Dissertations / Theses on the topic 'Artificial neural networks; Learning algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Artificial neural networks; Learning algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sannossian, Hermineh Y. "A study of artificial neural networks and their learning algorithms." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/11194.
Full textGhosh, Ranadhir, and n/a. "A Novel Hybrid Learning Algorithm For Artificial Neural Networks." Griffith University. School of Information Technology, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030808.162355.
Full textChen, Hsinchun. "Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms." Wiley Periodicals, Inc, 1995. http://hdl.handle.net/10150/106427.
Full textInformation retrieval using probabilistic techniques has attracted significant attention on the part of researchers in information and computer science over the past few decades. In the 1980s, knowledge-based techniques also made an impressive contribution to “intelligent” information retrieval and indexing. More recently, information science researchers have turned to other newer artificial-intelligence- based inductive learning techniques including neural networks, symbolic learning, and genetic algorithms. These newer techniques, which are grounded on diverse paradigms, have provided great opportunities for researchers to enhance the information processing and retrieval capabilities of current information storage and retrieval systems. In this article, we first provide an overview of these newer techniques and their use in information science research. To familiarize readers with these techniques, we present three popular methods: the connectionist Hopfield network; the symbolic ID3/ID5R; and evolution- based genetic algorithms. We discuss their knowledge representations and algorithms in the context of information retrieval. Sample implementation and testing results from our own research are also provided for each technique. We believe these techniques are promising in their ability to analyze user queries, identify users’ information needs, and suggest alternatives for search. With proper user-system interactions, these methods can greatly complement the prevailing full-text, keywordbased, probabilistic, and knowledge-based techniques.
Bubie, Walter C. "Algorithm animation and its application to artificial neural network learning /." Online version of thesis, 1991. http://hdl.handle.net/1850/11055.
Full textHofer, Daniel G. Sbarbaro. "Connectionist feedforward networks for control of nonlinear systems." Thesis, University of Glasgow, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390248.
Full textKhalid, Fahad. "Measure-based Learning Algorithms : An Analysis of Back-propagated Neural Networks." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4795.
Full textThe study is an investigation on the feasibility of using a generic inductive bias for backpropagation artificial neural networks, which could incorporate any one or a combination of problem specific performance metrics to be optimized. We have identified several limitations of both the standard error backpropagation mechanism as well the inherent gradient search approach. These limitations suggest exploration of methods other than backpropagation, as well use of global search methods instead of gradient search. Also, we emphasize the importance of taking the representational bias of the neural network in consideration, since only a combination of both procedural and representational bias can provide highly optimal solutions.
Rimer, Michael Edwin. "Improving Neural Network Classification Training." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2094.pdf.
Full textSingh, Y., and M. Mars. "A pilot study to integrate HIV drug resistance gold standard interpretation algorithms using neural networks." Journal for New Generation Sciences, Vol 11, Issue 2: Central University of Technology, Free State, Bloemfontein, 2013. http://hdl.handle.net/11462/639.
Full textThere are several HIV drug resistant interpretation algorithms which produce different resistance measures even if applied to the same resistance profile. This discrepancy leads to confusion in the mind of the physician when choosing the best ARV therapy.
Ncube, Israel. "Stochastic approximation of artificial neural network-type learning algorithms, a dynamical systems approach." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60559.pdf.
Full textTopalli, Ayca Kumluca. "Hybrid Learning Algorithm For Intelligent Short-term Load Forecasting." Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/627505/index.pdf.
Full textbut, new methods based on artificial intelligence emerged recently in literature and started to replace the old ones in the industry. In order to follow the latest developments and to have a modern system, it is aimed to make a research on STLF in Turkey, by neural networks. For this purpose, a method is proposed to forecast Turkey&rsquo
s total electric load one day in advance. A hybrid learning scheme that combines off-line learning with real-time forecasting is developed to make use of the available past data for adapting the weights and to further adjust these connections according to the changing conditions. It is also suggested to tune the step size iteratively for better accuracy. Since a single neural network model cannot cover all load types, data are clustered due to the differences in their characteristics. Apart from this, special days are extracted from the normal training sets and handled separately. In this way, a solution is proposed for all load types, including working days, weekends and special holidays. For the selection of input parameters, a technique based on principal component analysis is suggested. A traditional ARMA model is constructed for the same data as a benchmark and results are compared. Proposed method gives lower percent errors all the time, especially for holiday loads. The average error for year 2002 data is obtained as 1.60%.
