Academic literature on the topic 'Artificial magnetic conductor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Artificial magnetic conductor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Artificial magnetic conductor"
de Cos, MarÃa Elena, Yuri Alvarez Lopez, Ramona Cosmina Hadarig, and Fernando Las-Heras. "FLEXIBLE UNIPLANAR ARTIFICIAL MAGNETIC CONDUCTOR." Progress In Electromagnetics Research 106 (2010): 349–62. http://dx.doi.org/10.2528/pier10061505.
Full textde Cos, M. E., and F. Las-Heras. "Novel Flexible Artificial Magnetic Conductor." International Journal of Antennas and Propagation 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/353821.
Full textHadarig, R. C., M. E. de Cos, and F. Las-Heras. "Novel Miniaturized Artificial Magnetic Conductor." IEEE Antennas and Wireless Propagation Letters 12 (2013): 174–77. http://dx.doi.org/10.1109/lawp.2013.2245093.
Full textSarrazin, Julien, Anne Claire Lepage, and Xavier Begaud. "Dual-band Artificial Magnetic Conductor." Applied Physics A 109, no. 4 (November 10, 2012): 1075–80. http://dx.doi.org/10.1007/s00339-012-7409-1.
Full textDing, Yuan, and Vincent Fusco. "Loading artificial magnetic conductor and artificial magnetic conductor absorber with negative impedance convertor elements." Microwave and Optical Technology Letters 54, no. 9 (June 18, 2012): 2111–14. http://dx.doi.org/10.1002/mop.27019.
Full textAbbasi, N. A., and R. J. Langley. "Multiband-integrated antenna/artificial magnetic conductor." IET Microwaves, Antennas & Propagation 5, no. 6 (2011): 711. http://dx.doi.org/10.1049/iet-map.2010.0200.
Full textJafargholi, Amir, Manouchehr Kamyab, and Mehdi Veysi. "Artificial Magnetic Conductor Loaded Monopole Antenna." IEEE Antennas and Wireless Propagation Letters 9 (2010): 211–14. http://dx.doi.org/10.1109/lawp.2010.2046008.
Full textCos, M. E., and F. Las Heras. "Novel uniplanar flexible Artificial Magnetic Conductor." Applied Physics A 109, no. 4 (October 31, 2012): 1031–35. http://dx.doi.org/10.1007/s00339-012-7373-9.
Full textContopanagos, H. F. "A broadband polarized artificial magnetic conductor metasurface." Journal of Electromagnetic Waves and Applications 34, no. 14 (July 14, 2020): 1823–41. http://dx.doi.org/10.1080/09205071.2020.1791259.
Full textMuhamad, Maizatun, Maisarah Abu, Zahriladha Zakaria, and Hasnizom Hassan. "Novel Artificial Magnetic Conductor for 5G Application." Indonesian Journal of Electrical Engineering and Computer Science 5, no. 3 (March 1, 2017): 636. http://dx.doi.org/10.11591/ijeecs.v5.i3.pp636-642.
Full textDissertations / Theses on the topic "Artificial magnetic conductor"
Almutawa, Ahmad Tariq. "Log-Periodic Microstrip Patch Antenna Miniaturization Using Artificial Magnetic Conductor Surfaces." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/2982.
Full textVisser, Hugo Hendrik. "An artificial magnetic ground-plane for a log-periodic antenna." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4176.
Full textENGLISH ABSTRACT: This paper presents the implementation of an artificial magnetic ground-plane with a low profile Log-periodic Dipole Array (LPDA) antennas. After the properties of three typical Electromagnetic Bandgap (EBG) structures are investigated and their bandwidth properties are studied, a mechanism is presented to improve the band-width over which the EBG surface acts as a perfect magnetic conductor (PMC). A low profile LPDA is modeled above this surface and the results indicate an improved band-width region. Compared with a LPDA in free space the frequency band is shifted higher by the EBG surface and the gain pattern is shifted from a horizontal orientation to a vertical orientation.
