Journal articles on the topic 'Artificial Neuron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Artificial Neuron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sharp, A. A., L. F. Abbott, and E. Marder. "Artificial electrical synapses in oscillatory networks." Journal of Neurophysiology 67, no. 6 (1992): 1691–94. http://dx.doi.org/10.1152/jn.1992.67.6.1691.
Full textTorres-Treviño, Luis M., Angel Rodríguez-Liñán, Luis González-Estrada, and Gustavo González-Sanmiguel. "Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System." Discrete Dynamics in Nature and Society 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/318758.
Full textAlvarellos-González, Alberto, Alejandro Pazos, and Ana B. Porto-Pazos. "Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks." Computational and Mathematical Methods in Medicine 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/476324.
Full textChen, Xiu, and Yi Wang. "A Chaotic Neuron and its Ability to Prevent Overfitting." Frontiers in Computing and Intelligent Systems 5, no. 1 (2023): 53–61. http://dx.doi.org/10.54097/fcis.v5i1.11673.
Full textZigunovs, Maksims. "THE ALZHEIMER’S DISEASE IMPACT ON ARTIFICIAL NEURAL NETWORKS." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 17, 2021): 205–9. http://dx.doi.org/10.17770/etr2021vol2.6632.
Full textPanda, Sashmita. "Comparative study of single biological neuron with an artificial neuron." BOHR Journal of Biocomputing and Nano Technology 1, no. 1 (2023): 9–16. http://dx.doi.org/10.54646/bjbnt.2023.02.
Full textM. Mijwil, Maad. "Artificial Neural Networks Advantages and Disadvantages." Mesopotamian Journal of Big Data 2021 (August 23, 2021): 29–31. http://dx.doi.org/10.58496/mjbd/2021/006.
Full textRuzek, Martin. "ARTIFICIAL NEURAL NETWORK FOR MODELS OF HUMAN OPERATOR." Acta Polytechnica CTU Proceedings 12 (December 15, 2017): 99. http://dx.doi.org/10.14311/app.2017.12.0099.
Full textTomov, Konstantin, and Galina Momcheva. "Multi-Activation Dendritic Neural Network (MA-DNN) Working Example of Dendritic-Based Artificial Neural Network." Cybernetics and Information Technologies 23, no. 3 (2023): 145–62. http://dx.doi.org/10.2478/cait-2023-0030.
Full textYashchenko, V. O. "Neural-like growing networks in the development of general intelligence. Neural-like element (P. I)." Mathematical machines and systems 4 (2022): 15–36. http://dx.doi.org/10.34121/1028-9763-2022-4-15-36.
Full textLin, Haidan, and Yiran Shen. "A VO2 Neuristor Based on Microstrip Line Coupling." Micromachines 14, no. 2 (2023): 337. http://dx.doi.org/10.3390/mi14020337.
Full textJia, Dongbao, Weixiang Xu, Dengzhi Liu, Zhongxun Xu, Zhaoman Zhong, and Xinxin Ban. "Verification of Classification Model and Dendritic Neuron Model Based on Machine Learning." Discrete Dynamics in Nature and Society 2022 (July 4, 2022): 1–14. http://dx.doi.org/10.1155/2022/3259222.
Full textHan, Mengqiao, Liyuan Pan, and Xiabi Liu. "MA-Net: Rethinking Neural Unit in the Light of Astrocytes." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 3 (2024): 2040–48. http://dx.doi.org/10.1609/aaai.v38i3.27975.
Full textRibar, Srdjan, Vojislav V. Mitic, and Goran Lazovic. "Neural Networks Application on Human Skin Biophysical Impedance Characterizations." Biophysical Reviews and Letters 16, no. 01 (2021): 9–19. http://dx.doi.org/10.1142/s1793048021500028.
Full textChafik, Sanaa, Mounim A. El Yacoubi, Imane Daoudi, and Hamid El Ouardi. "Unsupervised deep neuron-per-neuron hashing." Applied Intelligence 49, no. 6 (2019): 2218–32. http://dx.doi.org/10.1007/s10489-018-1353-5.
Full textWang, Yu, Xintong Chen, Daqi Shen, et al. "Artificial Neurons Based on Ag/V2C/W Threshold Switching Memristors." Nanomaterials 11, no. 11 (2021): 2860. http://dx.doi.org/10.3390/nano11112860.
Full textBehdad, Rachid, Stephane Binczak, Alexey S. Dmitrichev, Vladimir I. Nekorkin, and Jean-Marie Bilbault. "Artificial Electrical Morris–Lecar Neuron." IEEE Transactions on Neural Networks and Learning Systems 26, no. 9 (2015): 1875–84. http://dx.doi.org/10.1109/tnnls.2014.2360072.
