Dissertations / Theses on the topic 'Artificial intelligence in games'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Artificial intelligence in games.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhadan, Anastasiia. "Artificial Intelligence Adaptation in Video Games." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-79131.
Full textKARLSSON, BORJE FELIPE FERNANDES. "AN ARTIFICIAL INTELLIGENCE MIDDLEWARE FOR DIGITAL GAMES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7861@1.
Full textA aplicação de inteligência artificial (IA) em jogos digitais atualmente se encontra sob uma constante necessidade de melhorias, na tentaiva de atender as crescentes demandas dos jogadores por realismo e credibilidade no comportamento dos personagens do universo do jogo. De modo a facilitar o atendimento destas demandas, técnicas e metodologias de engenharia de software vêm sendo utilizadas no desenvolvimento de jogos. No entanto, o uso destas técnicas e a construção de middlewares na área de IA ainda está longe de gerar ferramentas genéricas e flexíveis o suficiente para o uso nesse tipo de aplicação. Outro fator importante é a falta de literatura disponível tratando de propostas relacionadas a esse campo de estudo. Esta dissertação discute o esforço de pesquisa no desenvolvimento de uma arquitetura flexível aplicável a diferentes estilos de jogos, que dê suporte a várias funcionalidades de IA em jogos e sirva com base a introdução de novas técnicas que possam melhorar a jogabilidade. Neste trabalho são apresentadas: questões de projeto de tal sistema e de sua integração com jogos; um estudo sobre a arquitetura de middlewares de IA; uma análise dos poucos exemplos desse tipo de software disponíveis; e um levantamento da literatura disponível. Com base nessa pesquisa, foi realizado o projeto e a implementação da arquitetura de um middleware de IA; também descritos nesse trabalho. Além da implementação propriamente dita, é apresentado um estudo sobre a aplicação de padrões de projeto no contexto do desenvolvimento e evolução de um framework de IA para jogos.
The usage of artificial intelligence (AI) techniques in digital games is currently facing a steady need of improvements, so it can cater to players higher and higher expectations that require realism and believability in the game environment and in its characters' behaviours. In order to ease the fulfillment of these goals, software engineering techniques and methodologies have started to be used during game development. However, the use of such techniques and the creation of AI middleware are still far from being a generic and flexible enough tool for developing this kind of application. Another important factor to be mentioned in this discussion is the lack of available literature related to studies in this field. This dissertation discusses the research effort in developing a flexible architecture that can be applied to diferent game styles, provides support for several game AI functionalities and serves as basis for the introduction of more powerful techniques that can improve gameplay and user experience. This work presents: design issues of such system and its integration with games; a study on AI middleware architecture for games; an analysis of the state-of-the-art in the field; and a survey of the available relevant literature. Taking this research as starting point, the design and implementation of the proposed AI middleware architecture was conducted and is also described here. Besides the implementation itself, a study on the use of design patterns in the context of the development and evolution of an AI framework for digital games is also presented.
Edlund, Mattias. "Artificial Intelligence in Games : Faking Human Behavior." Thesis, Uppsala universitet, Institutionen för speldesign, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-258222.
Full textDenna rapport undersöker möjligheterna att förfalska mänskligt beteende genom artificiell intelligens i datorspel, med hjälp av effektiva metoder som sparar värdefull utvecklingstid och som även skapar en rikare upplevelse för spelare. Den specifika implementationen av artificiell intelligens som utvecklas och diskuteras är ett neuralt nätverk som kontrollerar en finite-state machine. Målet var att efterlikna mänskligt beteende snarare än att simulera verklig intelligens. Ett 2D shooter-spel utvecklas och används för utförda experiment med mänskliga och artificiell intelligens-kontrollerade spelare. De sessioner som spelades under experimenten spelades in, för att sedan låta andra människor titta på inspelningarna. Både spelare och åskådare av spelsessionerna lämnade återkoppling och rapporter för senare analysering. Datan som samlats in från experimenten analyserades, och reflektioner utfördes på hela projektet. Tips och idéer presenteras till utvecklare av shooter-spel som är intresserade av en mer människolik artificiell intelligens. Slutsatser läggs fram och extra information presenteras för att kunna fortsätta iterera vidare på denna undersökning.
Hedberg, Charlie Forsberg, and Alexander Pedersen. "Artificial Intelligence : Memory-driven decisions in games." Thesis, Blekinge Tekniska Högskola, Institutionen för teknik och estetik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3640.
