu. "Long arithmetic progressions in sumsets: Thresholds and bounds." Journal of the American Mathematical Society 19, no. 1 (September 13, 2005): 119–69. http://dx.doi.org/10.1090/s0894-0347-05-00502-3.
Full textCROOT, ERNIE, IZABELLA ŁABA, and OLOF SISASK. "Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity." Combinatorics, Probability and Computing 22, no. 3 (March 19, 2013): 351–65. http://dx.doi.org/10.1017/s0963548313000060.
Full textNathanson, Melvyn, and András Sárközy. "Sumsets containing long arithmetic progressions and powers of 2." Acta Arithmetica 54, no. 2 (1989): 147–54. http://dx.doi.org/10.4064/aa-54-2-147-154.
Full textDissertations / Theses on the topic "Arithmetic progressions in sumsets"
Henriot, Kevin. "Structures linéaires dans les ensembles à faible densité." Thèse, Paris 7, 2014. http://hdl.handle.net/1866/11116.
Full textNous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres. Le thème unificateur de notre thèse est la détection de structures additives dans les ensembles arithmétiques à faible densité, avec un intérêt particulier pour les aspects quantitatifs. Notre première contribution est une estimation de densité améliorée pour le problème, initié entre autres par Bourgain, de trouver une longue progression arithmétique dans un ensemble somme triple. Notre deuxième résultat consiste en une généralisation des bornes de Sanders pour le théorème de Roth, du cas d'un ensemble dense dans les entiers à celui d'un ensemble à faible croissance additive dans un groupe abélien arbitraire. Finalement, nous étendons les meilleures bornes quantitatives connues pour le théorème de Roth dans les premiers, à tous les systèmes d'équations linéaires invariants par translation et de complexité un.
We present three results in additive combinatorics, a recent field at the interface of combinatorics, harmonic analysis and analytic number theory. The unifying theme in our thesis is the detection of additive structure in arithmetic sets of low density, with an emphasis on quantitative aspects. Our first contribution is an improved density estimate for the problem, initiated by Bourgain and others, of finding a long arithmetic progression in a triple sumset. Our second result is a generalization of Sanders' bounds for Roth's theorem from the dense setting, to the setting of small doubling in an arbitrary abelian group. Finally, we extend the best known quantitative results for Roth's theorem in the primes, to all translation-invariant systems of equations of complexity one.
Shiu, Daniel Kai Lun. "Prime numbers in arithmetic progressions." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318815.
Full textRimanić, Luka. "Arithmetic progressions, corners and loneliness." Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761230.
Full text張勁光 and King-kwong Cheung. "Prime solutions in arithmetic progressions of some linear ternary equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42575874.
Full textCheung, King-kwong. "Prime solutions in arithmetic progressions of some linear ternary equations." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42575874.
Full textWhite, Christopher J. "Finding primes in arithmetic progressions and estimating double exponential sums." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707745.
Full textDyer, A. K. "Applications of sieve methods in number theory." Thesis, Bucks New University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384646.
Full textColeman, Mark David. "Topics in the distribution of primes." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293491.
Full text樊家榮 and Ka-wing Fan. "Prime solutions in arithmetic progressions of some quadratic equationsand linear equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31225962.
Full textVlasic, Andrew. "A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4476/.
Full textBooks on the topic "Arithmetic progressions in sumsets"
A course in analytic number theory. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textFlorian, Luca, ed. Analytic number theory: Exploring the anatomy of integers. Providence, R.I: American Mathematical Society, 2012.
Find full textKnafo, Emmanuel Robert. Variance of distribution of almost primes in arithmetic progressions. 2006.
Find full textJohn, Friedlander, ed. Oscillation theorems for primes in arithmetic progressions and for sifting functions. Toronto: Dept. of Mathematics, University of Toronto, 1989.
Find full textMee, Nicholas. Celestial Tapestry. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851950.001.0001.
Full textBook chapters on the topic "Arithmetic progressions in sumsets"
Cilleruelo, Javier, and Andrew Granville. "Lattice points on circles, squares in arithmetic progressions and sumsets of squares." In CRM Proceedings and Lecture Notes, 241–62. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/crmp/043/12.
Full textGelfand, Israel M., and Alexander Shen. "Arithmetic progressions." In Algebra, 77–79. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_39.
Full textLandman, Bruce, and Aaron Robertson. "Arithmetic progressions (𝑚𝑜𝑑𝑚)." In The Student Mathematical Library, 183–201. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/stml/073/06.
Full textHarzheim, Egbert. "Almost Arithmetic Progressions." In Numbers, Information and Complexity, 17–20. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-6048-4_2.
Full textMurty, M. Ram. "Primes in Arithmetic Progressions." In Problems in Analytic Number Theory, 211–45. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_12.
Full textMurty, M. Ram. "Primes in Arithmetic Progressions." In Problems in Analytic Number Theory, 17–33. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_2.
Full textLandman, Bruce, and Aaron Robertson. "Arithmetic progressions (mod 𝑚)." In The Student Mathematical Library, 163–80. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/stml/024/06.
Full textRibenboim, Paulo. "Primes in Arithmetic Progressions." In Classical Theory of Algebraic Numbers, 523–42. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21690-4_24.
Full textGowers, W. Timothy. "Erdős and Arithmetic Progressions." In Bolyai Society Mathematical Studies, 265–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39286-3_8.
Full textFriedlander, J. B., and H. Iwaniec. "Norms in Arithmetic Progressions." In Progress in Mathematics, 265–68. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3464-7_17.
Full textConference papers on the topic "Arithmetic progressions in sumsets"
Coppersmith, D., and S. Winograd. "Matrix multiplication via arithmetic progressions." In the nineteenth annual ACM conference. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/28395.28396.
Full textBabaali, M., and M. Egerstedt. "Pathwise observability through arithmetic progressions and non-pathological sampling." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384786.
Full textCUI, ZHEN, and BOQING XUE. "A NOTE ON THE DISTRIBUTION OF PRIMES IN ARITHMETIC PROGRESSIONS." In Proceedings of the 6th China–Japan Seminar. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814452458_0004.
Full textGomes, Ane Caroline, Brendoon Ryos, Gustavo Rodrigues, and Joaquim Pessoa Filho. "Space chain: A math game for training geometric and arithmetic progressions." In 2018 IEEE Global Engineering Education Conference (EDUCON). IEEE, 2018. http://dx.doi.org/10.1109/educon.2018.8363480.
Full textSrikanth, Ch. "PhD Forum 2017 New Cryptographic Systems Based on Certain Sequences of Arithmetic Progressions." In 2017 23RD Annual International Conference in Advanced Computing and Communications (ADCOM). IEEE, 2017. http://dx.doi.org/10.1109/adcom.2017.00016.
Full text