Full textChen, Shinya E., Rajiv Giridharagopal, and David S. Ginger. "Artificial neuron transmits chemical signals." Nature Materials 22, no. 4 (2023): 416–18. http://dx.doi.org/10.1038/s41563-023-01509-0.
Full textV, Yashchenko. "A new approach to the development of artificial intelligence similar to human intelligence." Artificial Intelligence 28, AI.2023.28(1)) (2023): 105–21. http://dx.doi.org/10.15407/jai2023.01.105.
Full textGerasimova, Svetlana A., Anna Beltyukova, Anastasia Fedulina, Maria Matveeva, Albina V. Lebedeva, and Alexander N. Pisarchik. "Living-Neuron-Based Autogenerator." Sensors 23, no. 16 (2023): 7016. http://dx.doi.org/10.3390/s23167016.
Full textVazquez, Roberto A., and Beatriz A. Garro. "Training Spiking Neural Models Using Artificial Bee Colony." Computational Intelligence and Neuroscience 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/947098.
Full textGupta, Pallavi, Nandhini Balasubramaniam, Hwan-You Chang, Fan-Gang Tseng, and Tuhin Subhra Santra. "A Single-Neuron: Current Trends and Future Prospects." Cells 9, no. 6 (2020): 1528. http://dx.doi.org/10.3390/cells9061528.
Full textZhang, Yinxing, Ziliang Fang, and Xiaobing Yan. "HfO2-based memristor-CMOS hybrid implementation of artificial neuron model." Applied Physics Letters 120, no. 21 (2022): 213502. http://dx.doi.org/10.1063/5.0091286.
Full textVolchikhin, V. I., A. I. Ivanov, T. A. Zolotareva, and D. M. Skudnev. "Synthesis of four new neuro-statistical tests for testing the hypothesis of independence of small samples of biometric data." Journal of Physics: Conference Series 2094, no. 3 (2021): 032013. http://dx.doi.org/10.1088/1742-6596/2094/3/032013.
Full textWhittle, P. "A stochastic model of an artificial neuron." Advances in Applied Probability 23, no. 4 (1991): 809–22. http://dx.doi.org/10.2307/1427677.
Full textWhittle, P. "A stochastic model of an artificial neuron." Advances in Applied Probability 23, no. 04 (1991): 809–22. http://dx.doi.org/10.1017/s0001867800023958.
Full textKumar, Sushil, and Bipin Kumar Tripathi. "On the learning machine with compensatory aggregation based neurons in quaternionic domain." Journal of Computational Design and Engineering 6, no. 1 (2018): 33–48. http://dx.doi.org/10.1016/j.jcde.2018.04.002.
Full textHERRMANN, CHRISTOPH S., and ANDREAS KLAUS. "AUTAPSE TURNS NEURON INTO OSCILLATOR." International Journal of Bifurcation and Chaos 14, no. 02 (2004): 623–33. http://dx.doi.org/10.1142/s0218127404009338.
Full textAbreu Rodrigues, Fabiano de. "IMPLANTAÇÃO DE NEURÔNIOS ARTIFICIAIS NO CÓRTEX PRÉ-FRONTAL." RECISATEC - REVISTA CIENTÍFICA SAÚDE E TECNOLOGIA - ISSN 2763-8405 2, no. 11 (2022): e211207. http://dx.doi.org/10.53612/recisatec.v2i11.207.
Full textAlia, Giuseppe, and Enrico Martinelli. "NEUROM: a ROM based RNS digital neuron." Neural Networks 18, no. 2 (2005): 179–89. http://dx.doi.org/10.1016/j.neunet.2004.11.006.
Full textCazé, Romain D. "Any neuron can perform linearly non-separable computations." F1000Research 10 (July 6, 2021): 539. http://dx.doi.org/10.12688/f1000research.53961.1.
Full textCazé, Romain D. "Any neuron can perform linearly non-separable computations." F1000Research 10 (September 16, 2021): 539. http://dx.doi.org/10.12688/f1000research.53961.2.
Full textVidybida, Alexander. "Relation Between Firing Statistics of Spiking Neuron with Instantaneous Feedback and Without Feedback." Fluctuation and Noise Letters 14, no. 04 (2015): 1550034. http://dx.doi.org/10.1142/s0219477515500340.
Full textCazé, Romain D. "All neurons can perform linearly non-separable computations." F1000Research 10 (June 8, 2022): 539. http://dx.doi.org/10.12688/f1000research.53961.3.
Full textWang, Qiguang, Guangchen Pan, and Yanfeng Jiang. "An Ultra-Low Power Threshold Voltage Variable Artificial Retina Neuron." Electronics 11, no. 3 (2022): 365. http://dx.doi.org/10.3390/electronics11030365.