Full textAtt utveckla AI (Artificiell Intelligence) i spel kan vara en hård och utmanande uppgift. Ibland är det önskvärt att skapa beteenden som följer något sorts logiskt mönster. För att kunna göra detta måste information samlas in och processas. I detta kandidatarbete presenteras en algoritm som kan assistera nuvarande AI-teknologier för att samla in och memorera omgivningsinformation. Denna uppsats täcker också riktlinjer för praktisk implementering fastställda genom undersökning och tester.
Detta är en reflekstionsdel till en digital medieproduktion.
Allis, Louis Victor. "Searching for solutions in games and artificial intelligence." Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1994. http://arno.unimaas.nl/show.cgi?fid=6868.
Full textSaini, Simardeep S. "Mimicking human player strategies in fighting games using game artificial intelligence techniques." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16380.
Full textNilsson, Joakim, and Andreas Jonasson. "Using Artificial Intelligence for Gameplay Testing On Turn-Based Games." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16716.
Full textWei, Ermo. "Learning to Play Cooperative Games via Reinforcement Learning." Thesis, George Mason University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420351.
Full textBeing able to accomplish tasks with multiple learners through learning has long been a goal of the multiagent systems and machine learning communities. One of the main approaches people have taken is reinforcement learning, but due to certain conditions and restrictions, applying reinforcement learning in a multiagent setting has not achieved the same level of success when compared to its single agent counterparts.
This thesis aims to make coordination better for agents in cooperative games by improving on reinforcement learning algorithms in several ways. I begin by examining certain pathologies that can lead to the failure of reinforcement learning in cooperative games, and in particular the pathology of relative overgeneralization. In relative overgeneralization, agents do not learn to optimally collaborate because during the learning process each agent instead converges to behaviors which are robust in conjunction with the other agent's exploratory (and thus random), rather than optimal, choices. One solution to this is so-called lenient learning, where agents are forgiving of the poor choices of their teammates early in the learning cycle. In the first part of the thesis, I develop a lenient learning method to deal with relative overgeneralization in independent learner settings with small stochastic games and discrete actions.
I then examine certain issues in a more complex multiagent domain involving parameterized action Markov decision processes, motivated by the RoboCup 2D simulation league. I propose two methods, one batch method and one actor-critic method, based on state of the art reinforcement learning algorithms, and show experimentally that the proposed algorithms can train the agents in a significantly more sample-efficient way than more common methods.
I then broaden the parameterized-action scenario to consider both repeated and stochastic games with continuous actions. I show how relative overgeneralization prevents the multiagent actor-critic model from learning optimal behaviors and demonstrate how to use Soft Q-Learning to solve this problem in repeated games.
Finally, I extend imitation learning to the multiagent setting to solve related issues in stochastic games, and prove that given the demonstration from an expert, multiagent Imitation Learning is exactly the multiagent actor-critic model in Maximum Entropy Reinforcement Learning framework. I further show that when demonstration samples meet certain conditions the relative overgeneralization problem can be avoided during the learning process.
Liu, Siming. "Evolving effective micro behaviors for real-time strategy games." Thesis, University of Nevada, Reno, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3707862.
Full textReal-Time Strategy games have become a new frontier of artificial intelligence research. Advances in real-time strategy game AI, like with chess and checkers before, will significantly advance the state of the art in AI research. This thesis aims to investigate using heuristic search algorithms to generate effective micro behaviors in combat scenarios for real-time strategy games. Macro and micro management are two key aspects of real-time strategy games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes against equal numbers of opponent units or win even when outnumbered. In this research, we use influence maps and potential fields as a basis representation to evolve micro behaviors. We first compare genetic algorithms against two types of hill climbers for generating competitive unit micro management. Second, we investigated the use of case-injected genetic algorithms to quickly and reliably generate high quality micro behaviors. Then we compactly encoded micro behaviors including influence maps, potential fields, and reactive control into fourteen parameters and used genetic algorithms to search for a complete micro bot, ECSLBot. We compare the performance of our ECSLBot with two state of the art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular real-time strategy game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. In addition, the same approach works to create competitive micro behaviors in another game SeaCraft. Using parallelized genetic algorithms to evolve parameters in SeaCraft we are able to speed up the evolutionary process from twenty one hours to nine minutes. We believe this work provides evidence that genetic algorithms and our representation may be a viable approach to creating effective micro behaviors for winning skirmishes in real-time strategy games.
