Academic literature on the topic 'Artificial Lungs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Artificial Lungs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Artificial Lungs"
Strueber, Martin. "Artificial Lungs." Thoracic Surgery Clinics 25, no. 1 (February 2015): 107–13. http://dx.doi.org/10.1016/j.thorsurg.2014.09.009.
Full textNaito, Noritsugu, Keith Cook, Yoshiya Toyoda, and Norihisa Shigemura. "Artificial Lungs for Lung Failure." Journal of the American College of Cardiology 72, no. 14 (October 2018): 1640–52. http://dx.doi.org/10.1016/j.jacc.2018.07.049.
Full textSyed, Ahad, Sarah Kerdi, and Adnan Qamar. "Bioengineering Progress in Lung Assist Devices." Bioengineering 8, no. 7 (June 28, 2021): 89. http://dx.doi.org/10.3390/bioengineering8070089.
Full textCook, K. E. "Compliant artificial lungs." Journal of Biomechanics 39 (January 2006): S255—S256. http://dx.doi.org/10.1016/s0021-9290(06)83972-2.
Full textZwischenberger, Joseph B., and Scott K. Alpard. "Artificial lungs: a new inspiration." Perfusion 17, no. 4 (July 2002): 253–68. http://dx.doi.org/10.1191/0267659102pf586oa.
Full textMatheis, Georg. "New technologies for respiratory assist." Perfusion 18, no. 4 (July 2003): 245–51. http://dx.doi.org/10.1191/0267659103pf684oa.
Full textZwischenberger, Joseph B. "Future of Artificial Lungs." ASAIO Journal 50, no. 6 (November 2004): xlix—li. http://dx.doi.org/10.1097/01.mat.0000147957.59788.b8.
Full textOta, Kei. "Advances in artificial lungs." Journal of Artificial Organs 13, no. 1 (February 23, 2010): 13–16. http://dx.doi.org/10.1007/s10047-010-0492-1.
Full textDierickx, Peter W., Filip De Somer, Dirk S. De Wachter, Guido Van Nooten, and Pascal R. Verdonck. "Hydrodynamic Characteristics of Artificial Lungs." ASAIO Journal 46, no. 5 (September 2000): 532–35. http://dx.doi.org/10.1097/00002480-200009000-00004.
Full textDierickx, P., D. De Wachter, F. De Somer, G. Van Nooten, and P. Verdonck. "HYDRODYNAMIC CHARACTERISTICS OF ARTIFICIAL LUNGS." ASAIO Journal 45, no. 2 (March 1999): 145. http://dx.doi.org/10.1097/00002480-199903000-00102.
Full textDissertations / Theses on the topic "Artificial Lungs"
Demarest, Caitlin T. "Prolonging the Useful Lifetime of Artificial Lungs." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/870.
Full textRazieh, Ali R. "The development of a self-tuning control system for POâ†2 regulation in a membrane oxygenator." Thesis, University of Strathclyde, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293317.
Full textJones, Cameron Christopher. "VALIDATION OF COMPUTATIONAL FLUID DYNAMIC SIMULATIONS OF MEMBRANE ARTIFICIAL LUNGS WITH X-RAY IMAGING." UKnowledge, 2012. http://uknowledge.uky.edu/cbme_etds/2.
Full textValenga, Marcelo Henrique. "Sistema eletrônico para captação de sons respiratórios adventícios em animais submetidos à ventilação mecânica." Universidade Tecnológica Federal do Paraná, 2009. http://repositorio.utfpr.edu.br/jspui/handle/1/915.
Full textThis essay presents the project of a portable equipment to capture adventitious respiratory sounds, inside the airways, in animals submitted at mechanical ventilation. It is described the tests for assessment of frequency response and sensitivity of the microphone that was fixed in the tubes of a mechanical ventilator, the behavior of sound propagation in tubes of the system and the characteristics of electronic circuits designed to acquire sound signals by microphones and transferred them to a recording software installed on a personal computer. Tests with the electronic system were performed in three pigs submitted to mechanical ventilation and monitoring in real time the amount of air into the lungs through electrical impedance tomography. Through the recorded sound, it was possible to identify crackles induced in animals by ventilator maneuvers. It was possible to conclude that the developed circuit and setting the microphone in the tube allows to capture crackle sounds on animals with mechanical ventilation, showing a good sound propagation along the airways of the respiratory system. It is also discussed the possibility of using this system with the Electric Impedance Tomography - EIT - to identify the duration and extent of changes in alveolar recruitment during pulmonary ventilation.
Sales, Raquel Pinto. "Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease characterized by pulmonary edema, stiff lungs and hypoxemia." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12672.
