To see the other types of publications on this topic, follow the link: Artificiella nätverk.

Dissertations / Theses on the topic 'Artificiella nätverk'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Artificiella nätverk.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ruuska, Boquist Philip. "Utveckling av artificiell intelligens med genetiska tekniker och artificiella neurala nätverk." Thesis, University of Skövde, School of Humanities and Informatics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-3082.

Full text
Abstract:

 

Att använda artificiella neurala nätverk i datorspel blir ett allt mer populärt sätt att styra de datorstyrda agenterna då detta gör att agenterna får ett mer mänskligt beteende och förmågan att generalisera och möta nya situationer och klara sig igenom dessa på ett sätt som andra typer av artificiell intelligens inte alltid kan hantera. Svårigheten med denna teknik är att träna nätverket vilket ofta kräver en lång tid av inlärning och många olika träningfall. Genom att använda genetiska algoritmer för att träna upp nätverken så kan mycket av det både tid och prestandakrävande arbetet undvikas. Denna rapport kommer att undersöka möjligheten att använda genetiska tekniker för att träna artificiella neurala nätverk i en miljö anpassad till och med fokus på spel. Att använda genetiska tekniker för att träna artificiella neurala nätverk är en bra inlärningsteknik för problem där det enkelt går att skapa en passande fitnessfunktion och där andra inlärningstekniker kan vara svåra att använda. Det är dock ingen teknik som helt tar bort arbetet från utvecklare utan istället flyttar det mer åt att utveckla fitnessfunktionen och modifiera variabler.

 

APA, Harvard, Vancouver, ISO, and other styles
2

Ernhagen, Joakim. "Artificiella neurala nätverk som lösning på segmenteringsproblemet vid gestigenkänning." Thesis, University of Skövde, School of Humanities and Informatics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1110.

Full text
Abstract:

Ett av de stora problemen med gestigenkänning är det som kallas segmenteringsproblemet. Segmenteringsproblemet är problemet att hitta var en gest börjar och var den slutar, d v s att segmentera upp gester. I detta arbete testas en lösning till detta problem då gester består av figurer ritade i luften. Lösningen går ut på att använda två stycken artificiella neurala nätverk av strukturen FeedForward. Det ena nätverket tränas på att känna igen när handen accelererar från stillastående, vilket representerar starten av en gest, och det andra tränas på att känna igen när handen saktar ner till stillastående, vilket representerar slutet av en gest. Datan till de artificiella neurala nätverken kommer från ett sliding window på ett antal tidssteg där hastighets- och accelerationsförändringar läses av som skalärer.

APA, Harvard, Vancouver, ISO, and other styles
3

Foborg, Alexander. "Ett parallelliserat verktyg för simulering av artificiella neurala nätverk." Thesis, University of Skövde, Department of Computer Science, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-239.

Full text
Abstract:

Den forskningsgrupp som vid Högskolan i Skövde bedriver forskning om neurala nätverk, har nyligen köpt in en ny beräkningsmaskin, dedikerad för simuleringar av dessa neurala nätverk. Maskinen är en Sun Enterprise 4000, en MIMD-maskin med 6 st UltraSparc CPUer.

Det finns behov av nya verktyg, som underlättar utveckling av ANN modeller till denna maskin, och som dessutom utnyttjar maskinens parallellitet. Detta verktyg ska uppvisa så god prestanda som möjligt. I denna rapport studeras förutsättningarna för ett sådant verktyg.

Av de tänkbara metoder som kan användas för att parallellisera en nätverksimulator, är troligtvis epokbaserad parallellisering den som ger högst prestandaökning på en MIMD-maskin. Detta beror på att den inte kräver lika täta synkroniseringar som exempelvis en neuronbaserad parallellisering.

En implementation av den epokbaserade metoden har skett, både med och utan parallelliserad summering av viktförändringar. Den parallelliserade summeringen av viktförändringar behöver teoretiskt endast log2(n) så lång tid som den serialiserade summeringen kräver (n = antal trådar). Summeringen av viktförändringar är dock en ganska liten del av varje epok, och effektivisering av denna bit har inte så stor praktiskt betydelse.

Ett mindre antal tester har gjorts för att kontrollera om simulatorn är korrekt implementerad. De tester som gjordes gav lyckat resultat och talar för att simulatorn är korrekt.