Stene, Sindre Berg. "Artificial Intelligence Techniques in Real-Time Strategy Games - Architecture and Combat Behavior." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9497.
Full textThe general purpose of this research is to investigate the possibilities offered for the use of Artificial Intelligence theory and methods in advanced game environments. The real-time strategy (RTS) game genre is investigated in detail, and an architecture and solutions to some common issues are presented. An RTS AI controlled opponent named KAI is implemented for the TA Spring game engine in order to advance the state of the art in usin AI techniques in games and to gain some insight into the strengths and weaknesses of AI Controlled Player (AI CP) architectures. A goal was to create an AI with behavior that gave the impression of intelligence to the human player, by taking on certain aspects of the style in which human players play the game. Another goal for the benefit of the TA Spring development community was to create an AI which played with sufficient skill to provide experienced players with resistance, without using obvious means of cheating such as getting free resources or military assets. Several common techniques were used, among others Rule-based decision making, path planning and path replanning, influence maps, and a variant of the A* search algorithm was used for searches of various kinds. The AI also has an approach to micromanagement of units that are fighting in combination with influence maps. The AI CP program was repeatedly tested against human players and other AI CP programs in various settings throughout development. The availability of testing by the community but the sometimes sketchy feedback lead to the production of consistent behavior for tester and developer alike in order to progress. One obstacle that was met was that the rule-based approach to combat behavior resulted in high complexity. The architecture of the RTS AI CP is designed to emerge a strategy from separate agents that were situation aware. Both the actions of the enemy and the properties of the environment are taken into account. The overall approach is to strengthen the AI CP through better economic and military decisions. Micromanagement and frequent updates for moving units is an important part of improving military decisions in this architecture. This thesis goes into the topics of RTS strategies, tactics, economic decisions and military decisions and how they may be made by AI in an informed way. Direct attempts at calculation and prediction rather than having the AI learn from experience resulted in behavior that was superior to most AI CPs and many human players without a learning period. However, having support for all of the game types for TA Spring resulted in extra development time. Keywords: computer science information technology RTS real time strategy game artificial intelligence architecture emergent strategy emergence humanlike behavior situation situational aware awareness combat behavior micro micromanagement pathfinder pathfinding path planning replanning influence maps threat DPS iterative algorithm algorithms defense placement terrain analysis attack defense military control artificial intelligence controlled player computer opponent game games gaming environmental awareness autonomous action actions agent hierarchy KAI TA Spring Total Annihilation
Lindstam, Tim, and Anton Svensson. "Behavior Based Artificial Intelligence in a Village Environment." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20522.
Full textFusaro, Alberto Cabral. "Inteligência artificial e a ilusão do percepto afetivo." Pontifícia Universidade Católica de São Paulo, 2018. https://tede2.pucsp.br/handle/handle/21112.
Full textMade available in DSpace on 2018-06-06T12:05:21Z (GMT). No. of bitstreams: 1 Alberto Cabral Fusaro.pdf: 927659 bytes, checksum: ef5aba7d663a9eee92192d1756b51a25 (MD5) Previous issue date: 2018-04-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Our investigation fits into a branch of Artificial Intelligence research, namely the Weak AIs subset, aiming to figure out the way that these AIs are applied in videogames development – we call it just “games”, referring to all games that run on any form of electronics platform. Our focus bears on a strict human-behavior simulation system that goes on the market by the name of Drivatar, a system-controlled virtual-entity whose operation is based on machinelearning technology. They were developed by Microsoft and Turn10 Studios to perform as “simulated human” pilots in their Forza Motorsport automotive-racing franchise games. Our goal is to identify the main AI elements and their application strategies that enable them to create the illusion of humanity, making the players believe that they are their human counterparts instead of simulations
Nossa pesquisa se enquadra em um segmento do ramo de estudos de Inteligência Artificial, mais especificamente o das IAs Fracas, investigando o modo como são utilizadas no desenvolvimento de games – jogos que operam em uma plataforma de tecnologia eletrônica. Focalizamos a investigação em um sistema de simulação restrita de comportamento humano nomeado comercialmente como Drivatar, uma entidade virtual controlada pelo sistema que opera com base em aprendizagem de máquina, desenvolvida em parceria pelas empresas Turn10 Studios e Microsoft para atuar como simulações de pilotos humanos nos games do gênero de corrida de carros da franquia Forza Motorsport. Nosso objetivo é a identificação dos principais elementos de IA, bem como das estratégias utilizadas em sua aplicação, que habilitam esses agentes inteligentes a causar nos jogadores humanos a ilusão de que os Drivatars são os próprios indivíduos que estão simulando
Mehta, Manish. "Construction and adaptation of AI behaviors in computer games." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42724.
