Academic literature on the topic 'Artificial Bee Colony Algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Artificial Bee Colony Algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Artificial Bee Colony Algorithms"
Patel, Subhash, and Rajesh A. Thakker. "Parameter Space Exploration for Analog Circuit Design Using Enhanced Bee Colony Algorithm." Journal of Circuits, Systems and Computers 28, no. 09 (August 2019): 1950153. http://dx.doi.org/10.1142/s0218126619501536.
Full textMinetti, Gabriela, and Carolina Salto. "Artificial Bee Colony Algorithm Improved with Evolutionary Operators." Journal of Computer Science and Technology 18, no. 02 (October 4, 2018): e13. http://dx.doi.org/10.24215/16666038.18.e13.
Full textQin, Quande, Shi Cheng, Qingyu Zhang, Li Li, and Yuhui Shi. "Artificial Bee Colony Algorithm with Time-Varying Strategy." Discrete Dynamics in Nature and Society 2015 (2015): 1–17. http://dx.doi.org/10.1155/2015/674595.
Full textVerma, Balwant Kumar, and Dharmender Kumar. "A review on Artificial Bee Colony algorithm." International Journal of Engineering & Technology 2, no. 3 (June 21, 2013): 175. http://dx.doi.org/10.14419/ijet.v2i3.1030.
Full textBalasubramani, Kamalam, and Karnan Marcus. "A Comprehensive review of Artificial Bee Colony Algorithm." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 5, no. 1 (June 23, 2013): 15–28. http://dx.doi.org/10.24297/ijct.v5i1.4382.
Full textXiao, Ren Bin, and Ying Cong Wang. "Research on Cellular Artificial Bee Colony Algorithm and its Computational Experiments." Applied Mechanics and Materials 284-287 (January 2013): 3168–72. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.3168.
Full textSharma, Harish, Jagdish Chand Bansal, K. V. Arya, and Kusum Deep. "Dynamic Swarm Artificial Bee Colony Algorithm." International Journal of Applied Evolutionary Computation 3, no. 4 (October 2012): 19–33. http://dx.doi.org/10.4018/jaec.2012100102.
Full textZou, Wenping, Yunlong Zhu, Hanning Chen, and Xin Sui. "A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm." Discrete Dynamics in Nature and Society 2010 (2010): 1–16. http://dx.doi.org/10.1155/2010/459796.
Full textSharma, Tarun Kumar, and Millie Pant. "Differential Operators Embedded Artificial Bee Colony Algorithm." International Journal of Applied Evolutionary Computation 2, no. 3 (July 2011): 1–14. http://dx.doi.org/10.4018/jaec.2011070101.
Full textKaraboga, Dervis. "Artificial bee colony algorithm." Scholarpedia 5, no. 3 (2010): 6915. http://dx.doi.org/10.4249/scholarpedia.6915.
Full textDissertations / Theses on the topic "Artificial Bee Colony Algorithms"
Marrè, Badalló Roser. "Implementation and Testing of Two Bee-Based Algorithms in Finite Element Model Updating." Thesis, KTH, Bro- och stålbyggnad, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140846.
Full textHashim, Mohd Ruzaini. "Improved spiral dynamics and artificial bee colony algorithms with application to engineering problems." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20175/.
Full textLee, Jessica. "Vägplanering i dataspel med hjälp av Artificial Bee Colony Algorithm." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11044.
Full textIdachaba, Unekwu Solomon. "A bio-inspired cache management policy for cloud computing environments using the artificial bee colony algorithm." Thesis, University of Kent, 2015. https://kar.kent.ac.uk/57856/.
Full textSantos, Daniela Scherer dos. "Bee clustering : um algoritmo para agrupamento de dados inspirado em inteligência de enxames." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/18249.
Full textClustering can be defined as a set of techniques that separate a data set into groups of similar objects. Data items within the same group are more similar than objects of different groups. Traditional clustering methods have been usually developed in a centralized fashion. One reason for this is that this form of clustering relies on data structures that must be accessed and modified at each step of the clustering process. Another issue with classical clustering methods is that they need some hints about the target clustering. These hints include for example the number of clusters, the expected cluster size, or the minimum density of clusters. In this work we propose a clustering algorithm that is inspired by swarm intelligence techniques such as the organization of bee colonies and task allocation among social insects. Our proposed algorithm is developed in a decentralized fashion without any initial information about number of classes, number of partitions, and size of partition, and without the need of complex parameters. The bee clustering algorithm is able to form groups of agents in a distributed way, a typical necessity in multiagent scenarios that require self-organization without central control. The performance of our algorithm shows that it is possible to achieve results that are comparable to those from centralized approaches.