Full textA SÃndrome da AngÃstia RespiratÃria Aguda (SARA) à uma doenÃa inflamatÃria caracterizada por edema pulmonar, pulmÃes rÃgidos e hipoxemia. Pacientes com SARA estÃo mais suscetÃveis à VILI (ventilator induced lung injury). Sob ventilaÃÃo mecÃnica, o stress e o strain pulmonares sÃo os principais determinantes da VILI e nos pacientes com esforÃo muscular a assincronia paciente-ventilador pode potencializar este fenÃmeno. Os modos ventilatÃrios PCV e VCV com AutoFlow podem minimizar a assincronia paciente-ventilador, mas por outro lado podem liberar a oferta de fluxo e volume corrente, comprometendo a estratÃgia ventilatÃria protetora na SARA. Objetivou-se avaliar as influÃncias do esforÃo muscular e da assincronia paciente-ventilador sobre o âstrainâ e o âstressâ pulmonares em modelo pulmonar mecÃnico de sÃndrome da angÃstia respiratÃria aguda. Foi realizado um estudo experimental de bancada, utilizando um simulador de pulmÃo, ASL 5000 no qual foi configurado um modelo pulmonar com mecÃnica respiratÃria restritiva, com complacÃncia de 25ml/cmH2O e resistÃncia de 10 cmH2O/L/sec. O esforÃo muscular foi ajustado em trÃs situaÃÃes: sem esforÃo muscular (Pmus=0), com esforÃo muscular inspiratÃrio (Pmus= -5cmH2O) e esforÃo inspiratÃrio e expiratÃrio (Pmus= -5/+5 cmH2O), todos com frequÃncia respiratÃria (f) de 20rpm. Ao simulador foram conectados cinco ventiladores atravÃs de um tubo orotraqueal n 8,0 mm e ajustados nos modos VCV, VCV com sistema AutoFlow (no ventilador que tinha o sistema disponÃvel) e PCV, todos com volume corrente (VC): 420 ml, PEEP: 10 cmH2O e frequÃncia respiratÃria programada em duas situaÃÃes: f=15rpm (< que a f de esforÃo muscular respiratÃrio) e f=25rpm (> que a f de esforÃo muscular respiratÃrio). As variÃveis analisadas foram: VC mÃximo, a pressÃo alveolar no final da inspiraÃÃo, PEEP efetiva, driving pressure, pressÃo transpulmonar no final da inspiraÃÃo e expiraÃÃo, pressÃo transpulmonar mÃdia, pico de fluxo inspiratÃrio e anÃlise das curvas de mecÃnica. No modelo pulmonar estudado a f do ventilador pulmonar ajustada acima da f do paciente e nÃo o esforÃo muscular o principal determinante para o desenvolvimento de assincronia paciente ventilador, causando grandes variaÃÃes de VC e pressÃes pulmonares, o que intensificou o stress e strain pulmonares. Os modos ventilatÃrios tiveram comportamento semelhante, embora os modos VCV AutoFlow e PCV tenham apresentado valores discretamente maiores de VC e pressÃes pulmonares. Desta forma conclui-se que o ajuste adequado da frequÃncia programada nos modos assistido/controlado podem pode minimizar a assincronia paciente ventilador reduzindo o stress e strain pulmonares. Palavras-
Desai, Gargi Sharad. "Deep Learning for Classification of COVID-19 Pneumonia, Bacterial Pneumonia, Viral Pneumonia and Normal Lungs on CT Images." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627662447914953.
Full textDaniš, Václav. "Podpora ventilace u laboratorních zvířat." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-240967.
Full textPoslad, S. J. "Clinical evaluation of artificial lung performance." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378853.
Full textAnthony, Denis. "The use of artificial neural networks in classifying lung scintigrams." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/59178/.
Full textAydin, Murat. "Aerosolisation and in-vitro deposition of an artificial lung surfactant." Thesis, University of Bath, 1999. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341146.
Full textBooks on the topic "Artificial Lungs"
1942-, Lloyd Margaret A., and Friedman Paul A, eds. Cardiac pacing and defibrillation: A clinical approach. Armonk, NY: Futura Pub. Co., 2000.
Find full textA, Friedman Paul, ed. Cardiac pacing and defibrillation: A clinical approach. 2nd ed. Chichester: John Wiley & Sons, 2008.
Find full textAnthony, Denis. The use of artificial neural networks in classifying Lung scintigrams. [s.l.]: typescript, 1991.
Find full textR, Hogness John, VanAntwerp Malin, and National Heart, Lung, and Blood Institute., eds. The artificial heart: Prototypes, policies, and patients. Washington, D.C: National Academy Press, 1991.
Find full textNational Heart, Lung, and Blood Institute. Division of Lung Diseases and National Heart, Lung, and Blood Institute. Office of Prevention, Education, and Control, eds. Bronchopulmonary dysplasia. [Bethesda, Md.]: Division of Lung Diseases and Office of Prevention, Education, and Control, National Institutes of Health, National Heart, Lung, and Blood Institute, 1998.
Find full textJ, Marini John, and Slutsky Arthur S. 1948-, eds. Physiological basis of ventilatory support. New York: Marcel Dekker, 1998.
Find full textLei, Yuan. Lung Ventilation: Natural and Mechanical. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198784975.003.0003.
Full textVaslef, Steven N., and Robert W. Anderson. The Artificial Lung. Landes Bioscience, 2002.