Full textStallwood, James. "An artificial intelligence framework for feedback and assessment mechanisms in educational Simulations and Serious Games." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/394643/.
Full textFERREIRA, Nivia Barboza. "Design de emergência em games." Universidade Anhembi Morumbi, 2017. http://sitios.anhembi.br/tedesimplificado/handle/TEDE/1683.
Full textApproved for entry into archive by Patricia Figuti Venturini (pfiguti@anhembi.br) on 2018-08-20T20:25:35Z (GMT) No. of bitstreams: 1 449037.pdf: 5977234 bytes, checksum: 62769081b2ec075baad72bc603f714dd (MD5)
Approved for entry into archive by Patricia Figuti Venturini (pfiguti@anhembi.br) on 2018-08-20T20:27:25Z (GMT) No. of bitstreams: 1 449037.pdf: 5977234 bytes, checksum: 62769081b2ec075baad72bc603f714dd (MD5)
Made available in DSpace on 2018-08-21T13:38:05Z (GMT). No. of bitstreams: 1 449037.pdf: 5977234 bytes, checksum: 62769081b2ec075baad72bc603f714dd (MD5) Previous issue date: 2017-03-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Games are propitious environments for the appearing of new behavior patterns (emergence). It’s necessary to comprehend the nature of these changes taking into account demands and their modifying potential on this process. To support this trajectory, concepts of emergence were presented back from classical sciences to contemporary studies which touch metadesign and game design. This dissertation aims to investigate the phenomenon of emergence in digital games, encompassing the utilization of projective resources that can increase the interactivity and potentiate this process. The research involves literature review, articulation of concepts of complex adaptive system (CAS), emergence incidence in game design and the analysis of three selected objects: Tibia, PokemonGO and The Sims. The perspectives of metadesign usage and artificial intelligence are highlighted as propeller resources of new behaviors. The context, phenomenon and tool relation is discussed concerning: complex adaptive systems, emergence and artificial intelligence. This dissertation concludes that the usage of methodologies which incorporate metadesign and the gamer as codesigner are more appropriate when dealing with the emergent character of games. Furthermore, the use of artificial intelligences expands the possibilities of interaction in the game, multiplying the number of active agents in the system.
Jogos são ambientes propícios ao surgimento de novos padrões de comportamento (emergência). Faz-se necessário compreender a natureza dessas mudanças observando-se as demandas e seu potencial modificador nesse processo. Para embasar esta trajetória foram apresentados conceitos de emergência desde as ciências clássicas até estudos contemporâneos que tangenciam o metadesign e o design de jogos. Esta dissertação tem o objetivo de investigar o fenômeno da emergência nos jogos digitais, abordando a utilização de recursos projetuais que possam aumentar a interatividade e potencializar esse processo. A pesquisa envolve revisão bibliográfica, articulação dos conceitos de sistemas complexos adaptativos (SCA), incidência de emergência no design de games e a análise de três objetos selecionados: Tibia, PokemonGo e The Sims. Destacam-se as perspectivas de uso de metadesign e inteligência artificial como recursos propulsores de novos comportamentos. Discute-se a relação contexto, fenômeno e ferramenta como: sistemas complexos adaptativos, emergência e inteligência artificial. Conclui-se que o uso de metodologias que incorporam metadesign e o jogador como codesigner são mais adequadas para lidar com o caráter emergente dos jogos. Além disso, o uso de inteligências artificiais amplia as possibilidades de interação no jogo, multiplicando a quantidade de agentes ativos no sistema.
Scott, Gavin. "Complementary Companion Behavior in Video Games." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1744.
Full textSaffidine, Abdallah. "Solving Games and All That." Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-01022750.
Full textBåtelsson, Herman. "Behavior Trees in the Unreal Engine : Function and Application." Thesis, Uppsala universitet, Institutionen för speldesign, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296222.