AFRIKAANSE OPSOMMING: Hierdie dokument stel voor die implementering van kunsmatige magnetiese grondvlakke met Logaritmiese Periodiese Dipool Samestelling (LPDS) antennas. Die eienskappe van drie tipiese Elektromagnetiese Bandgaping (EBG) strukture word ondersoek en hul bandwydte eienskappe word bestudeer. ’n Meganisme word voorgestel om die bandwydte te verbeter waar die EBG oppervlakte soos n perfekte magnetiese geleier optree. ’n Lae profiel LPDS word bo hierdie oppervlakte geplaas. Die resultate dui aan ’n verbetering in the bandwydte. In vergelyking met ’n LPDS in vrye ruimte skuif die frekwensie band ho¨er as gevolg van die EBG oppervlakte en die aanwins patroon skuif van ’n horisontale orientasie na ’n vertikale orientasie.
Kostka, Darryl. "Enhancement of printed inductors using artificial magnetic conductor (AMC) surfaces for millimeter-wave applications." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40815.
Full textLes inducteurs intégrés sont parmi les éléments élémentaires les plus utilisés dans la conception de systèmes électroniques modernes. Cependant, ils souffrent généralement d’une faible qualité et d’une large consomption d’espace, limitant ainsi les performances du système et compliquent donc l’intégration de systèmes compactes. Plusieurs efforts en recherche ont été consacrés au développement d’inducteurs de haute qualité miniatures. Une de ces méthodes proposent l’utilisation d’un Conducteur Magnétique Artificiel (CMA) comme surface pour améliorer la performance de l’inducteur en créant une deuxième région inductive ainsi permettant la réutilisation de l’inducteur. Il peut être démontré théoriquement, par la théorie des images, qu’un réflecteur CMA peut être utilisé pour doubler l’inductance total d’un inducteur. Par conséquent, afin de valider ce concept, deux designs de surfaces CMA sont investigués pour l’intégration sur puce (on-chip) et sur carte (PCB). Les surfaces CMA sont ensuite intégrées avec des composantes d’inducteurs en boucle standards afin de justifier leurs avantages en termes de performances par les résultats expérimentaux obtenus par ces prototypes. Finalement, le caractère pratique de cette approche est démontré par l’application d’un Oscillateur (VCO) d’ondes-mm en remplaçant le réservoir-LC par une version miniaturisée d’un inducteur par CMA. Pour ce faire, les prototypes d’Oscillateur-LC à ondes-mm sont conçus, fabriqués et caractérisé de façon expérimentale.
Meng, Fanhong. "Développement d’antennes à base de structures métamatériaux pour les applications aéronautiques (GPS/DME, bande L) et de communications haut débit (en bade E – 80 GHz)." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100203.
Full textThe work presented in this manuscript is related to the design and development of antennas based on artificial structures - metamaterials. The first designed and built antenna is a GPS and DME dual-function in the L (~ 1GHz). It is an antenna designed with polarization and spectral diversities for aeronautical applications. The work is within the MSIE project of ASTHEC cluster for which our laboratory (LEME) was very active. The industrial partners of the project are EADS/IW, Dassault Aviation, INEO-Defense SATIMO. The results show the feasibility of a single antenna having simultaneously two functions with a diversity of polarization and spectral band. The use of metamaterials enabled in particular the preservation of circular polarization of the GPS antenna on the bands ranging from L1 to L2. The DME function was consolidated with the same gain.The second antenna is an antenna Fabry-Perot cavity employing a partially reflective structure (PRS) Double-layer. We have demonstrated by numerical simulation and experimental characterization, the physical phenomenon of inversion phase of the reflection coefficient PRS. We obtain a positive gradient of the phase over a broad band of 5 GHz around 80GHz. Thanks to this new profile obtained by the PRS metamaterial structure, it has a linear advance of the phase which compensates for the delay of the Fabry-Perot cavity. Thus the cavity resonance conditions are maintained over a wide band, 5GHz. We demonstrate that the implementation of this structure with unique features allows a highly directive antenna cavity over a very wide spectral band 5GHz. The performance are a directivity of 35-40 dBi over 5 GHz, a perfect adaptation (gain ~ directivity) with very few primary sources
Raimbault, Narcisse. "Antenne hélice compacte directive à polarisation circulaire pour dispositif RFID." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S009/document.