Full textHong, Yuwan, Yanming Liu, Ruonan Li, and He Tian. "Emerging functions of two-dimensional materials in memristive neurons." Journal of Physics: Materials 7, no. 3 (2024): 032001. http://dx.doi.org/10.1088/2515-7639/ad467b.
Full textNakamura, K., and T. Ono. "Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals." Journal of Neurophysiology 55, no. 1 (1986): 163–81. http://dx.doi.org/10.1152/jn.1986.55.1.163.
Full textSharp, A. A., M. B. O'Neil, L. F. Abbott, and E. Marder. "Dynamic clamp: computer-generated conductances in real neurons." Journal of Neurophysiology 69, no. 3 (1993): 992–95. http://dx.doi.org/10.1152/jn.1993.69.3.992.
Full textSibai, F. N. "A fault-tolerant digital artificial neuron." IEEE Design & Test of Computers 10, no. 4 (1993): 76–82. http://dx.doi.org/10.1109/54.245965.
Full textLi, Sai, Wang Kang, Yangqi Huang, Xichao Zhang, Yan Zhou, and Weisheng Zhao. "Magnetic skyrmion-based artificial neuron device." Nanotechnology 28, no. 31 (2017): 31LT01. http://dx.doi.org/10.1088/1361-6528/aa7af5.
Full textYuan, Jia-Hui, Xiao-Kuo Yang, Bin Zhang, et al. "Activation function and computing performance of spin neuron driven by magnetic field and strain." Acta Physica Sinica 70, no. 20 (2021): 207502. http://dx.doi.org/10.7498/aps.70.20210611.
Full textSánchez, Carlos, Diego Caso, and Farkhad G. Aliev. "Artificial Neuron Based on the Bloch-Point Domain Wall in Ferromagnetic Nanowires." Materials 17, no. 10 (2024): 2425. http://dx.doi.org/10.3390/ma17102425.
Full textMárquez-Vera, Carlos Antonio, Zaineb Yakoub, Marco Antonio Márquez Vera, and Alfian Ma'arif. "Spiking PID Control Applied in the Van de Vusse Reaction." International Journal of Robotics and Control Systems 1, no. 4 (2021): 488–500. http://dx.doi.org/10.31763/ijrcs.v1i4.490.
Full textSutariya, Vijaykumar, Anastasia Groshev, Prabodh Sadana, Deepak Bhatia, and Yashwant Pathak. "Artificial Neural Network in Drug Delivery and Pharmaceutical Research." Open Bioinformatics Journal 7, no. 1 (2013): 49–62. http://dx.doi.org/10.2174/1875036201307010049.
Full textTakahata, M., and M. Hisada. "Local nonspiking interneurons involved in gating of the descending motor pathway in crayfish." Journal of Neurophysiology 56, no. 3 (1986): 718–31. http://dx.doi.org/10.1152/jn.1986.56.3.718.
Full textNagai, T., H. Katayama, K. Aihara, and T. Yamamoto. "Pruning of rat cortical taste neurons by an artificial neural network model." Journal of Neurophysiology 74, no. 3 (1995): 1010–19. http://dx.doi.org/10.1152/jn.1995.74.3.1010.
Full textPaeen Afrakoti, Iman Esmaili, Vahdat Nazerian, and Tole Sutikno. "Spiking ink drop spread clustering algorithm and its memristor crossbar conceptual hardware design." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 6 (2023): 7125. http://dx.doi.org/10.11591/ijece.v13i6.pp7125-7136.
Full textJo, Yooyeon, Dae Kyu Lee, and Joon Young Kwak. "Recent Progress in Development of Artificial Neuromorphic Devices Based on Emerging Materials." Ceramist 25, no. 4 (2022): 454–74. http://dx.doi.org/10.31613/ceramist.2022.25.4.08.
Full textAhmad, Maruf, Lei Zhang, Kelvin Tsun Wai Ng, and Muhammad E. H. Chowdhury. "Complex-Exponential-Based Bio-Inspired Neuron Model Implementation in FPGA Using Xilinx System Generator and Vivado Design Suite." Biomimetics 8, no. 8 (2023): 621. http://dx.doi.org/10.3390/biomimetics8080621.
Full textXU, JIAN-XIN, and XIN DENG. "STUDY ON CHEMOTAXIS BEHAVIORS OF C. ELEGANS USING DYNAMIC NEURAL NETWORK MODELS: FROM ARTIFICIAL TO BIOLOGICAL MODEL." Journal of Biological Systems 18, spec01 (2010): 3–33. http://dx.doi.org/10.1142/s0218339010003597.
Full text