Mailah, Musa. "Intelligent active force control of a rigid robot arm using neural network and iterative learning algorithms." Thesis, University of Dundee, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269529.
Full textReiling, Anthony J. "Convolutional Neural Network Optimization Using Genetic Algorithms." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512662981172387.
Full textWikström, Johan. "Evaluating supervised machine learning algorithms to predict recreational fishing success : A multiple species, multiple algorithms approach." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172995.
Full textI denna rapport evalueras tre olika maskininlärningsalgoritmer och deras effektivitet för att förutsäga framgång inom sportfiske. Sport- fiske är en mycket populär hobby, men pålitliga metoder att förutsäga framgångsrikt sportfiske saknas. Denna rapport jämför random forest, linjär regression och flerlagers neurala nätverk mot en rimlig baselinealgorithm för att förutsäga framgång inom sportfiske. Framgång defineras som fiskens förväntade vikt i kg. Tidigare undersökningar har huvudsakligen fokuserat på kommersiellt fiske eller begränsat undersökningen till påverkan av en enskild variabel. I denna studie undersöks flera attribut och algoritmer för att avgöra om övervakad maskininlärning är ett användbart verktyg för att förutsäga framgång inom sportfiske. Framgång inom sportfiske kan potentiellt påverkas av ett stort antal attribut som kan vara olika för olika arter. I denna studie hämtas data från ett flertal källor som kombineras i ett unifierat dataformat. Den primära datakällan är en databas tillhörande sportfiskeappen FishBrain som innehåller över 250000 loggade fångster. En annan källa är World Weather Online:s API som bidrar med väderdata. Rapporten fokuserar på de fyra vanligaste arterna i databasen, largemouth bass, Micropterus salmoides, gädda, Esox lucius, regnbågsöring, Oncorhynchus mykiss och europeisk abborre, Perca fluviatilis med ett särskilt fokus på largemouth bass eftersom den har mest data tillgängligt. Algoritmerna evalueras med hjälp av data mining-verktyget Weka. Hyperparametrar bestäms med hjälp av korsvalidering och en delmängd av datan separeras och används för att validera resultaten efter korsvalidering. Resultaten mäts relativt en baseline-algoritm. Random forest är den mest effektiva algoritmen i experimenten och reducerar felet jämfört med baseline-algoritmen för alla undersökta fiskarter. Inget enskilt attribut påverkar slutresultatet mycket utan det behövs en kombination av flera attribut för att ge optimala prediktioner. Slutsatsen blir att random forest kan användas för att förutsäga framgång inom sportfiske för flera olika fiskarter. Den presterar signifikant bättre än linjär regression, flerlagers neuralt nätverk och baselinealgoritmen på korsvalidering och på testdelmängden.
Apprey-Hermann, Joseph Kwame. "Evaluating The Predictability of Pseudo-Random Number Generators Using Supervised Machine Learning Algorithms." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588805461290138.
Full textChisholm, David. "Implementation of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms for the Multi-Objective Property Prediction and Optimization of Emulsion Polymers." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2045.
Full textMohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMalmgren, Henrik. "Revision of an artificial neural network enabling industrial sorting." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392690.
Full textGranström, Daria, and Johan Abrahamsson. "Loan Default Prediction using Supervised Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252312.
