Academic literature on the topic 'ARROW'S IMPOSSIBILITY THEOREM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ARROW'S IMPOSSIBILITY THEOREM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ARROW'S IMPOSSIBILITY THEOREM"
Gendin, Sidney. "WHY ARROW'S IMPOSSIBILITY THEOREM IS INVALID." Journal of Social Philosophy 25, no. 1 (March 1994): 144–59. http://dx.doi.org/10.1111/j.1467-9833.1994.tb00311.x.
Full textDENICOLÒ, VINCENZO. "AN ELEMENTARY PROOF OF ARROW'S IMPOSSIBILITY THEOREM*." Japanese Economic Review 47, no. 4 (December 1996): 432–35. http://dx.doi.org/10.1111/j.1468-5876.1996.tb00061.x.
Full textPouzet, Maurice. "A projection property and Arrow's impossibility theorem." Discrete Mathematics 192, no. 1-3 (October 1998): 293–308. http://dx.doi.org/10.1016/s0012-365x(98)00077-6.
Full textHansen, Paul. "Another Graphical Proof of Arrow's Impossibility Theorem." Journal of Economic Education 33, no. 3 (January 2002): 217–35. http://dx.doi.org/10.1080/00220480209595188.
Full textDardanoni, Valentino. "A pedagogical proof of Arrow's Impossibility Theorem." Social Choice and Welfare 18, no. 1 (January 11, 2001): 107–12. http://dx.doi.org/10.1007/s003550000062.
Full textDenicolo, Vincenzo. "An Elementary Proof of Arrow's Impossibility Theorem: Correction." Japanese Economic Review 52, no. 1 (March 2001): 134–35. http://dx.doi.org/10.1111/1468-5876.00186.
Full textFountain, John. "A simple graphical proof of arrow's impossibility theorem." New Zealand Economic Papers 34, no. 1 (June 2000): 89–110. http://dx.doi.org/10.1080/00779950009544317.
Full textLützen, Jesper. "How mathematical impossibility changed welfare economics: A history of Arrow's impossibility theorem." Historia Mathematica 46 (February 2019): 56–87. http://dx.doi.org/10.1016/j.hm.2018.11.001.
Full textTerao, Hiroaki. "Chambers of arrangements of hyperplanes and Arrow's impossibility theorem." Advances in Mathematics 214, no. 1 (September 2007): 366–78. http://dx.doi.org/10.1016/j.aim.2007.02.006.
Full textPatty, John W., and Elizabeth Maggie Penn. "Measuring Fairness, Inequality, and Big Data: Social Choice Since Arrow." Annual Review of Political Science 22, no. 1 (May 11, 2019): 435–60. http://dx.doi.org/10.1146/annurev-polisci-022018-024704.
Full textDissertations / Theses on the topic "ARROW'S IMPOSSIBILITY THEOREM"
Vernersson, Anton. "The Chichilnisky-Heal Approach to Arrow's Impossibility Theorem." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149516.
Full textDenna uppsats utforskar en oväntad blandning av nationalekonomi och algebraisk topologi. På den ekonomiska sidan så studeras "Social choice". Ett ämne som bland annat inkluderar valteori. Inom den rådande ekonomiska teorin så används ofta diskret matematik för att lösa problem i ämnet. Denna uppsats följer istället en kontinuerlig metod konstruerad av Chichilnisky och Heal. Vilken bygger på algebraisk topologi och speciellt på "obstruction theory" som syftar till att utdvidga funktioner till större mängder.
Castelluber, Jaqueline Dayanne Capucci. "O Teorema da impossibilidade de Arrow e suas consequências sobre sistemas eleitorais." reponame:Repositório Institucional da UFABC, 2017.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2017.
Neste trabalho foram apresentados, contextualmente, os métodos de "eleições por ordem de mérito" e de "eleições particulares", ambos propostos em [1] pelo matemático francês Jean Charles Borda (1733 ¿ 1799) em 1770 como alternativa ao "método usual de contagem de votos". Borba percebeu que o "método usual de contagem de votos" apresenta falhas porque em eleições com mais de dois candidatos pode-se não reproduzir adequadamente a preferência da maioria dos eleitores. Posteriormente, foi apresentado o "método de Condorcet", proposto em [2] pelo matemático francês Marie Jean Antonie Nicolas Caritat de Condorcet (1743 ¿ 1794) em 1785 para responder às falhas identificadas nos métodos propostos por Borda e, consequentemente, no "método usual de contagem de votos". Condorcet percebeu que, embora menos que o "método usual de contagem de votos", os métodos propostos por Borda também apresentam falhas porque é possível que sejam utilizados votos ou candidatos de maneira estratégica para manipular o resultado da eleição. O referido método foi apresentado com base no método publicado pelo matemático e economista americano Hobart Peyton Young (1945 ¿) em 1988 na obra "Condorcet¿s Theory of Voting" [3] pelo American Political Science Review. Por conseguinte, foram apresentadas três demonstrações distintas do "Teorema da Impossibilidade de Arrow", proposto em [4] pelo matemático e economista americano Kenneth Joseph Arrow (1921 ¿ 2017) em 1950, no qual, mostrou que considerando determinadas condições, em eleições com mais de dois candidatos, não há um método democraticamente consistente de escolher um candidato vencedor, pois não existe uma forma perfeita de construir uma preferência social a partir das preferências individuais dos eleitores. As referidas demonstrações foram apresentadas com base nas demonstrações publicadas pelo matemático e economista americano John Geanakoplos (1955 ¿) em 2005 no artigo "Three brief proofs of Arrow¿s Impossibility Theorem" [5] pelo Journal Economic Theory. Por fim, foram apresentadas as conclusões e consequências do "Teorema da Impossibilidade de Arrow" sobre sistemas eleitorais.