Full textDetta examensarbete beskriver implementationen och funktionaliteten av användargränssnittet för att skapa beteendeträd i Unreal Engine (version 4.10). Arbetet analyserar den slutgiltiga versionen av beteendeträden i ett spelutvecklingsprojekt som utfördes under ett år med en grupp vars antal växlade mellan fyra och sju medlemmar. Spelat som analyseras är ett tredjepersons äventyrsspel som innehåller fyra typer av grundläggande beteendeträd. Två fiender som huvudsakligen rör sig mot spelaren för att anfalla när de är inom räckhåll, och två bossar med individuella beteenden. Arbetet beskriver de olika typerna av noder tillgängliga i Unreal Engine och även hur beteendeträden i spelet är uppbyggda. Fokus läggs på hur strukturen uppnår det nödvändiga resultatet samt på hur processen resulterade i den slutgiltiga versionen av beteendeträden.
Persson, Martin. "Development of three AI techniques for 2D platform games." Thesis, Karlstad University, Division for Information Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1.
Full textThis thesis serves as an introduction to anyone that has an interest in artificial intelligence games and has experience in programming or anyone who knows nothing of computer games but wants to learn about it. The first part will present a brief introduction to AI, then it will give an introduction to games and game programming for someone that has little knowledge about games. This part includes game programming terminology, different game genres and a little history of games. Then there is an introduction of a couple of common techniques used in game AI. The main contribution of this dissertation is in the second part where three techniques that never were properly implemented before 3D games took over the market are introduced and it is explained how they would be done if they were to live up to today’s standards and demands. These are: line of sight, image recognition and pathfinding. These three techniques are used in today’s 3D games so if a 2D game were to be released today the demands on the AI would be much higher then they were ten years ago when 2D games stagnated. The last part is an evaluation of the three discussed topics.
Eriksson, Lundström Jenny S. Z. "On the Formal Modeling of Games of Language and Adversarial Argumentation : A Logic-Based Artificial Intelligence Approach." Doctoral thesis, Uppsala universitet, Institutionen för informationsvetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9538.
Full textEriksson, Lundström Jenny. "On the formal modeling of games of language and adversarial argumentation : a logic-based artificial intelligence approach /." Uppsala : Uppsala universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9538.
Full textSoler, Julien. "Orion, a generic model for data mining : application to video games." Thesis, Brest, 2015. http://www.theses.fr/2015BRES0035/document.
Full textThe video game industry's needs are constantly changing. In the field of artificial intelligence, we identify inchapter 1, the different needs of industry in this area. We believe that the design of a learning behavior through imitation solution that is functional and efficient would cover most of these needs. In chapter 2, we show that data mining techniques can be very useful to provide such a solution. However, for now, these techniques are not sufficient to automatically build a comprehensive behavior that would be usable in modern video games. In chapter 3, we propose a generic model to learn behavior by imitating human players: Orion.This model consists of two parts, a structural model and a behavioral model. The structural model provides a general data mining framework, providing an abstraction of the different methods used in this research. This framework allows us to build a general purpose tool with better possibilities for visualizing than existing data mining tools. The behavioral model is designed to integrate data mining techniques in a more general architecture and is based on the Behavior Trees. In chapter 4, we illustrate how we use our model by implementing the behavior of players in the Pong and Unreal Tournament 3 games using Orion. In chapter 5,we identify possible improvements, both of our data mining framework and our behavioral model
Sirin, Volkan. "Machine Learning Methods For Opponent Modeling In Games Of Imperfect Information." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614630/index.pdf.
Full textGulcehre, Caglar. "Two Approaches For Collective Learning With Language Games." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613109/index.pdf.
Full texts naming game. The emergence of categories throughout interactions between a population of agents in the categorization games are analyzed. The test results of categorization games as a model combination algorithm with various machine learning algorithms on different data sets have shown that categorization games can have a comparable performance with fast convergence.
Satish, Likith Poovanna Kelapanda, and Vinay Sudha Ethiraj. "Human-like Super Mario Play using Artificial Potential Fields." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3146.
Full textStudent 1: Likith Poovanna Kelapanda Staish Mob: +46735542609 Student 2: Vinay Sudha Ethiraj Mob: +46736135683
Lundström, Viktor. "Human-like decision making for bots inmobile gaming : A case study in developing believable artificial intelligence for mobile games." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-132395.
Full textWood, Mark A. "An agent-independent task learning framework." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492246.
Full textSephton, Nicholas. "Applying artificial intelligence and machine learning techniques to create varying play style in artificial game opponents." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/17331/.