Full textDet är nödvändigt för en bank att ha en bra uppskattning på hur stor risk den bär med avseende på kunders fallissemang. Olika statistiska metoder har använts för att estimera denna risk, men med den nuvarande utvecklingen inom maskininlärningsområdet har det väckt ett intesse att utforska om maskininlärningsmetoder kan förbättra kvaliteten på riskuppskattningen. Syftet med denna avhandling är att undersöka vilken metod av de implementerade maskininlärningsmetoderna presterar bäst för modellering av fallissemangprediktion med avseende på valda modelvaldieringsparametrar. De implementerade metoderna var Logistisk Regression, Random Forest, Decision Tree, AdaBoost, XGBoost, Artificiella neurala nätverk och Stödvektormaskin. En översamplingsteknik, SMOTE, användes för att behandla obalansen i klassfördelningen för svarsvariabeln. Resultatet blev följande: XGBoost utan implementering av SMOTE visade bäst resultat med avseende på den valda metriken.
Johansson, David. "Price Prediction of Vinyl Records Using Machine Learning Algorithms." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96464.
Full textDuncan, Andrew Paul. "The analysis and application of artificial neural networks for early warning systems in hydrology and the environment." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/17569.
Full textWilson, Dennis G. "Évolution des principes de la conception des réseaux de neurones artificiels." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30075.
Full textThe biological brain is an ensemble of individual components which have evolved over millions of years. Neurons and other cells interact in a complex network from which intelligence emerges. Many of the neural designs found in the biological brain have been used in computational models to power artificial intelligence, with modern deep neural networks spurring a revolution in computer vision, machine translation, natural language processing, and many more domains. However, artificial neural networks are based on only a small subset of biological functionality of the brain, and often focus on global, homogeneous changes to a system that is complex and locally heterogeneous. In this work, we examine the biological brain, from single neurons to networks capable of learning. We examine individually the neural cell, the formation of connections between cells, and how a network learns over time. For each component, we use artificial evolution to find the principles of neural design that are optimized for artificial neural networks. We then propose a functional model of the brain which can be used to further study select components of the brain, with all functions designed for automatic optimization such as evolution. Our goal, ultimately, is to improve the performance of artificial neural networks through inspiration from modern neuroscience. However, through evaluating the biological brain in the context of an artificial agent, we hope to also provide models of the brain which can serve biologists
Salem, Tawfiq. "Learning to Map the Visual and Auditory World." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/86.
Full textPrice, Ryan William. "Hierarchical Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/202.
Full textCaetano, Marcelo Freitas. "Sintese sonora auto-organizavel atraves da aplicação de algoritmos bio-inspirados." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261756.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T18:10:14Z (GMT). No. of bitstreams: 1 Caetano_MarceloFreitas_M.pdf: 11758987 bytes, checksum: 2521dc99ef68d0b0a4e06b9ea4751fc5 (MD5) Previous issue date: 2006
Resumo: Não há limitações teóricas para o uso do computador como fonte de sons musicais. O computador digital permite a produção de qualquer som concebivel dada a seqüência correta de números (amostras digitais). No entanto, produzir uma dada seqüência de números que corresponda a um som musical que possua determinadas características perceptivas desejadas é uma tarefa de difícil resolução. Grande parte dos métodos e sistemas de síntese sonora digital utiliza modelos e/ou incorpora técnicas que não levam em conta a natureza dinâmica dos sons musicais ou que não foram originalmente desenvolvidas para manipulação musical. Neste trabalho, é apresentada uma abordagem populacional para síntese sonora no domínio temporal. Foi estudado um espaço sonoro e um conjunto de atratores, isto é, um conjunto de formas de onda com qualidades sonoras desejadas e definidas a priori, e foi possível obter sons que possuem características associadas a um ou mais atratores, representando variantes