In this work were presented, contextually, the methods of "elections in order of merit" and "private elections", both proposed in [1] by the french mathematician Jean Charles Borda (1733 ¿ 1799) in 1770 as an alternative to the "usual method of counting votes". Borda realized that the "usual method of counting votes" presents flaws because in elections with more than two candidates it doesn¿t reproduce the adequately preference of the majority of voters. Posteriorly, the "Condorcet method" was presented, proposed in [2] by the french mathematician Marie Jean Antonie Nicolas Caritat de Condorcet (1743 ¿ 1794) in 1785 to respond to the flaws identified in the methods proposed by Borda and, consequently, in the "usual method of counting votes". Condorcet realized that, although less than the "usual method of counting votes", the methods proposed by Borda also present flaws because it is possible that votes or candidates are used strategically to manipulate the election result. This method was presented based on the method published by the american mathematician and economist Hobart Peyton Young (1945 - ...) in 1988 in the work "Condorcet¿s Theory of Voting" [3] by the American Political Science Review. Therefore, three distinct demonstrations of the "Arrow Impossibility Theorem" were presented, proposed in [4] by the american mathematician and economist Kenneth Joseph Arrow (1921 ¿ 2017) in 1950, in which, it has been shown that given certain conditions, in elections with more than two candidates, there is no democratically consistent method of choosing a winning candidate, as there is no perfect way to build a social preference based on the individual preferences of voters. These statements were presented based on the statements publishe by the american mathematician and economist John Geanakoplos (1955 - ...) in 2005 in the article "Three brief proofs of Arrow¿s Impossibility Theorem" [5] by the Journal Economic Theory. Finally, the conclusions and consequences of "Arrow¿s Impossibility Theorem" on electoral systems were presented.
"Arrow's impossibility theorem and electoral systems." Chinese University of Hong Kong, 1989. http://library.cuhk.edu.hk/record=b5886192.
Full textBooks on the topic "ARROW'S IMPOSSIBILITY THEOREM"
Sen, Amartya Kumar, and Joseph E. Stiglitz. Arrow Impossibility Theorem. Columbia University Press, 2014.
Find full textSen, Amartya Kumar. The Arrow Impossibility Theorem (Kenneth J. Arrow Lecture Series). Columbia University Press, 2014.
Find full textD'Agostino, Susan. How to Free Your Inner Mathematician. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198843597.001.0001.
Full textBook chapters on the topic "ARROW'S IMPOSSIBILITY THEOREM"
Kelly, Jerry S. "Arrow’s Impossibility Theorem." In Social Choice Theory, 80–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-09925-4_8.
Full textFeldman, Allan M. "Arrow’s Impossibility Theorem." In Welfare Economics and Social Choice Theory, 178–95. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-8141-3_11.
Full textMcLean, Iain, Alistair McMillan, and Burt L. Monroe. "On Arrow’s Impossibility Theorem." In The Theory of Committees and Elections by Duncan Black and Committee Decisions with Complementary Valuation by Duncan Black and R.A. Newing, 331–52. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4860-3_23.
Full textSkala, Heinz J. "What Does Arrow’s Impossibility Theorem Tell Us?" In Theory and Decision, 273–86. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3895-3_14.
Full textDubas, Khalid M., and James T. Strong. "Arrow’s General Impossibility Theorem and Five Collective Choice Rules: Pareto, Condorcet, Plurality, Approval Voting, and Borda." In Proceedings of the 1993 Academy of Marketing Science (AMS) Annual Conference, 334–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13159-7_76.
Full text"Arrow's Theorem." In Interprofile Conditions and Impossibility, 17–23. Routledge, 2013. http://dx.doi.org/10.4324/9781315014760-10.
Full text"Informal Algorithms, Impossibility Theorems, and New “Learning” Business/Compensation Models for the Credit Rating Agency Industry." In Complex Systems and Sustainability in the Global Auditing, Consulting, and Credit Rating Agency Industries, 283–316. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7418-8.ch009.
Full text"On Impossibility Theorems, Informal Algorithms, and International Trade." In Complex Systems and Sustainability in the Global Auditing, Consulting, and Credit Rating Agency Industries, 169–210. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7418-8.ch006.
Full textLandemore, Hélène. "Epistemic Failures of Majority Rule: Real and Imagined." In Democratic Reason. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691155654.003.0007.
Full text"Arrow’s impossibility theorem." In 100 Years of Math Milestones, 199–203. Providence, Rhode Island: American Mathematical Society, 2019. http://dx.doi.org/10.1090/mbk/121/38.
Full textConference papers on the topic "ARROW'S IMPOSSIBILITY THEOREM"
Mata Diaz, Amilcar, and Ramon Pino Perez. "Impossibility in Belief Merging (Extended Abstract)." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/799.
Full textSaaty, Thomas L. "A Ratio Scale Metric and the Compatibility of Ratio Scales: On the Possibility of Arrow's Impossibility Theorem." In The International Symposium on the Analytic Hierarchy Process. Creative Decisions Foundation, 1994. http://dx.doi.org/10.13033/isahp.y1994.004.
Full textLi, Simon. "Independence of Irrelevant Alternatives in Engineering Design." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34586.
Full textAllen, Beth. "On the Aggregation of Preferences in Engineering Design." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dac-21015.
Full textPandey, Vijitashwa, and Deborah Thurston. "Non-Dominated Strategies for Decision Based Design for Component Reuse." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35685.
Full text