Ur prestandatesterna som genomförts kan följande slutsatser dras:

* Ökning av antal exempel ökar prestandaökningen

* Ökning av antal vikter minskar prestandaökningen

* Antal epoker påverkar inte prestandaökningen

På det målsystem med 6 CPUer som testerna genomförts på, gäller följande:

* 4-5 trådar ger oftast högst prestandaökning

* 3-5 gångers prestandaökning är normalt

Eftersom prestandan på många av nätverken ligger uppåt 75% (4.5 gånger prestandaökning med 6 st CPUer) av vad målmaskinen klarar av, anser författaren av denna rapport att parallelliseringen är lyckad.

APA, Harvard, Vancouver, ISO, and other styles
4

Engerström, Sigurd. "Styrsystem för fordon med hjälp av artificiella neurala nätverk." Thesis, University of Skövde, School of Humanities and Informatics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-46.

Full text
Abstract:

Denna rapport jämför två nätverksarkitekturer för artificiella neurala nätverk vars uppgift är att realisera ett styrsystem för ett fordon som det även skall lära sig att styra. Jämförelsen bygger på utförda experiment där de båda nätverken fick lära sig att styra ett fordon längs en slumpgenererad väg. Båda nätverken bygger på belöningsbaserad inlärning för att lära sig lösa uppgiften.

Resultatet av utvärderingen visar både att nätverken inte hade några problem med att lära sig att styra fordonet och att de inte krävde lång tid för att kunna lära sig hur fordonet skulle styras. Resultaten visar inte heller att någon skillnad fanns i vare sig tillförlitlighet eller generaliseringsförmåga hos de båda nätverksarkitekturerna.

APA, Harvard, Vancouver, ISO, and other styles
5

Hagqvist, Petter. "Analys av ljudspektroskopisignaler med artificiella neurala eller bayesiska nätverk." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56429.

Full text
Abstract:

Vid analys av fluider med akustisk spektroskopi finns ett behov av att finna multivariata metoder för att utifrån akustiska spektra prediktera storheter såsom viskositet och densitet. Användning av artificiella neurala nätverk och bayesiska nätverk för detta syfte utreds genom teoretiska och praktiska undersökningar. Förbehandling och uppdelning av data samt en handfull linjära och olinjära multivariata analysmetoder beskrivs och implementeras. Prediktionsfelen för de olika metoderna jämförs och PLS (Partial Least Squares) framstår som den starkaste kandidaten för att prediktera de sökta storheterna.


When analyzing fluids using acoustic spectrometry there is a need of finding multivariate methods for predicting properties such as viscosity and density from acoustic spectra. The utilization of artificial neural networks and Bayesian networks for this purpose is analyzed through theoretical and practical investigations. Preprocessing and division of data along with a handful of linear and non-linear multivariate methods of analysis are described and implemented. The errors of prediction for the different methods are compared and PLS (Partial Least Squares) appear to be the strongest candidate for predicting the sought-after properties.

APA, Harvard, Vancouver, ISO, and other styles
6

Eklund, Björn. "Uppdelning av ett artificiellt neuralt nätverk." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5667.

Full text
Abstract:
Artificiella neurala nätverk (ANN) har många användningsområden inom datavetenskap. Några av dessa är mönsterigenkänning, robotik, processkontroll, optimering och spel. Detta examensarbete kommer att handla om hur en alternativ lösning på den traditionella arkitekturen av hur ett neuralnät kan se ut. Jag kommer att undersöka om man kan ta ett stort och komplext neuralnät och bryta ned detta till mindre neuralnät utan att förlora kvaliteten på botarna i en spelmiljö kallad Open Nero. Detta för att försöka minska beräkningshastigheten av neuralnäten och förhoppningsvis även göra så botarna lär sig ett bra beteende snabbare. Mitt examensarbete kommer att visa att min lösning av arkitekturen för ett neuralt nätverk inte fungerar speciellt bra då botarna inte lärde sig tillräckligt fort. En fördel med min arkitektur är dock att den är något snabbare än originalets i exekveringshastighet.
APA, Harvard, Vancouver, ISO, and other styles
7

Kraft, Kristoffer, and Jonathan Sjölund. "Artificiella neurala nätverk för punktabsorberande vågkraftverk: Energiuppskattning och aktiv styrning." Thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301370.