dos mesmos. Este método de síntese de sons musicais pode ser interpretado como um processo de busca no espaço vetorial que contém todas as possibilidades sonoras decorrentes da representação adotada, e tem por objetivo a criação de formas de onda digítalizadas com características emergentes e potencial para serem utilizadas em diversas aplicações musicais. Os resultados representam variantes e/ou possuem íntersecções das características próprias dos atratores, responsáveis por indicar as regiões de interesse do espaço de busca. A proposta de pesquisa envolveu a utilização de algoritmos bioinspirados - os quais expressam propriedades de sistemas auto-organizados e adaptativos - como definidores de processos de geração e estruturação dos elementos sonoros, entendidos aqui como problemas de otimização. A auto-organização e os mecanismos de manutenção de diversidade e de adaptação, intrínsecos aos sistemas bio-inspirados, fundamentam a proposta no sentido de viabilizarem a emergência temporal de estruturas estáveis sem um elemento organizador externo
Abstract: There are no theoretical limitations to the use of the computer as a source of musical sounds. The digital computer allows for the production of any conceivable sound given the carrect sequence af numbers (digital samples). Nevertheless, producing the correct sequence of numbers that correspond to a musical sound expressing predefined perceptual characteristics is a very difficult task. Most sound synthesis methods and systems utilize models and/or incorporate techniques which do not take into account the dynamic nature of musical sounds or were not originally developed for the manipulation of musical tones. In this work we are proposing a populational sound synthesis approach in the time domain. A soundspace and a set of attractors, i.e. waveforms containing a priari desired features or qualities, and a population of agents communicating by means of local interaction were studied, and it was possible to attain sounds which share some qualities from more than one of the attractors, resulting exclusively from low-Ievel rules followed by these agents. This sound synthesis method can be regarded as a search in the vector space that contains ali the possible sounds resulting from the adopted representation, and its objective is to synthesize digital waveforms that possess emergent properties and the potential to be used in musical applications. The resulting sounds are variants or hybrids that share some of the intrinsic features of the attractors, which are responsible for indicating the regions of interest in the search space. This proposal involved the use of bio-inspired algorithms, which express features of adaptive, self-organizing systems, as definers of generating and structuring processes of sound elements, regarded herein as optimization processes. Self-organization and diversity maintenance and adaptation mechanisms, intrinsic to bio-inspired systems, lay the foundations of this proposal so as to make viable the temporal emergence of stable structures without an externa I organizing element
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Melo, Davyd Bandeira de. "Algoritmos de aprendizagem para aproximaÃÃo da cinemÃtica inversa de robÃs manipuladores: um estudo comparativo." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16997.
Full textNesta dissertaÃÃo sÃo reportados os resultados de um amplo estudo comparativo envolvendo sete algoritmos de aprendizado de mÃquinas aplicados à tarefa de aproximaÃÃo do modelo cinemÃtico inverso de 3 robÃs manipuladores (planar, PUMA 560 e Motoman HP6). Os algoritmos avaliados sÃo os seguintes: Perceptron Multicamadas (MLP), MÃquina de Aprendizado Extremo (ELM), RegressÃo de MÃnimos Quadrados via Vetores-Suporte (LS-SVR), MÃquina de Aprendizado MÃnimo (MLM), Processos Gaussianos (PG), Sistema de InferÃncia Fuzzy Baseado em Rede Adaptativa (ANFIS) e Mapeamento Linear Local (LLM). Estes algoritmos sÃo avaliados quanto à acurÃcia na estimaÃÃo dos Ãngulos das juntas dos robÃs manipuladores em experimentos envolvendo a geraÃÃo de vÃrios tipos de trajetÃrias no volume de trabalho dos referidos robÃs. Uma avaliaÃÃo abrangente do desempenho de cada algoritmo à feito com base na anÃlise dos resÃduos e testes de hipÃteses sÃo executados para verificar se hà diferenÃas significativas entre os desempenhos dos melhores algoritmos.
Milaré, Claudia Regina. ""Extração de conhecimento de redes neurais artificiais utilizando sistemas de aprendizado simbólico e algoritmos genéticos"." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082004-004358/.