Full textValenzuela, Russell. "Predicting National Basketball Association Game Outcomes Using Ensemble Learning Techniques." Thesis, California State University, Long Beach, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10980443.
Full textThere have been a number of studies that try to predict sporting event outcomes. Most previous research has involved results in football and college basketball. Recent years has seen similar approaches carried out in professional basketball. This thesis attempts to build upon existing statistical techniques and apply them to the National Basketball Association using a synthesis of algorithms as motivation. A number of ensemble learning methods will be utilized and compared in hopes of improving the accuracy of single models. Individual models used in this thesis will be derived from Logistic Regression, Naïve Bayes, Random Forests, Support Vector Machines, and Artificial Neural Networks while aggregation techniques include Bagging, Boosting, and Stacking. Data from previous seasons and games from both?players and teams will be used to train models in R.
Mahdi, Ghulam. "Level of Detail in Agent Societies in Games." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20002/document.
Full textIn recent years there have been many efforts to develop original video games by improving both their aesthetic and mechanics. The more the mechanics is rich and realistic, the more advanced models of programming are required. However, using advanced models of programming such as agent-oriented programming often comes with an overhead in terms of computational resources. Furthermore, this overhead on computational resources may degrade the frame rate and subsequently quality of experience (QoE) for the players.In this context, our aim is to propose the QoE support means for ensuring that, in any case, the frame rate does not fall below a given lower bound. We suggest adapting the amount of time allocated for agents depending upon the importance of their organization roles. In this regard, we use a level of detail (LoD) approach to compute the dynamics of the game.LoD in game AI is based on the idea to use the most of the computational effort on the game characters that are the most important to the player(s). One critical issue in LoD for game AI is to determine the criterion for defining the importance of game characters. Existing work propose to use the criteria of camera distance and visibility. However such criteria have been developed from the perspective of graphics. In this thesis, we have used the roles played by the game characters (in the context of a video game) as the criterion for determining their importance. In this way, a video game has been considered as an agent society, where the game characters get priority and relatively higher share in distribution of the computational resources based on their relative importance in the game story.Our approach has been implemented and integrated to the AGDE (Agent Game Development Engine) game engine. The experimental evaluation has been carried out using a repeated measure scheme to assess the difference in QoE metrics between a game implemented our approach and a control game. The null hypothesizes have been rejected using t-paired test: the players have found significant positive difference in the QoE
Öberg, Viktor. "EVOLUTIONARY AI IN BOARD GAMES : An evaluation of the performance of an evolutionary algorithm in two perfect information board games with low branching factor." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11175.
Full textJames, Brian L. "Predicting Human Behavior in Repeated Games with Attitude Vectors." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9239.
Full textGaspareto, Otavio Barcelos. "Redes neurais artificiais aplicadas ao reconhecimento de speed cheating em jogos online de computador." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/153317.
Full textIn the present work, Artificial Neural Networks are tested and evaluated in order to avoid a specific type of cheating, called Speed Cheating, in massively multi-player online games (MMOG). The MMOG represent a business model where meaningful financial resources amounts are involved, and increase each day. The models to avoid cheating, that could keep off players from games and servers, are localized in the network layer, at the protocol level. Examining the state-of-art, it was observed that research explor- ing the Artificial Intelligence application to this goal becomes relevant. The Artificial Neural Networks were chosen by their significant abstraction, generalization and plas- ticity characteristics. Through the results’s comparison from two different architectures approaches, the multi layer Perceptron network (MLP) and the focused time lagged net- work (FTLFN), it was possible to conclude that their utilization avoiding speed cheating in MMOG is possible, once good results were found in this work.
Gaudl, Swen. "Building robust real-time game AI : simplifying & automating integral process steps in multi-platform design." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698997.
Full textOlofsson, Fredrik, and Johan W. Andersson. "Human-like Behaviour in Real-Time Strategy Games : An Experiment With Genetic Algorithms." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3814.
Full textGoeringer, Tyler. "Massively Parallel Reinforcement Learning With an Application to Video Games." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1373073319.
Full textKorchnak, Joseph Brian Jr. "Implementation of Probabilistic Smart Terrain in Unity." Youngstown State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1516981582370547.
Full textívarsson, Óli. "Improved Combat Tactics of AI Agents in Real-Time Strategy Games Using Qualitative Spatial Reasoning." Thesis, University of Skövde, School of Humanities and Informatics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-956.