Full text
Abstract:
För att hitta en mindre beräkningskrävande modell för energiuppskattning av vågdata har artificiella neurala nätverks förmåga att efterlikna ett punktabsorberande vågkraftsverks bojpositioner vid havsvågor från Islandsberg undersökts. Genom att undersöka antal dolda lager samt inparametrarnas enhet, tidsupplösning och antal har olika neurala artificiella nätverk tagits fram som efterliknar bojpositioner lösta med en linjär- samt olinjärmodell. Det artificiella neurala nätverk som bäst efterliknar bojpositioner lösta med den linjära modellen har 1 dolt lager och 50 inparametrar, med tidsupplösning 0,1 sekunder. Dess inparametrar består enbart av inkommande våghöjder. För dessa parametrar uppskattar det artificiella neurala nätverket en medeleffekt som skiljer sig från den linjära modellen med 1,78% då dämpningskoefficienten är 200kNs/m. Beräkningstiden för den linjära modellen är 0,087 sekunder vilket är ungefär 20 gånger snabbare än med det artificiella neurala nätverket och då är inte träningstiden för det artificiella neurala nätverket medräknad. Det artificiella neurala nätverk som bäst efterliknar bojpositioner lösta med den olinjära modellen har 11 dolda lager och 50 inparametrar, med tidsupplösning 0,1 sekunder. Dess inparametrar består enbart av inkommande vågs excitationskraft. För dessa parametrar uppskattar det artificiella neurala nätverket en medeleffekt som skiljer sig från den linjära modellen med 0,3% då dämpningskoefficienten är 130kNs/m. Beräkningstiden för 30 minuters vågdata för den olinjära modellen är 41 minuter och 6 sekunder vilket kan jämföras med 57 sekunder för det artificiella neurala nätverket. Då är inte träningstiden för det artificiella neurala nätverket medräknad. Genom att ändra dämpningskoefficienten till optimala värden, med en frekvens mycket högre än vågperioden, fås en högre energiabsorptionen. En genetisk algoritm används för att beräkna den optimala följden av dämpningskoefficienter och för att prediktera den optimala dämpningskoefficienten används ett artificiellt neuralt nätverk. Vid undersökning där det artificiella neurala nätverket predikterade nästkommande optimala dämpningskoefficient fås en energiabsorption som är 20% högre än den energiabsorption som fås med en optimal konstant dämpningskoefficient.
APA, Harvard, Vancouver, ISO, and other styles
8

Norberg, David. "SAMEVOLUTION AV ARTIFICIELLTNEURALT NÄTVERK FÖR ATTEVALUERA SPELTILLSTÅND." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9448.

Full text
Abstract:
Detta arbete undersöker två tekniker för att evaluera spelplanen i minimaxalgoritmen. Den tekniken som fokuseras mest på i arbetet är ett artificiellt neuralt nätverk som evolveras med hjälp av samevolution. Tekniken är utformad för att inte behöva någon tidigare mänsklig expertis. Den andra tekniken använder heuristiker och mänsklig expertis för att få fram evalueringsfunktionen. Spelet som används för att testa teknikerna är Kinaschack.Resultaten antyder att tekniken i fokus inte fungerar till spelet Kinaschack. En undersökning där tekniken modifierades så att samevolution byttes ut gav ett bättre resultat. Detta behöver inte betyda att problemet är samevolution Men det tyder på att det är en faktor.Tekniken som arbetet fokuserar på är baserad på ett tidigare arbete där spelet Dam användes. Eftersom tekniken har visats fungera tidigare skulle det vara intressant att testa den med fler spel. I slutet av arbetet diskuteras en variant av tekniken för spelet Schack.
APA, Harvard, Vancouver, ISO, and other styles
9

Pressdee, Langré Sean. "Skillnaden mellan belöningsbaserade och exempelbaserade artificiella neurala nätverk i en 2D-miljö." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11145.

