Academic literature on the topic 'Arithmetic Riemann-Roch'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arithmetic Riemann-Roch.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Arithmetic Riemann-Roch"
Gillet, Henri, and Christophe Soul�. "An arithmetic Riemann-Roch theorem." Inventiones Mathematicae 110, no. 1 (1992): 473–543. http://dx.doi.org/10.1007/bf01231343.
Full textAitken, Wayne. "An arithmetic Riemann-Roch theorem for singular arithmetic surfaces." Memoirs of the American Mathematical Society 120, no. 573 (1996): 0. http://dx.doi.org/10.1090/memo/0573.
Full textWüstholz, G. "LECTURES ON THE ARITHMETIC RIEMANN-ROCH THEOREM." Bulletin of the London Mathematical Society 26, no. 1 (1994): 111–12. http://dx.doi.org/10.1112/blms/26.1.111.
Full textGillet, Henri, Damian Rössler, and Christophe Soulé. "An arithmetic Riemann-Roch theorem in higher degrees." Annales de l’institut Fourier 58, no. 6 (2008): 2169–89. http://dx.doi.org/10.5802/aif.2410.
Full textFreixas Montplet, Gérard. "An arithmetic Riemann-Roch theorem for pointed stable curves." Annales scientifiques de l'École normale supérieure 42, no. 2 (2009): 335–69. http://dx.doi.org/10.24033/asens.2098.
Full textBurgos Gil, José Ignacio, Gerard Freixas i Montplet, and Răzvan Liţcanu. "The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms." Annales de la faculté des sciences de Toulouse Mathématiques 23, no. 3 (2014): 513–59. http://dx.doi.org/10.5802/afst.1415.
Full textFREIXAS I MONTPLET, GERARD. "THE JACQUET–LANGLANDS CORRESPONDENCE AND THE ARITHMETIC RIEMANN–ROCH THEOREM FOR POINTED CURVES." International Journal of Number Theory 08, no. 01 (2012): 1–29. http://dx.doi.org/10.1142/s1793042112500017.
Full textTang, Shun. "An arithmetic Lefschetz–Riemann–Roch theorem." Proceedings of the London Mathematical Society, June 25, 2020. http://dx.doi.org/10.1112/plms.12349.
Full text"Riemann-Roch type theorems for arithmetic schemes with a finite group action." Journal für die reine und angewandte Mathematik (Crelles Journal) 1997, no. 489 (1997): 151–88. http://dx.doi.org/10.1515/crll.1997.489.151.
Full textCONNES, Alain, and Caterina CONSANI. "Segal’s Gamma rings and universal arithmetic." Quarterly Journal of Mathematics, December 15, 2020. http://dx.doi.org/10.1093/qmath/haaa042.
Full textDissertations / Theses on the topic "Arithmetic Riemann-Roch"
Hahn, Tobias. "An arithmetic Riemann-Roch theorem for metrics with cusps." Aachen Shaker, 2009. http://d-nb.info/997223146/04.
Full textDe, Gaetano Giovanni. "A regularized arithmetic Riemann-Roch theorem via metric degeneration." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19227.
Full textHahn, Tobias [Verfasser]. "An arithmetic Riemann-Roch theorem for metrics with cusps / Tobias Hahn." Aachen : Shaker, 2009. http://d-nb.info/1156518318/34.
Full textKramer, Jürg [Gutachter], and Gerard [Gutachter] Freixas. "A regularized arithmetic Riemann-Roch theorem via metric degeneration / Gutachter: Jürg Kramer, Gerard Freixas." Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182540503/34.
Full textUsatine, Jeremy. "Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/57.
Full textIvey, law Hamish. "Algorithmic aspects of hyperelliptic curves and their jacobians." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4084/document.
Full textBooks on the topic "Arithmetic Riemann-Roch"
Aitken, Wayne. An arithmetic Riemann-Roch theorem for singular arithmetic surfaces. American Mathematical Society, 1996.
Find full textFaltings, Gerd. Lectures on the arithmetic Riemann-Roch theorem. Princeton University Press, 1992.
Find full textBárcenas, Noé, and Monica Moreno Rocha. Mexican mathematicians abroad: Recent contributions : first workshop, Matematicos Mexicanos Jovenes en el Mundo, August 22-24, 2012, Centro de Investigacion en Matematicas, A.C., Guanajuato, Mexico. Edited by Galaz-García Fernando editor. American Mathematical Society, 2016.
Find full textFaltings, Gerd. Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127. Princeton University Press, 2016.
Find full textBook chapters on the topic "Arithmetic Riemann-Roch"
Bressler, Paul, Mikhail Kapranov, Boris Tsygan, and Eric Vasserot. "Riemann–Roch for Real Varieties." In Algebra, Arithmetic, and Geometry. Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4745-2_4.
Full textHulsbergen, Wilfred W. J. "Riemann-Roch, K-theory and motivic cohomology." In Conjectures in Arithmetic Algebraic Geometry. Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-322-85466-7_5.
Full textHulsbergen, Wilfred W. J. "Riemann-Roch, K-theory and motivic cohomology." In Conjectures in Arithmetic Algebraic Geometry. Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-09505-7_5.
Full textHirzebruch, F. "Arithmetic Genera And the Theorem of Riemann-Roch." In Teorema di Riemann-Roch e questioni connesse. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10889-1_3.
Full textMumford, David. "The Arithmetic Genus and the Generalized Theorem of Riemann-Roch." In Algebraic Surfaces. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61991-5_4.
Full textRössler, Damian. "A Local Refinement of the Adams–Riemann–Roch Theorem in Degree One." In Arithmetic L-Functions and Differential Geometric Methods. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65203-6_8.
Full textMontplet, Gerard Freixas i. "Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondence." In Lecture Notes in Mathematics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57559-5_12.
Full textGramlich, Köhl né. "On the Geometry of Global Function Fields, the Riemann–Roch Theorem, and Finiteness Properties of S-Arithmetic Groups." In Buildings, Finite Geometries and Groups. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0709-6_4.
Full text"The Arithmetic Riemann–Roch–Grothendieck Theorem." In Lectures on Arakelov Geometry. Cambridge University Press, 1992. http://dx.doi.org/10.1017/cbo9780511623950.011.
Full text"LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM." In Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127). Princeton University Press, 1992. http://dx.doi.org/10.1515/9781400882472-008.
Full text