Full textIn Machine Learning - ML there is not a single algorithm that is the best for all application domains. In practice, several research works have shown that Artificial Neural Networks - ANNs have an appropriate inductive bias for several domains. Thus, ANNs have been applied to a number of data sets with high predictive accuracy. Symbolic ML algorithms have a less flexible inductive bias than ANNs. While ANNs can learn any input-output mapping, i.e., ANNs have the universal approximation property, symbolic ML algorithms frequently learn concepts describing them using hyperplanes. On the other hand, symbolic algorithms are needed when a good understating of the decision process is essential, since symbolic ML algorithms express the knowledge induced using symbolic structures that can be interpreted and understood by humans. ANNs lack the capability of explaining their decisions since the knowledge is encoded as real-valued weights and biases of the network. This encoding is difficult to be interpreted by humans. In several application domains, such as credit approval and medical diagnosis, providing an explanation related to the classification given to a certain case is of crucial importance. In a similar way, several users of ML algorithms desire to validate the knowledge induced, in order to assure that the generalization made by the algorithm is correct. In order to apply ANNs to a larger number of application domains, several researches have proposed methods to extract comprehensible knowledge from ANNs. The primary contribution of this thesis consists of two methods that extract symbolic knowledge, expressed as decision rules, from ANNs. The proposed methods have several advantages over previous methods, such as being applicable to any architecture and supervised learning algorithm of ANNs. The first method uses standard symbolic ML algorithm to extract knowledge from ANNs, and the second method extends the first method by combining the knowledge induced by several symbolic ML algorithms through the application of a Genetic Algorithm - GA. The proposed methods are experimentally analyzed in a number of application domains. Results show that both methods are capable to extract symbolic knowledge having high fidelity with trained ANNs. The proposed methods are compared with TREPAN, showing promising results. TREPAN is a well known method to extract knowledge from ANNs.
Heinen, Milton Roberto. "Controle inteligente do caminhar de robôs móveis simulados." Universidade do Vale do Rio do Sinos, 2007. http://www.repositorio.jesuita.org.br/handle/UNISINOS/2243.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
O objetivo desta dissertação é propor, testar e avaliar o uso de técnicas de Aprendizado de Máquina (ML) na configuração automática do controle do caminhar de robôs com pernas. Para que este objetivo fosse atingido, um extensa pesquisa de técnicas do estado da arte foi realizada e descrita neste trabalho. Esta pesquisa permitiu a elaboração do modelo proposto, chamado de LegGen, que foi implementado em um protótipo. O protótipo modelo em questão permite a utilização de vários tipos de robôs, compostos de quatro, seis ou mais patas, e além disto permite a evolução da morfologia dos robôs. Utilizando o protótipo, é possível a realização de experimentos com robôs autônomos dotados de pernas, em um ambiente virtual tridimensional realístico, através de simulações baseadas em física. Foi utilizada a biblioteca ODE (Open Dynamics Engine) para a simulação de corpos rígidos e articulações, permitindo assim simular forças agindo nas articulações (atuadores), gravidade e colisões, entre outras propriedades físicas dos
The main goal of this dissertation is to propose, to test and to evaluate the use of Machine Learning (ML) techniques in the automatic con_guration of the gait control in legged robots. In order to achieve this goal, an extensive research about state-of-the-art techniques was accomplished and they are described in this work. This research allowed the development of the proposed model, called LegGen, which was implemented in a prototype. The proposed model allows the use of several different robot models with four, six or more paws. Besides that, the prototype allows also to study the robot's morphology evolution. The implemented prototype allows to accomplish experiments with autonomous legged robots, in a realistic three-dimensional virtual environment, through physics based simulations. The ODE (Open Dynamics Engine) software library was used in the physical simulation of rigid bodies and articulations, allowing to simulate forces acting in the articulations (actuators), gravity and collisions, among other
Elkin, Colin P. "Development of Adaptive Computational Algorithms for Manned and Unmanned Flight Safety." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544640516618623.
Full textSantos, Rosiane Correia. "LearnInPlanner: uma abordagem de aprendizado supervisionado com redes neurais para solução de problemas de planejamento clássico." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25012014-115621/.