Full textReal-time strategy (RTS) games constitute one of the largest game genres today and have done so for the past decade. A central feature of real-time strategy games is opponent AI which is suggestively the “last frontier” of game development because the focus of research has primarily been on other components, graphics in particular. This has led to AI research being largely ignored within the commercial game industry but several methods have recently been suggested for improving the strategic ability of AI agents in real-time strategy games.
The aim of this project is to evaluate how a method called qualitative spatial reasoning can improve AI on a tactical level in a selected RTS game. An implementation of an AI agent that uses qualitative spatial reasoning has been obtained and an evaluation of its performance in an RTS game example monitored and analysed.
The study has shown that qualitative spatial reasoning affects AI agent’s behaviour significantly and indicates that it can be used to deduce a rule-base that increases the unpredictability and performance of the agent.
Anguelov, Bobby. "Video game pathfinding and improvements to discrete search on grid-based maps." Diss., University of Pretoria, 2011. http://hdl.handle.net/2263/22940.
Full textDissertation (MSc)--University of Pretoria, 2011.
Computer Science
unrestricted
Förster, Frank. "Robots that say 'no' : acquisition of linguistic behaviour in interaction games with humans." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/20781.
Full textFischer, Max. "Using Reinforcement Learning for Games with Nondeterministic State Transitions." Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158523.
Full textLaviers, Kennard R. "Exploiting opponent modeling for learning in multi-agent adversarial games." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4968.
Full textID: 030423259; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 123-129).
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Renman, Casper. "Creating Human-like AI Movement in Games Using Imitation Learning." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210887.
Full textSättet karaktärer rör sig och beter sig på i dator- och tvspel är viktiga faktoreri deras trovärdighet, som i sin tur har en inverkan på spelarens upplevelse. Det här projektet utforskar Imitation Learning med begränsad mängd data som etttillvägagångssätt för att skapa människolik rörelse för AI-karaktärer i spel, ochutforskar genom en användarstudie vilka faktorer som avgör om en karaktärär människolik, när karaktären observeras genom dess förstapersonsperspektiv. Iden är att skapa eller forma AI-beteende genom att spela in sina egna handlingar. Det implementerade ramverket använder en Nearest Neighbour-algoritmmed ett KD-tree som den policy som kopplar ett tillstånd till en handling. Resultatenvisade att det valda tillvägagångssättet lyckades skapa människolikt AI-beteende samtidigt som det respekterar beräkningskomplexitetsrestriktionersom ett modernt 3D-spel har.
Resende, Robson de Souza. "Sistema especialista para auxílio na utilização de jogos não-educacionais no processo de aprendizagem." Universidade Presbiteriana Mackenzie, 2015. http://tede.mackenzie.br/jspui/handle/tede/1455.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Digital games are a resource currently used as an entertainment way, but educational digital games try to make the student use it like a way of learning, in order to arouse interest. Although educational games have utility, in some cases they can show problems, like have repetitive tasks, unmotivated challenges or lack of teaching resources. The goal of this work is to develop a system able to find educational resources in games that are not considered educational, with the purpose to use them for teaching, since some of them are seen by the market like a good entertainment way, the goal with this is arouse interest of the students for some subject. The system is a web application developed in C#. It works receiving from the user what he wants to teach about some subject in the field of geography. The system realizes an inference for to search digital games and generate educational reports with the games and features that can be used for teaching about the desired subject. So, it is not necessary that the user has knowledge about the field of games for to use the system and check the digital games and ways of apply it in education.
Jogos digitais são um recurso utilizado atualmente como uma forma de entretenimento, jogos digitais educacionais por sua vez, tentam fazer com que o estudante utilize esse recurso com o intuito de aprender de forma mais dinâmica e que desperte maior interesse. Embora jogos digitais educacionais tenham utilidade, em alguns casos eles podem apresentar problemas, tais como possuir tarefas repetitivas, desafios sem motivação ou falta de recursos pedagógicos. O objetivo deste trabalho é o desenvolvimento de um sistema que seja capaz de encontrar recursos educacionais em jogos digitais que não são considerados educacionais, com o propósito de utilizá-los no ensino, visto que alguns deles já são consagrados no mercado como uma forma de entretenimento, o objetivo com isso é despertar o interesse dos estudantes por determinado assunto. O sistema é uma aplicação web desenvolvida em C#, que funciona recebendo do usuário o que ele deseja ensinar a respeito de algum assunto da área de geografia, em seguida realiza uma inferência para buscar jogos digitais e gerar relatórios educacionais com os possíveis jogos digitais e características que podem ser utilizadas para ensinar a respeito do assunto que o usuário deseja. Logo, não é necessário que o usuário tenha conhecimento da área de jogos digitais para utilizar o sistema e verificar jogos digitais e maneiras de aplicá-los no ensino.