Matakas, Linas. "Dirbtinės bičių kolonijos algoritmai ir jų taikymai skirstymo uždaviniams spręsti." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130729_150200-28811.
Full textThis paper consists of short descriptions of swarm systems algorithms, assigment problems and longer overview of artificial bee colony algorithms and it‘s analysis. Moreover, you can find an Artificial Bee Colony Algorithm's Application to one of an Assigment Problems and it's computational results analysis.
Kavaliauskas, Donatas. "Dirbtinės bičių kolonijos algoritmai ir jų taikymai maršrutų optimizavimo uždaviniams spręsti." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130729_153102-94516.
Full textThis paper consists of short description of swarm systems algorithms, route optimisation problems overview and longer description of artificial bee colony algorithms adaptation for traveling salesman problem. Moreover, you can find an artificial bee colony algorithm's application to traveling salesman problem and analysis of computational results.
SOUZA, Viviane Lucy Santos de. "Uma metodologia para síntese de circuitos digitais em FPGAs baseada em otimização multiobjetivo." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17339.
Full textMade available in DSpace on 2016-07-12T18:32:53Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Final_bib.pdf: 4325542 bytes, checksum: 5cafa644d256b743ce0f06490e4d5920 (MD5) Previous issue date: 2015-08-20
Atualmente, a evolução na arquitetura dos FPGAs (Field programable gate arrays) permite que os mesmos sejam empregados em aplicações que vão desde a prototipação rápida de circuitos digitais simples a coprocessadores para computação de alto desempenho. Entretanto, a utilização eficiente dessas arquiteturas é fortemente dependente, entre outros fatores, da ferramenta de síntese empregada. O desafio das ferramentas de síntese está em converter a lógica do projetista em circuitos que utilizem de maneira efetiva a área do chip, não degradem a frequência de operação e que, sobretudo, sejam eficientes em reduzir o consumo de energia. Nesse sentido, pesquisadores e grandes fabricantes de FPGA estão, frequentemente, desenvolvendo novas ferramentas com vistas a esses objetivos, que se caracterizam por serem conflitantes. O fluxo de síntese de projetos baseados em FPGAs engloba as etapas de otimização lógica, mapeamento, agrupamento, posicionamento e roteamento. Essas fases são dependentes, de forma que, otimizações nas etapas iniciais produzem impactos positivos nas etapas posteriores. No âmbito deste trabalho de doutorado, estamos propondo uma metodologia para otimização do fluxo de síntese, especificamente, nas etapas de mapeamento e agrupamento. Classicamente, a etapa de mapeamento é realizada mediante heurísticas que determinam uma solução para o problema, mas que, não permitem a busca por soluções ótimas, ou que beneficiam um objetivo em detrimento de outros. Desta forma, estamos propondo a utilização de uma abordagem multiobjetivo baseada em algoritmo genético e de uma abordagem multiobjetivo baseada em colônia artificial de abelhas que, associadas a heurísticas específicas do problema, permitem que sejam obtidas soluções de melhor qualidade e que resultam em circuitos finais com área reduzida, ganhos na frequência de operação e com menor consumo de potência dinâmica. Além disso, propomos uma nova abordagem de agrupamento multiobjetivo que se diferencia do estado da arte, por utilizar uma técnica de predição e por considerar características dinâmicas do problema, produzindo circuitos mais eficientes e que facilitam a tarefa das etapas de posicionamento e roteamento. Toda a metodologia proposta foi integrada ao fluxo acadêmico do VTR (Verilog to routing), um projeto código aberto e colaborativo que conta com múltiplos grupos de pesquisa, conduzindo trabalhos nas áreas de desenvolvimento de arquitetura de FPGAs e de novas ferramentas de síntese. Além disso, utilizamos como benchmark, um conjunto dos 20 maiores circuitos do MCNC (Microelectronics Center of North Carolina) que são frequentemente utilizados em pesquisas da área. O resultado do emprego integrado das ferramentas frutos da metodologia proposta permite a redução de importantes aspectos pós-roteamento avaliados. Em comparação ao estado da arte, são obtidas, em média, redução na área dos circuitos de até 19%, além da redução do caminho crítico em até 10%, associada à diminuição na potência dinâmica total estimada de até 18%. Os experimentos também mostram que as metodologias de mapeamento propostas são computacionalmente mais custosas em comparação aos métodos presentes no estado da arte, podendo ser até 4,7x mais lento. Já a metodologia de agrupamento apresentou pouco ou nenhum overhead em comparação ao metodo presente no VTR. Apesar do overhead presente no mapeamento, os métodos propostos, quando integrados ao fluxo completo, podem reduzir o tempo de execução da síntese em cerca de 40%, isto é o resultado da produção de circuitos mais simples e que, consequentemente, favorecem as etapas de posicionamento e roteamento.
