Academic literature on the topic 'Aromatic herbs by-products'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aromatic herbs by-products.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aromatic herbs by-products"
Pangriya, Ruchita. "Study of Aromatic and Medicated Plants in Uttrakhand, India: With Focus on Role in Employment Generation and Supply Chain Management." International Journal of Social Sciences and Management 2, no. 2 (April 25, 2015): 148–56. http://dx.doi.org/10.3126/ijssm.v2i2.12396.
Full textSilva, Henrique. "A Descriptive Overview of the Medical Uses Given to Mentha Aromatic Herbs throughout History." Biology 9, no. 12 (December 21, 2020): 484. http://dx.doi.org/10.3390/biology9120484.
Full textMartínez-Hernández, Ginés Benito, Amaury Taboada-Rodríguez, Alberto Garre, Fulgencio Marín-Iniesta, and Antonio López-Gómez. "The Application of Essential Oil Vapors at the End of Vacuum Cooling of Fresh Culinary Herbs Promotes Aromatic Recovery." Foods 10, no. 3 (February 26, 2021): 498. http://dx.doi.org/10.3390/foods10030498.
Full textIssaoui, Manel, Guido Flamini, Sondess Souid, Alessandra Bendini, Sara Barbieri, Ines Gharbi, Tullia Gallina Toschi, Pier Luigi Cioni, and Mohamed Hammami. "How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance." Natural Product Communications 11, no. 6 (June 2016): 1934578X1601100. http://dx.doi.org/10.1177/1934578x1601100619.
Full textMalik, Suruchi, Kirti Sharma, and Anil Kanaujia. "HARVEST AND POST HARVEST MANAGEMENT FOR ENSURING QUALITY OF MEDICINAL PLANTS." International Journal of Advanced Research 9, no. 5 (May 31, 2021): 602–6. http://dx.doi.org/10.21474/ijar01/12882.
Full textGhimire, Suresh K., Bandana Awasthi, Santhosh Rana, Hum Kala Rana, Rameshwar Bhattarai, and Dipesh Pyakurel. "Export of medicinal and aromatic plant materials from Nepal." Botanica Orientalis: Journal of Plant Science 10 (November 1, 2016): 24–32. http://dx.doi.org/10.3126/botor.v10i0.21020.
Full textGuiné, Raquel P. F., Paula M. R. Correia, Cátia Reis, and Sofia G. Florença. "Evaluation of texture in jelly gums incorporating berries and aromatic plants." Open Agriculture 5, no. 1 (August 7, 2020): 450–61. http://dx.doi.org/10.1515/opag-2020-0043.
Full textBeya, Michel M., Michael E. Netzel, Yasmina Sultanbawa, Heather Smyth, and Louwrens C. Hoffman. "Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review." Antioxidants 10, no. 2 (February 9, 2021): 263. http://dx.doi.org/10.3390/antiox10020263.
Full textGąsior, Robert, and Krzysztof Wojtycza. "Sense of smell and volatile aroma compounds and their role in the evaluation of the quality of products of animal origin – a review." Annals of Animal Science 16, no. 1 (January 1, 2016): 3–31. http://dx.doi.org/10.1515/aoas-2015-0047.
Full textLafeuille, Jean-Louis, Stéphane Lefèvre, and Julie Lebuhotel. "Quantitation of Chlorophylls and 22 of Their Colored Degradation Products in Culinary Aromatic Herbs by HPLC-DAD-MS and Correlation with Color Changes During the Dehydration Process." Journal of Agricultural and Food Chemistry 62, no. 8 (February 17, 2014): 1926–35. http://dx.doi.org/10.1021/jf4054947.
Full textDissertations / Theses on the topic "Aromatic herbs by-products"
Brenha, Ana Miguel Jorge. "Potencial antimicrobiano de subprodutos de Thymus mastichina e Origanum vulgare como possíveis ingredientes em rações animais." Master's thesis, 2018. http://hdl.handle.net/10316/84745.