Full text
Abstract:
Detta arbete går ut på att testa hur två olika träningsmetoder påverkar hur ett artificiellt neuralt nätverk (ANN) presterar i en 2d spelmiljö. Ett belöningsbaserat nätverk som använder genetiska algoritmer har jämförts mot ett exempelbaserat nätverk som använder backpropagation. För att göra detta möjligt att testa så behövde fyra delsteg genomföras. Dessa är utveckling av belöningsbaserad ANN, utveckling av exempelbaserad ANN, utveckling av testmiljö och evaluering av resultat. Resultaten visar att agenten belöningsbaserat nätverk har presterat bättre i det flesta testen men även att den varit mer slumpmässig. Det finns dock undantag där den agenten med exempelbaserat nätverk har varit bättre. Slutsatsen är att efter detta experiment rekommenderas en agent med belöningsbaserat nätverk över en med exempelbaserat men att detta inte är någon garanti för att få optimala resultat. Ett framtida arbete som hade varit intressant är att fokusera på endast en algoritm och se hur träning och skillnader på olika nätverksarkitekturer hade påverkat den.
APA, Harvard, Vancouver, ISO, and other styles
10

Norberg, David. "SAMEVOLUTION AV ARTIFICIELLT NEURALT NÄTVERK FÖR ATT EVALUERA SPELTILLSTÅND." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9552.

Full text
Abstract:
Detta arbete undersöker två tekniker för att evaluera spelplanen i minimaxalgoritmen. Den tekniken som fokuseras mest på i arbetet är ett artificiellt neuralt nätverk som evolveras med hjälp av samevolution. Tekniken är utformad för att inte behöva någon tidigare mänsklig expertis. Den andra tekniken använder heuristiker och mänsklig expertis för att få fram evalueringsfunktionen. Spelet som används för att testa teknikerna är Kinaschack. Resultaten antyder att tekniken i fokus inte fungerar till spelet Kinaschack. En undersökning där tekniken modifierades så att samevolution byttes ut gav ett bättre resultat. Detta behöver inte betyda att problemet är samevolution Men det tyder på att det är en faktor. Tekniken som arbetet fokuserar på är baserad på ett tidigare arbete där spelet Dam användes. Eftersom tekniken har visats fungera tidigare skulle det vara intressant att testa den med fler spel. I slutet av arbetet diskuteras en variant av tekniken för spelet Schack.
APA, Harvard, Vancouver, ISO, and other styles
11

Torstensson, Robbin. "Jämförelse av evolution och samevolution för att evaluera speltillstånd : I artificiella neurala nätverk kombinerat med minimax." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11005.

Full text
Abstract:
Detta arbete undersöker två olika tekniker för att evaluera speltillstånd i schack. Teknikerna är samevolution och historiebaserad evolution. De används i kombination med artificiella neurala nätverk och algoritmen minimax. Teknikerna används för att låta två agenter spela schack, genom att välja ut det bästa draget. Kan en agent som bygger på samevolution slå en agent som bygger på historiebaserad evolution? Teknikerna har testats genom att låta agenterna evolveras i 200 generationer var för att sedan låta dem spela mot varandra. Den samevolverade agenten vann tre av 24 matcher, den historiebaserade vann en, och resten slutade i remi. Det tyder på att en samevolverad agent kan slå en historiebaserad, men att de är väldigt lika. Undersökningen tyder på att samevolverade schackagenter har stor risk att hamna i ett lokalt maximum medan historiebaserade gör många bra drag, men saknar strategi för att vinna.
APA, Harvard, Vancouver, ISO, and other styles
12

Theo, Sobczak. "Maskininlärning och fallklassificering med MEMS-accelerometer : En studie i fallklassificering med artificiella neurala nätverk." Thesis, Högskolan i Gävle, Elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34013.

Full text
Abstract:
Denna rapport har sin utgångspunkt på skapandet av en maskininlärningsalgoritm för att kunna klassificera ett fysiskt fall av en person. En DC Kapacitiv MEMS-accelerometer (BMA250) kombinerat med en Tinyduino Processor (Atmega328P) används för datainsamling. Programmering av processorn och maskininlärningsalgoritmen skrivs i C++ och ANN (Artificiell Neuralt Nätverk) används för att klassificera det fysiska fallet. ANN kan approximera ett värde som tyder på ett falskt fall efter 10 000 träningssekvenser inom 5% av ett teoretiskt värde som tyder på ett resultat med 100% säkerhet och 0,0005% felmarginal. Ett teoretiskt värde som tyder på ett faktiskt fall kan klassificeras efter 5000 träningssekvenser inom 5% av det eftersökta värdet med 100% säkerhet och 0,0045% felmarginal.
APA, Harvard, Vancouver, ISO, and other styles
13

Hedenström, Patrik. "Olika arkitekturer för artificiella neurala nätverk i bilspel : En jämförelse av arkitekturerna feedforward, Elman och ESCN." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10995.

