Academic literature on the topic 'ARMA-GARCH Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ARMA-GARCH Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ARMA-GARCH Model"
Bildirici, Melike, and Özgür Ersin. "Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns." Scientific World Journal 2014 (2014): 1–21. http://dx.doi.org/10.1155/2014/497941.
Full textZhao, Xin, Hong Lei Qin, and Li Cong. "A Novel Adaptive Integrated Navigation Filtering Method Based on ARMA/GARCH Model." Applied Mechanics and Materials 462-463 (November 2013): 259–66. http://dx.doi.org/10.4028/www.scientific.net/amm.462-463.259.
Full textKuswanto, Heri, and Endy Norma Chyntia Damayanti. "Analisis Risiko Pada Return Saham Perusahaan Asuransi Menggunakan Metode VaR dengan Pendekatan ARMA-GARCH." Jurnal Matematika, Statistika dan Komputasi 16, no. 1 (June 27, 2019): 40. http://dx.doi.org/10.20956/jmsk.v16i1.6197.
Full textKlepáč, Václav, and David Hampel. "Assessing Efficiency of D-Vine Copula ARMA-GARCH Method in Value at Risk Forecasting: Evidence from PSE Listed Companies." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63, no. 4 (2015): 1287–95. http://dx.doi.org/10.11118/actaun201563041287.
Full textCheng, Cong, Ling Yu, and Liu Jie Chen. "Structural Nonlinear Damage Detection Based on ARMA-GARCH Model." Applied Mechanics and Materials 204-208 (October 2012): 2891–96. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.2891.
Full textYang, Wenqi, and Jingkun Ma. "Implied Volatility Prediction Based on Different Term Structures: An Empirical Study of the SSE 50 ETF Options Market from High-Frequency Data." E3S Web of Conferences 235 (2021): 02043. http://dx.doi.org/10.1051/e3sconf/202123502043.
Full textGarcia Angelico, Diego, and Sandra Cristina de Oliveira. "ARMA-GARCH Model and temporal precedence between stock indices." Revista Gestão da Produção Operações e Sistemas 11, no. 1 (March 1, 2016): 97–112. http://dx.doi.org/10.15675/gepros.v11i1.1306.
Full textDritsakis, Nikolaos, and Georgios Savvas. "Forecasting Volatility Stock Return: Evidence from the Nordic Stock Exchanges." International Journal of Economics and Finance 9, no. 2 (January 11, 2017): 15. http://dx.doi.org/10.5539/ijef.v9n2p15.
Full textJezernik Širca, Špela, and Matjaž Omladič. "The JLS model with ARMA/GARCH errors." Ars Mathematica Contemporanea 13, no. 1 (October 21, 2016): 63–79. http://dx.doi.org/10.26493/1855-3974.746.dab.
Full textMahlindiani, Lara, Maiyastri ., and Hazmira Yozza. "PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK." Jurnal Matematika UNAND 6, no. 1 (February 1, 2017): 25. http://dx.doi.org/10.25077/jmu.6.1.25-32.2017.
Full textDissertations / Theses on the topic "ARMA-GARCH Model"
Huang, Xiaoyan. "Predicting Short-Term Exchange Rates with a Hybrid PPP/UIP Model." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/scripps_theses/236.
Full textQu, Jing. "Market and Credit Risk Models and Management Report." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/649.
Full textShimizu, Kenichi. "Bootstrapping stationary ARMA-GARCH models." Wiesbaden Vieweg + Teubner, 2009. http://d-nb.info/996781153/04.
Full textWallin, Edvin, and Timothy Chapman. "A heteroscedastic volatility model with Fama and French risk factors for portfolio returns in Japan." Thesis, Stockholms universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194779.
Full textSze, Mei Ki. "Mixed portmanteau test for ARMA-GARCH models /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MATH%202009%20SZE.
Full textMori, Renato Seiti. "Mensuração de risco de mercado com modelo Arma-Garch e distribuição T assimétrica." reponame:Repositório Institucional do FGV, 2017. http://hdl.handle.net/10438/18818.