Full textThe forward state-space search is one of the most popular Automated Planning approaches. The performance of forward search algorithms is affected by the domain-independent heuristic being used. In this context, the focus of this work consisted on investigating techniques of supervised machine learning that make possible to agregate to the relaxed plan heuristic, commonly used in current planning approaches, information about the domain which could be useful to the search algorithm. This information has been represented through a feature space of planning problem and a MLP neural network has been applied to estimate a new heuristic function for guiding the search through a non-linear regression process. Once the set of features available for the construction of the new heuristic function is large, it was necessary to define a feature selection process capable of determining which set of neural network input features would result in the best performance for the regression model. Therefore, for selecting features, an approach of genetic algorithms has been applied. As the main result, one has obtained a comparative performance analysis between the use of heuristic proposed in this work and the use of the relaxed plan heuristic to guide the search algorithm in the planning task. For the empirical analysis were used domains with different complexities provided by the International Planning Competitions. In addition to the empirical results and comparative analysis, the contributions of this work involves the development of a new domain-independent planner, named LearnInPlanner. This planner uses the new heuristic function estimated by the learning process and the Greedy Best-First search algorithm to solve planning problems.
Russo, Nicholas A. "DiSH: Democracy in State Houses." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/1967.
Full textLuna, Huamaní Ivette Raymunda 1978. "Analises de series temporais e modelagem baseada em regras nebulosas." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261147.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-11T11:20:51Z (GMT). No. of bitstreams: 1 LunaHuamani_IvetteRaymunda_D.pdf: 1516017 bytes, checksum: 0b1789c54ac07dc411d69c82d77f8ac3 (MD5) Previous issue date: 2007
Resumo: Este trabalho propõe uma metodologia baseada em regras nebulosas para a modelagem e previsão de séries temporais. Inicialmente, os dados são pré-processados para, a seguir, ocorrer a seleção de variáveis que serão utilizadas pelos modelos de série temporal. Para essa finalidade, nesta tese propõe-se um conjunto de aproximações necessárias para o cálculo do critério de informação mútua parcial, o qual é a base para o algoritmo de seleção de entradas utilizado. A próxima etapa corresponde à determinação da estrutura do modelo e ajuste dos parâmetros. Com o intuito de definir de forma automática a estrutura do modelo, de forma simultânea ao ajuste dos parâmetros, dois algoritmos de aprendizado construtivo - offiine e online são propostos. Ambos os algoritmos utilizam como base para o seu desenvolvimento o algoritmo da maximização da verossimilhança, assim como critérios de geração e punição (ou poda) de regras nebulosas. Finalmente, o modelo obtido é validado e aplicado .na previsão de um e vários passos à frente. Análises comparativas são apresentadas utilizando séries temporais sintéticas e de problemas reais. Os resultados mostram que as propostas deste trabalho são uma alternativa eficiente para a modelagem e previsão de séries temporais
Abstract: This work presents a methodology for time series modeling and forecasting. First, the methodology considers the data pre-processing and the system identification, which implies on the selection of a suitable set of input variables for modeling the time series. In order to achieve this task, this work proposes an algorithm for input selection and a set of approximations that are necessary for estimating the partia! mutual information criterion, which is the base of the algorithm used at this stage. Then, the mo deI is built and adjusted. With the aim of performing an automatic structure selection and parameters adjustment simultaneously, this thesis proposes two constructive learning algorithms, namely ofRine and online. These algorithms are based on the Expectation Maximization optimization technique, as well as on adding and pruning operators of fuzzy rules that are also proposed in this work. Finally, models are validated and applied to one-step ahead and multi-step ahead forecasting. Comparative analysis using synthetic and real time series are detailed. The results show the adequate performance of the proposed approach and presents it as a promising alternative for time series modeling and forecasting
Doutorado
Energia Eletrica
Doutor em Engenharia Elétrica
Susnjak, Teo. "Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1002.
Full textHauschild, Jennifer M. "Fourier transform ion cyclotron resonance mass spectrometry for petroleomics." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:8604a373-fb6b-4bc0-8dc1-464a191b1fac.
Full textAtiya, Amir Abu-Mostafa Yaser S. "Learning algorithms for neural networks /." Diss., Pasadena, Calif. : California Institute of Technology, 1991. http://resolver.caltech.edu/CaltechETD:etd-09232005-083502.
Full textMuthuraman, Sethuraman. "The evolution of modular artificial neural networks." Thesis, Robert Gordon University, 2005. http://hdl.handle.net/10059/284.
Full textHook, Jaroslav. "Are artificial neural networks learning machines?" Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38651.pdf.