Full text
Abstract:
Detta arbete utvärderar ANN-arkitekturerna feedforward, Elman och ESCN då de används för att styra en bil i en enkel 2D-simulering. Nätverken tränas av en evolutionär algoritm som använder nätverkens vikter som genom för dess individer. Syftet med arbetet är att se om arkitekturerna presterar olika bra. Simuleringens komplexitet, i form av halka och sladd, samt banans svårighetsgrad varieras för att se vilka arkitekturer som klarar vilka komplexa problem bäst och var de eventuellt brister. Ett program utvecklades som testade de olika fallen och resultatet visade att Elman presterade sämst, speciellt då komplexiteten ökade, och ESCN presterade lite bättre än feedforward. Varför Elman presterade sämre fick inget svar i detta arbete, och ESCN använde sitt minne på ett sätt som skulle kunna vara värt att titta vidare på. Framtida arbete skulle kunna vara att ta reda på orsakerna till de ovanliga beteendena som uppstod samt att genomföra mer utförliga tester.
APA, Harvard, Vancouver, ISO, and other styles
14

Drottsgård, Alexander, and Jens Andreassen. "Effektivisering av automatiserad igenkänning av registreringsskyltar med hjälp av artificiella neurala nätverk för användning inom smarta hem." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20803.

Full text
Abstract:
Konceptet automatiserad igenkänning och avläsning av registreringsskyltarhar utvecklats mycket de senaste åren och användningen av Artificiellaneurala nätverk har introducerats i liten skala med lovande resultat. Viundersökte möjligheten att använda detta i ett automatiserat system förgarageportar och implementerade en prototyp för testning. Den traditionellaprocessen för att läsa av en skylt kräver flera steg, i vissa fall upp till fem.Dessa steg ger alla en felmarginal som aggregerat kan leda till över 30% riskför ett misslyckat resultat. I denna uppsats adresseras detta problem och medhjälp av att använda oss utav Artificiella neurala nätverk utvecklades enkortare process med endast två steg för att läsa en skylt, (1) lokaliseraregistreringsskylten (2) läsa karaktärerna på registreringsskylten. Dettaminskar antalet steg till hälften av den traditionella processen samt minskarrisken för fel med 13%. Vi gjorde en Litteraturstudie för att identifiera detlämpligaste neurala nätverket för uppgiften att lokalisera registreringsskyltarmed vår miljös begränsningar samt möjligheter i åtanke. Detta ledde tillanvändandet av Faster R-CNN, en algoritm som använder ett antal artificiellaneurala nätverk. Vi har använt metoden Design och Creation för att skapa enproof of concept prototyp som använder vårt föreslagna tillvägagångssätt föratt bevisa att det är möjligt att implementera detta i en verklig miljö.
The concept of automated recognition and reading of license plates haveevolved a lot the last years and the use of Artificial neural networks have beenintroduced in a small scale with promising results. We looked into thepossibility of using this in an automated garage port system and weimplemented a prototype for testing. The traditional process for reading alicense plate requires multiple steps, sometimes up to five. These steps all givea margin of error which aggregated sometimes leads to over 30% risk forfailure. In this paper we addressed this issue and with the help of a Artificialneural network. We developed a process with only two steps for the entireprocess of reading a license plate, (1) localize license plate (2) read thecharacters on the plate. This reduced the number of steps to half of theprevious number and also reduced the risk for errors with 13%. We performeda Literature Review to find the best suited algorithm for the task oflocalization of the license plate in our specific environment. We found FasterR-CNN, a algorithm which uses multiple artificial neural networks. We usedthe method Design and Creation to implement a proof of concept prototypeusing our approach which proved that this is possible to do in a realenvironment.
APA, Harvard, Vancouver, ISO, and other styles
15

Rehn, David. "Strategisk förnyelseplanering av spillvattenledningar : Med ett artificiellt neuralt nätverk som analysverktyg." Thesis, KTH, Vattendragsteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214400.