Full textApproved for entry into archive by Thais Oliveira (thais.oliveira@fgv.br) on 2017-09-20T17:58:58Z (GMT) No. of bitstreams: 1 dissertacao_VaRArmaGarchSkewt.pdf: 3267680 bytes, checksum: 6a8a935c128bb04a8a4f91fb592de3a8 (MD5)
Made available in DSpace on 2017-09-21T13:36:32Z (GMT). No. of bitstreams: 1 dissertacao_VaRArmaGarchSkewt.pdf: 3267680 bytes, checksum: 6a8a935c128bb04a8a4f91fb592de3a8 (MD5) Previous issue date: 2017-08-22
A proposta do estudo é aplicar ao Ibovespa, modelo paramétrico de VaR de 1 dia, com distribuição dos retornos dinâmica, que procura apreciar características empíricas comumente apresentadas por séries financeiras, como clusters de volatilidade e leptocurtose. O processo de retornos é modelado como um ARMA com erros GARCH que seguem distribuição t assimétrica. A metodologia foi comparada com o RiskMetrics e com modelos ARMA-GARCH com distribuição dos erros normal e t. Os modelos foram estimados diariamente usando uma janela móvel de 1008 dias. Foi verificado pelos backtests de Christoffersen e de Diebold, Gunther e Tay que dentre os modelos testados, o ARMA(2,2)- GARCH(2,1) com distribuição t assimétrica apresentou os melhores resultados.
The proposal of the study is to apply to Ibovespa a 1 day VaR parametric model, with dynamic distribution of returns, that aims to address empirical features usually seen in financial series, such as volatility clustering and leptocurtosis. The returns process is modeled as an ARMA with GARCH residuals that follow a skewed t distribution. The methodology was compared to RiskMetrics and to ARMA-GARCH with normal and t distributed residuals. The models were estimated every daily period using a window of 1008 days. By the backtests of Christoffersen and Diebold, Gunther and Tay, among the tested models, the ARMA(2,2)-GARCH(2,1) with skewed t distribution has given the best results.
Ebert, Michael. "Preisprognosen an europäischen Spotmärkten für Elektrizität." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB12103664.
Full textOliver, Muncharaz Javier. "MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION." Doctoral thesis, Editorial Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/35803.
Full textOliver Muncharaz, J. (2014). MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35803
Alfresco
Strohe, Hans Gerhard. "Time series analysis : textbook for students of economics and business administration ; [part 2]." Universität Potsdam, 2004. http://stat.wiso.uni-potsdam.de/documents/zeitr/Time_Series_Analysis_Script2.pdf.
Full texthua, wu ching, and 吳晴華. "Analysis of RMB’s Exchange Rate Floating:Application of ARMA-GARCH Model." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/02867589526989931301.
Full text清雲科技大學
經營管理研究所
95
Mainland China keep reducing the currency under the standard value since its economical development intermediate stage. Because China is the export country under the weak monetary policy, the exporting product price is more competitive which is similar to the export oriented policy. Due to the advantage of Mainland China export trade continues to grow, Driving Taiwan’s the hot money goes to China .The favorable balance of trade keep increasing, however Taiwan and the mainland mutually dependent highly. No matter Taiwanese businessman, who is trading with mainland China in Taiwan, or directly trading in the mainland, the Renminbi exchange rate will impact on their business. Therefore grasping the change of the Renminbi exchange rate becomes urgent. This paper discusses exchange rate statistical characteristics and its econometrics by reading the Renminbi exchange rate path and using the ARMA-GARCH to establish exchange rate model. We discovered the Renminbi exchange rate presents continues small revaluation. Further we can forecast the trend of the Renminbi exchange rate and the undulation in the short term. Renminbi exchange rate by using ones differencing estimated parameters is significant。Using estimated models to simulate the tendency of the characteristics of the Renminbi sequence, and all there models present good export forecast performance.
Books on the topic "ARMA-GARCH Model"
Shimizu, Kenichi. Bootstrapping Stationary ARMA-GARCH Models. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7.
Full textservice), SpringerLink (Online, ed. Bootstrapping Stationary ARMA-GARCH Models. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH, Wiesbaden, 2010.