Nowadays, the evolution of FPGAs (Field Programmable Gate Arrays) allows them to be employed in applications from rapid prototyping of digital circuits to coprocessor of high performance computing. However, the efficient use of these architectures is heavily dependent, among other factors, on the employed synthesis tool. The synthesis tools challenge is in converting the designer logic into circuits using effectively the chip area, while, do not degrade the operating frequency and, especially, are efficient in reducing power consumption. In this sense, researchers and major FPGA manufacturers are often developing new tools to achieve those goals, which are characterized by being conflicting. The synthesis flow of projects based on FPGAs comprises the steps of logic optimization, mapping, packing, placement and routing. These steps are dependent, such that, optimizations in the early stages bring positive results in later steps. As part of this doctoral work, we propose a methodology for optimizing the synthesis flow, specifically, on the steps of mapping and grouping. Classically, the mapping step is performed by heuristics which determine a solution to the problem, but do not allow the search for optimal solutions, or that benefit a goal at the expense of others. Thus, we propose the use of a multi-objective approach based on genetic algorithm and a multi-objective approach based on artificial bee colony that, combined with problem specific heuristics, allows a better quality of solutions are obtained, yielding circuits with reduced area, operating frequency gains and lower dynamic power consumption. In addition, we propose a new multi-objective clustering approach that differs from the state-of-the-art, by using a prediction technique and by considering dynamic characteristics of the problem, producing more efficient circuits and that facilitate the tasks of placement and routing steps . The proposal methodology was integrated into the VTR (Verilog to routing) academic flow, an open source and collaborative project that has multiple research groups, conducting work in the areas of FPGA architecture development and new synthesis tools. Furthermore, we used a set of the 20 largest MCNC (Microelectronics Center of North Carolina) benchmark circuits that are often used in research area. The results of the integrated use of tools based on the proposed methodology allow the reduction of important post-routing aspects evaluated. Compared to the stateof- the-art, are achieved, on average, 19% reduction in circuit area, besides 10% reduction in critical path, associated with 18% decrease in the total dynamic estimated power. The experiments also reveal that proposed mapping methods are computationally more expensive in comparison to methods in the state-of-the-art, and may even be 4.7x slower. However, the packing methodology presented little or no overhead compared to the method in VTR. Although the present overhead mapping, the proposed methods, when integrated into the complete flow, can reduce the running time of the synthesis by approximately 40%, which is the result of more simple circuits and which, consequently, favor the steps of placement and routing.