Full textThis thesis aimed the valuation of by-products resultant from aromatic plant industry, specifically stems from Thyme “Bela-luz” (Thymus mastichina) and from Oregano (Origanum vulgare). These matrices, supplied on a dried state, were evaluated as potential sources of bioactive compounds namely, total phenolics and terpenic compounds that are often associated to the antimicrobial effects described for these plants.With the objective to obtain extracts rich in phenolic compounds, solid-liquid extractions were performed on Thyme from the harvesting seasons of 2016 and 2017 and Oregano from 2017, using water, ethanol:water and ethanol. The aqueous and hydroethanolic Thyme 2016 extracts were those that obtained the highest content of total phenolic compounds, 40 and 42 mg EAG/g stems, respectively. The Oregano’s hydroethanolic extract was the one that revealed the higher antioxidant activity, 5 mM of Trolox/g stems, being also the one that presented the higher overall sugar content, 619 μg/mg.In order to evaluate these by-products as sources of essential oils, two types of hydrodistillation processes were analyzed. For the conventional hydrodistillation, the by-products were submerged in water and the heating source was applied by convection; for the microwave-assisted hydrodistillation, the stems were rehydrated, drained and the heating was performed by microwave irradiation. The extraction yields and composition of the essential oils from the different by-products were similar (0.3%). The essential oils were composed mainly by monoterpenoids and sesquiterpenoids, with carvacrol (17%, 12% e 17% in Thyme 2016 and 2017 and Oregano, respectively) and thymol (1%, 0.3% e 11% in Thyme 2016 and 2017 and Oregano, respectively) as the major compounds on both species. The essential oils were tested against Escherichia coli, Salmonella enterica and Staphylococcus aureus, being the latter the most susceptible species for all tested essential oils. The bacterial growth was totally inhibited with 2 μL of essential oil (60, 42 and 52 μg of carvacrol and 4, 1 and 34 μg of thymol, in Thyme 2016 and 2017 and Oregano, respectively). With a lower concentration, 4-fold, the obtained inhibition halos were 3, 2 and 3 cm in Thyme 2016 and 2017 and Oregano, respectively, being similar to those of antibiotics, ciprofloxacin and gentamicin. For E. coli and Salmonella the inhibition halos were only observed through the application of 10 μL of essential oil. The Thyme Bela-luz and Oreganos by-products showed the potential to be incorporated in animal feed as those were revealed antimicrobial activity against the main poultry’s infectious species.
Com vista à valorização dos subprodutos da indústria das plantas aromáticas, os caules de Tomilho Bela-luz (Thymus mastichina) e Orégãos (Origanum vulgare), recebidos na forma desidratada, foram estudados como fonte de compostos bioativos nomeadamente, compostos fenólicos totais e terpénicos, responsáveis pelos efeitos antimicrobianos descritos para estas plantas.Com o objetivo de se obterem extratos ricos em compostos fenólicos totais foram efetuadas extrações com água, etanol:água e etanol aos subprodutos de Tomilho bela-luz dos anos 2016 e 2017 e Orégãos de 2017. Os extratos aquosos e hidroetanólicos do Tomilho Bela-luz 2016 foram os que obtiveram o maior teor de compostos fenólicos totais, 40 e 42 mg EAG/g caules, respetivamente. O extrato hidroetanólico dos Orégãos foi o que apresentou uma maior atividade antioxidante, 5 mM de equivalentes de Trolox/g caules, tendo sido o que também apresentou uma maior concentração de açúcares totais, 619 µg/mg. Com o objetivo de se avaliar os subprodutos quanto ao seu teor em óleos essenciais, recorreu-se a dois tipos de hidrodestilação. Na hidrodestilação convencional, os caules foram submersos em água e o aquecimento foi feito por convecção; na hidrodestilação assistida por micro-ondas, os caules foram reidratados e escorridos e o aquecimento foi feito por irradiação de micro-ondas. Os rendimentos e composição dos óleos essenciais obtidos dos diferentes subprodutos foram semelhantes (0,3%). Os óleos essenciais são constituídos maioritariamente por monoterpenóides e sesquiterpenóides, sendo o carvacrol (17%, 12% e 17% no Tomilho Bela-luz 2016 e 2017 e Orégãos, respetivamente) e o timol (1%, 0,3% e 11% no Tomilho Bela-luz 2016 e 2017 e Orégãos, respetivamente) os compostos maioritários para todas as espécies. Os óleos essenciais foram testados contra Staphylococcus aureus, Escherichia coli e Salmonella enterica, tendo sido a S. aureus a espécie que apresentou maior suscetibilidade em todos os óleos essenciais testados. O crescimento bacteriano foi totalmente inibido com 2 µL de óleo essencial (60, 42 e 52 µg de carvacrol e 4, 1 e 34 µg de timol, no Tomilho Bela-luz 2016 e 2017 e Orégãos, respetivamente) e com uma concentração 4 vezes inferior verificaram-se halos de inibição (3, 2 e 3 cm no Tomilho Bela-luz 2016 e 2017 e Orégãos, respetivamente) similares aos dos antibióticos, ciprofloxacina e gentamicina. Para a E. coli e Salmonella só se verificaram halos de inibição com 10 µL de óleo essencial. Os subprodutos de Tomilho Bela-luz e Orégãos têm potencial para serem incorporados em rações animais pois demostraram atividade antimicrobiana contra as principais espécies infeciosas em aves.
Book chapters on the topic "Aromatic herbs by-products"
Kumar Paswan, Vinod, Chandra Shekhar Singh, Garima Kukreja, Durga Shankar Bunkar, and Basant Kumar Bhinchhar. "Health Benefits and Functional and Medicinal Properties of Some Common Indian Spices." In Herbs and Spices - New Processing Technologies [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98676.
Full text