Full textOver the past 20 years, the RFID (Radio Frequency Identification) technology is having a huge expansion. Nowadays, it is frequently used in different areas as the health, the security and the logistic. A lot of researches are ongoing on this topic, especially in order to reduce the reading zone of the readers and to locate the tags. This thesis focuses on the development of new antennas for Readers RFID devices and is part of the SPINNAKER project supported by OSEO. The antennas requirements are circular polarization, high directivity and gain with low profile. The helix antennas meet all these requirements except the axial length. In this manuscript, we propose three solutions to reduce the helix antenna axial length. The first one uses a cylindrical or conical optimal reflector to reduce the length by four. This reduction affects directly the surface witch increases up to 2.3λ. The second solution uses the helix antenna as a circular polarization feed for a Fabry-Perot (FP) cavity. The final antenna presents a cavity height of 0.5λ and a 2λ diameter. The last solution conserves the FP cavity in which we include an Artificial Magnetic Conductor (AMC) to reduce the cavity height to 0.25λ. All these solutions are validated by measurements
Wang, Shenhong. "High-gain planar resonant cavity antennas using metamaterial surfaces." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/12481.
Full textGuo, Yunchuan. "Analysis and design of novel electromagnetic metamaterials." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/7864.
Full textKristou, Nebil. "Étude et conception de métamatériaux accordables pour la miniaturisation d’antennes aux fréquences micro-ondes." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S016/document.
Full textAntennas are now very integrated in several connected systems like cars, airplanes and trains. Many antenna miniaturization techniques exist and all go through a compromise between size and performance (bandwidth and/or radiation efficiency). For the systems mentioned above, the antennas are often placed near a metallic reflector (vehicle roof, aircraft cabin). Within this context, Artificial Magnetic Conductors (AMC) present an attractive reflector for low profile antennas which can take advantage of intrinsic zero reflection phase response to boost antenna performance without the need for thick quarter wave backplane. However, for sub-GHz applications (RFID, LTE, PMR ...), AMC are limited by the size of the unit cells necessary for their implementation (λg/4) as well as their reduced operating bandwidth. AMC miniaturization makes their use compatible with small antennas. Adding tunability restores the possibility of adjusting the operating frequency over a large bandwidth. This PhD thesis proposes to study and develop a new electrically small, low-profile antenna based on miniaturized and tunable AMC for the NB-IoT standard in low LTE band (700 MHz – 960 MHz)
Cooper, James Roger. "Novel wireless sensor configurations incorporating isotropic radiators on conformal artificial magnetic conductors." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52246.
Full textSilva, Pimenta Marcio. "Antennes souples à base de métamatériaux de type conducteurs magnétiques artificiels pour les standards de systèmes de géolocalisation." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00923200.
Full textBook chapters on the topic "Artificial magnetic conductor"
Dewan, R., M. K. A. Rahim, M. R. Hamid, N. A. Samsuri, M. F. M. Yusoff, B. D. Bala, and M. E. Jalil. "Dual Band Stacked Artificial Magnetic Conductor with Dipole Antenna." In Theory and Applications of Applied Electromagnetics, 197–205. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_21.
Full textPanda, Prakash Kumar, and Debalina Ghosh. "High Gain Slot Antenna by Using Artificial Magnetic Conductor." In Lecture Notes in Networks and Systems, 272–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2774-6_34.
Full textKumar, Ashok, Amrita Dixit, Ashok Kumar, and Arjun Kumar. "Studies of Various Artificial Magnetic Conductor for 5G Applications." In Lecture Notes in Electrical Engineering, 523–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2926-9_57.
Full textMadhav, B. T. P., T. V. Rama Krishna, K. Datta Sri Lekha, D. Bhavya, V. S. Dharma Teja, T. Mahender Reddy, and T. Anilkumar. "Multiband Semicircular Planar Monopole Antenna with Spiral Artificial Magnetic Conductor." In Lecture Notes in Electrical Engineering, 599–607. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7329-8_61.
Full textKassim, S., Hasliza A. Rahim, Mohamedfareq Abdulmalek, R. B. Ahmad, M. H. Jamaluddin, M. Jusoh, D. A. Mohsin, et al. "UWB Antenna with Artificial Magnetic Conductor (AMC) for 5G Applications." In Lecture Notes in Networks and Systems, 239–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3172-9_24.