Find full textVentilator-Induced Lung Injury (Lung Biology in Health and Disease). Informa Healthcare, 2006.
Find full textDidier, Dreyfuss, Saumon Georges, and Hubmayr Rolf, eds. Ventilator-induced lung injury. New York: Taylor & Francis, 2006.
Find full textBook chapters on the topic "Artificial Lungs"
Watkins, Claire A., and Bartley P. Griffith. "Artificial Lungs." In Textbook of Organ Transplantation, 568–75. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118873434.ch50.
Full textWiese, Frank. "Membranes for Artificial Lungs." In Membranes for the Life Sciences, 49–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631360.ch2.
Full textAnnesini, Maria Cristina, Luigi Marrelli, Vincenzo Piemonte, and Luca Turchetti. "Blood Oxygenators and Artificial Lungs." In Artificial Organ Engineering, 117–61. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6443-2_6.
Full textBaker, David J. "The Structure of the Airways and Lungs." In Artificial Ventilation, 25–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32501-9_2.
Full textBaker, David J. "The Structure of the Airways and Lungs." In Artificial Ventilation, 27–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55408-8_2.
Full textBaker, David J. "How the Lungs Work: Mechanics and Gas Exchange with the." In Artificial Ventilation, 43–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55408-8_3.
Full textBaker, David J. "How the Lungs Work: Mechanics and Gas Exchange with the Blood." In Artificial Ventilation, 41–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32501-9_3.
Full textGrzywalski, Tomasz, Riccardo Belluzzo, Mateusz Piecuch, Marcin Szajek, Anna Bręborowicz, Anna Pastusiak, Honorata Hafke-Dys, and Jędrzej Kociński. "Fully Interactive Lungs Auscultation with AI Enabled Digital Stethoscope." In Artificial Intelligence in Medicine, 31–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21642-9_5.
Full textZwischenberger, Brittany A., Lindsey A. Clemson, James E. Lynch, and Joseph B. Zwischenberger. "ECMO to Artificial Lungs: Advances in Long-Term Pulmonary Support." In On Bypass, 251–77. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-305-9_12.
Full textBirkenmaier, Clemens, and Lars Krenkel. "Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 451–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79561-0_43.
Full textConference papers on the topic "Artificial Lungs"
Pellet, Mathieu, Pierre Melchior, Youssef Abdelmoumen, and Alain Oustaloup. "Fractional Thermal Model of the Lungs Using Havriliak-Negami Function." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48095.
Full textGrzywalski, Tomasz, Riccardo Belluzzo, Szymon Drgas, Agnieszka Cwalińska, and Honorata Hafke-Dys. "Interactive Lungs Auscultation with Reinforcement Learning Agent." In 11th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007573608240832.
Full textWalter, Marian, Stephan Eisenbrand, Rüdger Kopp, and Steffen Leonhardt. "Hardware-in-the-loop test bench for artificial lungs." In XIV RUSSIAN-GERMANY CONFERENCE ON BIOMEDICAL ENGINEERING (RGC-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122003.
Full textSingru, Pravin, Bhargav Mistry, Rachna Shetty, and Satish Deopujari. "Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.
Full textFontalvo, Lizeth Sofia, Juan David Jinete Noriega, and Marcelo Herrera Martinez. "Human biologic systems (lungs) modelled with electroacoustic tools in a mathemathical simulation software." In 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA). IEEE, 2014. http://dx.doi.org/10.1109/stsiva.2014.7010163.
Full textTakaomi Matuki, Tsuyoshi Kudo, Tadashi Kondo, and Junji Ueno. "Three dimensional medical images of the lungs and brain recognized by artificial neural networks." In SICE Annual Conference 2007. IEEE, 2007. http://dx.doi.org/10.1109/sice.2007.4421152.
Full textAnifah, Lilik, Haryanto, Rina Harimurti, Zaimah Permatasari, Puput Wanarti Rusimamto, and Adam Ridiantho Muhamad. "Cancer lungs detection on CT scan image using artificial neural network backpropagation based gray level coocurrence matrices feature." In 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, 2017. http://dx.doi.org/10.1109/icacsis.2017.8355054.
Full textFireman, E. M., A. Alrhman, D. Rosengarten, and M. R. Kramer. "Quantitation of Silica in Lungs of Transplanted Patients Due to Artificial Stone-Induced Silicosis; Correlation to Occupational, Clinical and Functional Parameters." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1849.
Full textKandlikar, Satish G., and Mark E. Steinke. "Examples of Microchannel Mass Transfer Processes in Biological Systems." In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1125.
Full textAbdullah, Muhammed Üsame, Ahmet Alkan, and Hanadi Abdullah Omaish. "Detection of Covid 19 from the Lungs X-ray Images by Using the Deep Learning Techniques." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.028.
Full textReports on the topic "Artificial Lungs"
Nair, Shyam Kunjuraman. PULMO V 2.0: MINIATURIZED ARTIFICIAL, CONFIGURABLE HUMAN LUNG SYSTEM OF SYSTEMS FOR ACCELERATED TOXICOLOGICAL STUDIES. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557179.
Full text