Duarte, Grasiele Regina. "Um algoritmo inspirado em colônias de abelhas para otimização numérica com restrições." Universidade Federal de Juiz de Fora (UFJF), 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/3544.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:19:40Z (GMT) No. of bitstreams: 1 grasielereginaduarte.pdf: 2553018 bytes, checksum: e0b9afbcc0b18965321f8db8ea7d38b8 (MD5)
Made available in DSpace on 2017-03-06T20:19:40Z (GMT). No. of bitstreams: 1 grasielereginaduarte.pdf: 2553018 bytes, checksum: e0b9afbcc0b18965321f8db8ea7d38b8 (MD5) Previous issue date: 2015-03-06
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os problemas de otimização estão presentes em diversas áreas de atuação da sociedade e o uso de algoritmos bio-inspirados para a resolução de problemas complexos deste tipo vem crescendo constantemente. O Algoritmo Colônia de Abelhas Artificiais (ABC – do inglês Artificial Bee Colony) é um algoritmo bio-inspirado proposto em 2005 para a resolução de problemas de otimização multimodais e multidimensionais. O fenômeno natural que inspirou o desenvolvimento do ABC foi o comportamento inteligente observado em colônias de abelhas, mais especificamente no forrageamento. O ABC foi proposto inicialmente para ser aplicado na resolução de problemas sem restrições. Este trabalho avalia o desempenho do ABC quando aplicado na resolução de problemas de otimização com restrições. Para o tratamento das restrições, métodos de penalização serão incorporados ao ABC. São analisados diversos métodos de penalização, de diferentes tipos, com o objetivo de identificar com qual deles o algoritmo apresenta melhor desempenho. Além disto, são avaliadas possíveis limitações e cuidados que devem ser tomados ao combinar métodos de penalização ao ABC. O algoritmo proposto é avaliado através da resolução de problemas de otimização encontrados na literatura. Vários experimentos computacionais são realizados e gráficos e tabelas são gerados para demonstração dos resultados obtidos que também são discutidos.
Optimization problems are present in several areas of society and the use of bio-inspired algorithms to solve complex problems of this type has been growing constantly. The Artificial Bee Colony Algorithm (ABC) is a bio-inspired algorithm proposed in 2005 for solving multimodal and multidimensional optimization problems. The natural phenomenon that inspired the development of the ABC was intelligent behavior observed in bee colonies, more specifically in foraging. The ABC was initially proposed to be applied to solve unconstrained problems. This study evaluates the performance of ABC when applied in solving constrained optimization problems. For the treatment of constraints, penalty methods will be incorporated into the ABC. Several penalty methods, of different types, are analyzed with the goal of identifying which of these penalty methods offers better performance. Furthermore, possible limitations and care that should be taken when combining penalty methods to ABC are evaluated. The proposed algorithm is evaluated by solving optimization problems found in the literature. Several computational experiments are performed and graphs and tables are generated for demonstration of the obtained results which are also discussed.
Vladimir, Bugarski. "Ekspertski sistem za upravljanje brodskom prevodnicom zasnovan na računarskoj inteligenciji." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2015. http://www.cris.uns.ac.rs/record.jsf?recordId=95378&source=NDLTD&language=en.
Full textThis thesis presents a solution to automatic control of a two-way one-channelship lock. Expert system based on fuzzy logic is designed. This controlsystem is tested on model of ship lock created using statistical data oftransportation density on DTD (Danube-Tisa-Danube) channel, usingtechnical documentation of ship lock and interview with operators. Thesystem is further optimized with global optimization techniques. Givensolution proved to be significantly better than standard decision algorithms.
Books on the topic "Artificial Bee Colony Algorithms"
Ünal, Muhammet. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textP, Spaink H., Rozenberg Grzegorz, Kok Joost N, Back Th, Eiben Agoston E, and SpringerLink (Online service), eds. Bee-Inspired Protocol Engineering: From Nature to Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textTopuz, Vedat, Muhammet Ünal, and Ayça Ak. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms. Springer, 2012.
Find full textTopuz, Vedat, Muhammet Ünal, Ayça Ak, and Hasan Erdal. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms. Springer, 2014.
Find full textFarooq, Muddassar. Bee-Inspired Protocol Engineering: From Nature to Networks. Springer, 2010.
Find full textBook chapters on the topic "Artificial Bee Colony Algorithms"
Badar, Altaf Q. H. "Artificial Bee Colony." In Evolutionary Optimization Algorithms, 115–36. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003206477-6.
Full textAkay, Bahriye, and Dervis Karaboga. "Artificial Bee Colony Algorithm." In Swarm Intelligence Algorithms, 17–30. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422614-2.
Full textOkwu, Modestus O., and Lagouge K. Tartibu. "Artificial Bee Colony Algorithm." In Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications, 15–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61111-8_3.