Full textGirish, K. B. N., Pani Prithvi Raj, M. Vijaya Krishna Teja, S. Anand, and D. Sriram Kumar. "A Novel Proposal of Artificial Magnetic Conductor Loaded Rectangular Patch Antenna for Wireless Applications." In Lecture Notes in Electrical Engineering, 467–75. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2728-1_43.
Full textKumar, Ashok, Arjun Kumar, Ashok Kumar, and M. V. Karthikeyan. "Design and Investigation of Octagonal Patch Antenna Using Artificial Magnetic Conductor for 5G Applications." In Lecture Notes in Electrical Engineering, 393–400. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2926-9_44.
Full textDiaz, Rodolfo E., and Sergio A. Clavijo. "Artificial Magnetic Conductor." In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme551.
Full text"Wideband Antennas and Artificial Magnetic Conductors." In Non-standard Antennas, 183–200. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118601808.ch9.
Full textJafargholi, Amir, Mahmood Rafaei, and Mehdi Veysi. "Applications of Artificial Magnetic Conductors in Monopole and Dipole Antennas." In Metamaterial. InTech, 2012. http://dx.doi.org/10.5772/35257.
Full textConference papers on the topic "Artificial magnetic conductor"
Feresidis, A. P. "Multiband artificial magnetic conductor surfaces." In IEE Seminar on Metamaterials for Microwave and (Sub) Millimetre Wave Applications: Photonic Bandgap and Double Negative Designs, Components and Experiments. IEE, 2003. http://dx.doi.org/10.1049/ic:20030165.
Full textHotopan, Ramona Cosmina, Maria Elena de Cos, and Fernando Las-Heras. "Small sized uniplanar artificial magnetic conductor." In 2014 8th European Conference on Antennas and Propagation (EuCAP). IEEE, 2014. http://dx.doi.org/10.1109/eucap.2014.6902030.
Full textAhila Priyadharshini, R., P. Prashalee, and V. Padhmashree. "DUAL BAND ANTENNA USING ARTIFICIAL MAGNETIC CONDUCTOR." In 2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC). IEEE, 2018. http://dx.doi.org/10.1109/rtecc.2018.8625649.
Full textPimenta, M. Silva, F. Ferrero, P. Brachat, P. Ratajczak, R. Staraj, and J. M. Ribero. "Textile artificial magnetic conductor for GPS applications." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206447.
Full textDewan, R., S. K. A. Rahim, S. F. Ausordin, and H. U. Iddi. "Design of triple band Artificial Magnetic Conductor." In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2012. http://dx.doi.org/10.1109/apace.2012.6457671.
Full textGoodwill, Kumar, Vibha Tripathi, and M. V. Kartikeyan. "RCS reduction using aperiodic modulated artificial magnetic conductor." In 2017 IEEE Applied Electromagnetics Conference (AEMC). IEEE, 2017. http://dx.doi.org/10.1109/aemc.2017.8325730.
Full textEhrenberg, Isaac M., Sanjay E. Sarma, and Bae-Ian Wu. "3D metamaterial for ultra-compact artificial magnetic conductor." In 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2011. http://dx.doi.org/10.1109/comcas.2011.6105849.
Full textAbu, M., E. E. Hussin, M. Saari M. Isa, Z. A. Baharudin, and Z. Zakaria. "Designing halfring artificial magnetic conductor for RFID application." In 2013 IEEE International RF and Microwave Conference (RFM). IEEE, 2013. http://dx.doi.org/10.1109/rfm.2013.6757231.
Full textRahim, MKA, MR Hamid, NA Samsuri, NA Murad, F. Zubir, O. Ayop, MFM Yusof, and HA Majid. "Antenna with Artificial Magnetic Conductor for Wireless Application." In 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2019. http://dx.doi.org/10.1109/apace47377.2019.9020745.
Full textDewan, Raimi, and Mohamad Kamal A. Rahim. "Antenna performance enhancement with Artificial Magnetic Conductor (AMC)." In 2015 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2015. http://dx.doi.org/10.1109/cama.2015.7428141.
Full text