SILVA. "Otimização de pathfinding em GPU." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/18293.
Full textMade available in DSpace on 2017-02-13T13:05:50Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação-Mestrado-Adônis_Tavares-digital.pdf: 1967837 bytes, checksum: 2d0c23ab20f389f08ae9964b086b5f9f (MD5) Previous issue date: 2013-08-30
Nos últimos anos, as unidades de processamento gráfico (GPU) têm apresentado um avanço significativo dos recursos computacionais disponíveis para o uso de aplicações não-gráficas. A capacidade de resolução de problemas envolvendo computação paralela, onde o mesmo programa é executado em diversos elementos de dados diferentes ao mesmo tempo, bem como o desenvolvimento de novas arquiteturas que suportem esse novo paradigma, como CUDA (Computed Unified Device Architecture), tem servido de motivação para a utilização da GPU em aplicações de propósito geral, especialmente em jogos. Em contrapartida, a performance das CPUs, mesmo com a presença de múltiplos núcleos (multi-core), tem diminuído, limitando o avanço tecnológico de diversas técnicas desenvolvidas na área de jogos e favorecendo a transição e o desenvolvimento das mesmas para a GPU. Alguns algoritmos de Inteligência Artificial que podem ser decompostos e demonstram certo nível de paralelismo, como o pathfinding, utilizado na navegação de agentes durante o jogo, têm sido desenvolvidos em GPU e demonstrado um desempenho melhor quando comparado à CPU. De modo semelhante, este trabalho tem como proposta a investigação e o desenvolvimento de possíveis otimizações ao algoritmo de pathfinding em GPU, por meio de CUDA, com ênfase em sua utilização na área de jogos, escalando a quantidade de agentes e nós de um mapa, possibilitando um comparativo com seu desempenho apresentado na CPU.
In recent years, graphics processing units (GPUs) have shown a significant advance of computational resources available for the use of non-graphical applications. The ability to solve problems involving parallel computing as well as the development of new architectures that supports this new paradigm, such as CUDA, has encouraged the use of GPU for general purpose applications, especially in games. Some parallel tasks which were CPU based are being ported over to the GPU due to their superior performance. One of these tasks is the pathfinding of an agent over a game map, which has already achieved a better performance on GPU, but is still limited. This work describes some optimizations to a GPU pathfinding implementation, addressing a larger work set (agents and nodes) with good performance compared to a CPU implementation.
Tomečko, Lukáš. "Hra s agenty na bázi umělé inteligence." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417296.
Full textLiljekvist, Hampus. "Detecting Synchronisation Problems in Networked Lockstep Games." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189593.
Full textKomplexiteten förenad med utveckling av nätverksuppkopplade dataspel skapar ett behov av verktyg för att verifiera en konsistent spelarupplevelse. Vissa nätverksspel hålls konsistenta med hjälp av lockstep-protokollet, vilket kräver identisk exekvering av skickade kommandon för att spelarna ska hållas synkroniserade. I detta projekt formuleras och evalueras en metod för att testa om nätverksuppkopplade flerspelarspel lider av synkroniseringsproblem relaterade till ickedeterministiskt beteende. En integrerad fuzzing-AI konstrueras som försöka orsaka desynkronisering i det testade spelet och generera data för analys med hjälp av loggfiler. Skript används för att utföra halvautomatiserade testkörningar och tolka data. Resultaten visar att testsystemet har potential för att hitta synkroniseringsproblem om fuzzing-AI:n används tillsammans med den vanliga AI:n i det testade spelet, men inte för att hitta de bakomliggande orsakerna till dessa problem.
Benda, Matouš. "Soutěžní hřiště pro umělou inteligenci." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382625.
Full textSchiffel, Stephan. "Knowledge-Based General Game Playing." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88742.
Full textPeiravi, Mehdi. "THE DESIGN AND IMPLEMENTATION OF AN ADAPTIVE CHESS GAME." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/228.
Full text