Find full textPaolella, Marc S. Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH. Wiley & Sons, Incorporated, John, 2018.
Find full textBook chapters on the topic "ARMA-GARCH Model"
Sucarrat, Genaro. "The log-GARCH model via ARMA representations." In Financial Mathematics, Volatility and Covariance Modelling, 336–59. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge advances in applied financial econometrics ; Volume 2: Routledge, 2019. http://dx.doi.org/10.4324/9781315162737-14.
Full textShimizu, Kenichi. "Introduction." In Bootstrapping Stationary ARMA-GARCH Models, 1–7. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7_1.
Full textShimizu, Kenichi. "Bootstrap Does not Always Work." In Bootstrapping Stationary ARMA-GARCH Models, 9–17. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7_2.
Full textShimizu, Kenichi. "Parametric AR(p)-ARCH(q) Models." In Bootstrapping Stationary ARMA-GARCH Models, 19–64. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7_3.
Full textShimizu, Kenichi. "Parametric ARMA(p, q)- GARCH(r, s) Models." In Bootstrapping Stationary ARMA-GARCH Models, 65–83. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7_4.
Full textShimizu, Kenichi. "Semiparametric AR(p)-ARCH(1) Models." In Bootstrapping Stationary ARMA-GARCH Models, 85–126. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9778-7_5.
Full textÇevik, Emre, Suzan Kantarcı Savaş, and Esin Cumhur Yalçın. "Comparative Analysis of Value at Risk(VaR) of MSCI-EMI With Traditional Time Series Methods and ANN." In Financial Management and Risk Analysis Strategies for Business Sustainability, 34–57. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7634-2.ch003.
Full text"Other Financial Models: From ARMA to the GARCH Family." In Mathematics of Financial Markets, 165–74. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118818510.ch9.
Full textConference papers on the topic "ARMA-GARCH Model"
Wang, Weiqiang, Ying Guo, Zhendong Niu, and Yujuan Cao. "Stock indices analysis based on ARMA-GARCH model." In 2009 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2009. http://dx.doi.org/10.1109/ieem.2009.5373131.
Full textLi, Qianru, Christophe Tricaud, Rongtao Sun, and YangQuan Chen. "Great Salt Lake Surface Level Forecasting Using FIGARCH Model." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34909.
Full textNguyen-Hong, Nhung, and Nakanishi Yosuke. "Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model." In 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2017. http://dx.doi.org/10.1109/isgt.2017.8086059.
Full textCaesarendra, Wahyu, Achmad Widodo, Hong Thom Pham, and Bo-Suk Yang. "Machine degradation prognostic based on RVM and ARMA/GARCH model for bearing fault simulated data." In 2010 Prognostics and System Health Management Conference (PHM). IEEE, 2010. http://dx.doi.org/10.1109/phm.2010.5414586.
Full textDing, Yang. "Empirical Analysis of Logarithmic Return Rate of China’s Financial Stocks—based on the ARMA-GARCH Model." In Proceedings of the 2018 International Symposium on Social Science and Management Innovation (SSMI 2018). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/ssmi-18.2019.51.
Full textJonas, M. "The Application of the Time Series Theory to Processing Data From the SBAS Receiver in Safety Mode." In 2012 Joint Rail Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/jrc2012-74033.
Full textLING, SHIQING. "MLE FOR CHANGE-POINT IN ARMA-GARCH MODELS WITH A CHANGING DRIFT." In Proceedings of a Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702715_0011.
Full textSedláková, Markéta. "APPLICATION OF ARMA AND GARCH MODELS ON TIME SERIES OF KOMERČNÍ BANKA STOCKS." In 16th International Bata Conference for Ph.D. Students and Young Researchers. Tomas Bata University in Zlín, 2020. http://dx.doi.org/10.7441/dokbat.2020.40.
Full textAl-Sharoot, Muhammad H., and Omar M. Alramadhan. "Forecasting the gas prices in Investing.com’s weekly economic data table using linear and non-linear ARMA-GARCH models for period 2016-2018." In SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5097818.
Full text