Full textKaveh, Ali, and Taha Bakhshpoori. "Artificial Bee Colony Algorithm." In Metaheuristics: Outlines, MATLAB Codes and Examples, 19–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04067-3_3.
Full textJadon, Shimpi Singh, Jagdish Chand Bansal, Ritu Tiwari, and Harish Sharma. "Expedited Artificial Bee Colony Algorithm." In Advances in Intelligent Systems and Computing, 787–800. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1768-8_68.
Full textKumar, Sandeep, Anand Nayyar, and Rajani Kumari. "Arrhenius Artificial Bee Colony Algorithm." In International Conference on Innovative Computing and Communications, 187–95. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2354-6_21.
Full textCuevas, Erik, and Alma Rodríguez. "Artificial Bee Colony (ABC) Algorithm." In Metaheuristic Computation with MATLAB®, 183–200. First edition. | Boca Raton : CRC Press, 2020.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003006312-7.
Full textXian, Zhengguang, Jun Xie, and Yanfei Wang. "Representative Artificial Bee Colony Algorithms: A Survey." In LISS 2012, 1419–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32054-5_201.
Full textZhang, Di, and Hao Gao. "Global-Best Leading Artificial Bee Colony Algorithms." In 3rd EAI International Conference on Robotic Sensor Networks, 55–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46032-7_6.
Full textLiang, Wanying, Shuo Liu, Kang Zhou, Shiji Fan, Xuechun Shang, and Yanzi Yang. "Improved Discrete Artificial Bee Colony Algorithm." In Communications in Computer and Information Science, 581–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3425-6_46.
Full textConference papers on the topic "Artificial Bee Colony Algorithms"
Huang, Fuxin, Lijue Wang, and Chi Yang. "Ship Hull Form Optimization Using Artificial Bee Colony Algorithm." In SNAME Maritime Convention. SNAME, 2014. http://dx.doi.org/10.5957/smc-2014-t47.
Full textZhang, Dongli, Xinping Guan, Yinggan Tang, and Yong Tang. "Modified Artificial Bee Colony Algorithms for Numerical Optimization." In 2011 3rd International Workshop on Intelligent Systems and Applications (ISA). IEEE, 2011. http://dx.doi.org/10.1109/isa.2011.5873266.
Full textXiaojun Bi and Yanjiao Wang. "An improved artificial bee colony algorithm." In 2011 3rd International Conference on Computer Research and Development (ICCRD). IEEE, 2011. http://dx.doi.org/10.1109/iccrd.2011.5764108.
Full text"An improved artificial bee colony algorithm." In The 2nd World Conference on Humanities and Social Sciences. Francis Academic Press, 2018. http://dx.doi.org/10.25236/wchss.2017.06.
Full textSharma, Harish, Sonal Sharma, and Sandeep Kumar. "Lbest Gbest Artificial Bee Colony algorithm." In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2016. http://dx.doi.org/10.1109/icacci.2016.7732158.
Full textRajawat, Ankita, Nirmala Sharma, and Harish Sharma. "Elitism based artificial bee colony algorithm." In 2017 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2017. http://dx.doi.org/10.1109/ccaa.2017.8229802.
Full textKang, Fei, Junjie Li, Haojin Li, Zhenyue Ma, and Qing Xu. "An Improved Artificial Bee Colony Algorithm." In 2010 2nd International Workshop on Intelligent Systems and Applications (ISA). IEEE, 2010. http://dx.doi.org/10.1109/iwisa.2010.5473452.
Full textLiu, Hongzhi, Liqun Gao, Xiangyong Kong, and Shuyan Zheng. "An improved artificial bee colony algorithm." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6560956.
Full textYi, Yujang, and Renjie He. "A Novel Artificial Bee Colony Algorithm." In 2014 6th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2014. http://dx.doi.org/10.1109/ihmsc.2014.73.
Full textEl-Abd, Mohammed. "Opposition-based artificial bee colony algorithm." In the 13th annual conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001576.2001592.
Full textReports on the topic "Artificial Bee Colony Algorithms"
Kanagavel, Rameshkumar, and Indragandhi Vairavasundaram. FPGA Implementation and Investigation of Hybrid Artificial Bee Colony Algorithm-based Single Phase Shunt Active Filter. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.05.13.
Full text