Full textHadjifaradji, Saeed. "Learning algorithms for restricted neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/NQ48102.pdf.
Full textKrundel, Ludovic. "On microelectronic self-learning cognitive chip systems." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21804.
Full textKostka, Filip. "Umělá neuronová síť pro modelování polí uvnitř automobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220578.
Full textFrøyen, Even Bruvik. "Exploring Learning in Evolutionary Artificial Neural Networks." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15689.
Full textFerguson, Alistair. "Learning in RAM-based artificial neural networks." Thesis, University of Hertfordshire, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283866.
Full textTay, Leng Phuan. "Fast learning artificial neural networks for classification." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/25161.
Full textGolea, Mostefa. "On efficient learning algorithms for neural networks." Thesis, University of Ottawa (Canada), 1993. http://hdl.handle.net/10393/6508.
Full textGadde, Pramod. "AFFINE IMAGE REGISTRATION USING ARTIFICIAL NEURAL NETWORKS." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/982.
Full textAndersen, Mats Grønning. "Reservoir Production Optimization Using Genetic Algorithms and Artificial Neural Networks." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9985.
Full textThis master's thesis has investigated how methods from artificial intelligence (AI) can be used to perform and augment production optimization of sub-sea oil reservoirs. The methods involved in this work are genetic algorithms (GAs) and artificial neural networks (ANNs). Different optimization schemes were developed by the author to perform production optimization on oil reservoir simulator models. The optimization involves finding good input parameter values for certain properties of the model, relating to how the wells in the oil reservoir operate. The research involves straightforward optimization using GAs, model approximations using ANNs, and also more advanced schemes using these methods together with other available technology to perform and augment reservoir optimization. With this work, the author has attempted to make a genuine contribution to all the research areas this master's thesis has touched upon, ranging from computer science and AI to process and petroleum engineering. The methods and approaches developed through this research were compared to the performance of each other and also to other approaches and methods used on the same challenges. The comparison found some of the developed optimization schemes to be very successful, while others were found to be less appropriate for solving the problem at hand. Some of the less successful approaches still showed considerable promise for simpler problems, leading the author to conclude that the developed schemes are suited for solving optimization problems in the petroleum industry.
侯江濤 and Kong-to William Hau. "Artificial neural networks, motor programs and motor learning." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31240227.
Full textHau, Kong-to William. "Artificial neural networks, motor programs and motor learning /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2177920X.
Full textTavanaei, Amirhossein. "Spiking Neural Networks and Sparse Deep Learning." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10807940.
Full textThis document proposes new methods for training multi-layer and deep spiking neural networks (SNNs), specifically, spiking convolutional neural networks (CNNs). Training a multi-layer spiking network poses difficulties because the output spikes do not have derivatives and the commonly used backpropagation method for non-spiking networks is not easily applied. Our methods use novel versions of the brain-like, local learning rule named spike-timing-dependent plasticity (STDP) that incorporates supervised and unsupervised components. Our method starts with conventional learning methods and converts them to spatio-temporally local rules suited for SNNs.
The training uses two components for unsupervised feature extraction and supervised classification. The first component refers to new STDP rules for spike-based representation learning that trains convolutional filters and initial representations. The second introduces new STDP-based supervised learning rules for spike pattern classification via an approximation to gradient descent by combining the STDP and anti-STDP rules. Specifically, the STDP-based supervised learning model approximates gradient descent by using temporally local STDP rules. Stacking these components implements a novel sparse, spiking deep learning model. Our spiking deep learning model is categorized as a variation of spiking CNNs of integrate-and-fire (IF) neurons with performance comparable with the state-of-the-art deep SNNs. The experimental results show the success of the proposed model for image classification. Our network architecture is the only spiking CNN which provides bio-inspired STDP rules in a hierarchy of feature extraction and classification in an entirely spike-based framework.
Bean, Ralph. "Vibrational control of chaos in artificial neural networks /." Online version of thesis, 2009. http://hdl.handle.net/1850/10645.
Full textLind, Benjamin. "Artificial Neural Networks for Image Improvement." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137661.
Full text