Full text
Abstract:
Sveriges kommunala spillvattenledningsnät står idag inför en enorm utmaning, då eftersattunderhåll i kombination med klimatförändringar kommer kräva stora framtida investeringaroch tidskrävande analyser. Detta examensarbete har utförts med målet att förenkla dettastundande förnyelsearbete. Som metod har en enkät utformats, och besvarats av totalt 84kommuner, med syftet att presentera en lägesbild. Vidare har ett artificiellt neuralt nätverkutvecklats, och tillämpats på data från Täby kommun, med syftet att förutspå vilkaspillvattenledningar i ett ledningsnät som har behov av förnyelse. Resultatet visar att det finns ett stort förbättringsbehov i det strategiska förnyelsearbetet.Störst behov, och potential, finns i hantering och insamling av data, där artificiella neuralanätverk kan tillämpas och utnyttjas som ett effektivt och intelligent verktyg. Det artificiellaneurala nätverket som utvecklats, och tillämpats, i detta examensarbete uppnådde en högprecision (93 %), och beräknade att Täby kommun har ca 10-20 spillvattenledningar medoupptäckt förnyelsebehov. Detta bör dock tas med viss reservation pga. bristandedatakvalitet. Avslutningsvis kan konstateras att lösningen för framtidens ledningsförnyelserelateradeproblem och utmaningar, ligger i förmågan att effektivt och intelligent samla in, struktureraoch analysera data om ledningsnäten. Artificiella neurala nätverk är ett verktyg som kanoch bör användas för detta ändamål då man, med hjälp av artificiell intelligens, kan göraprecisa analyser och skapa helhetsbilder över ledningsnät, vilket kan spara bådefinansiella, temporala och personella resurser.
Aging sewer systems and deferred maintenance pose one of the greatest challenges toSwedish municipal infrastructure in the future. This degree project has been completedwith the aim to develop a method with which to sufficiently solve these future challenges,and help decision makers to properly invest in the networks, and optimise the pipe renewalprocess. As a methodology, a survey has been created, and answered by 84representatives from various municipalities and water and waste organisations, in order topresent a deeper understanding of the current situation in Sweden. Furthermore, anartificial neural network has been developed, and trained with data from Täby municipality,with the purpose of predicting which pipes in a sewer network that need to be renewed. The results show that there is a great need for improvement in the strategic renewalplanning. The greatest need, and potential, is found in the collection and processing ofdata, where artificial neural networks can be applied as a highly efficient and intelligenttool, which is proven by the high accuracy (93 %) and strong ability to predict pipes withrenewal needs (ca 10-20 pipes for Täby municipality) that the neural network developedfor this degree project showed. It is, however, important to emphasize that the quality ofthe obtained data from Täby was relatively low, and that the results therefore has to beviewed with some skepticism. It is nevertheless reasonable to assume that artificial intelligence, and more specifically,artificial neural networks, will play an important role in tackling future challenges related tostrategic asset management and renewal planning for underground sewer infrastructure.The main solution lies in the ability to efficiently and intelligently collect, structure, andprocess data, and this is a field where artificial neural networks, as made evident by thisdegree project, certainly have abilities to flourish and contribute to savings in bothfinancial, temporal and human resources.
APA, Harvard, Vancouver, ISO, and other styles
16

Gilljam, Daniel, and Mario Youssef. "Jämförelse av artificiella neurala nätverksalgoritmerför klassificering av omdömen." Thesis, KTH, Hälsoinformatik och logistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230660.

Full text
Abstract:
Vid stor mängd data i form av kundomdömen kan det vara ett relativt tidskrävande arbeteatt bedöma varje omdömes sentiment manuellt, om det är positivt eller negativt laddat. Denna avhandling har utförts för att automatiskt kunna klassificera kundomdömen efter positiva eller negativa omdömen vilket hanterades med hjälp av maskininlärning. Tre olika djupa neurala nätverk testades och jämfördes med hjälp av två olika ramverk, TensorFlow och Keras, på både större och mindre datamängder. Även olika inbäddningsmetoder testades med de neurala nätverken. Den bästa kombination av neuralt nätverk, ramverk och inbäddningsmetod var ett Convolutional Neural Network (CNN) som använde ordinbäddningsmetoden Word2Vec, var skriven i ramverket Keras och gav en träffsäkerhetpå ca 88.87% med en avvikelse på ca 0.4%. CNN gav bäst resultat i alla olika tester framför de andra två neurala nätverken, Recurrent Neural Network (RNN) och Convolutional Recurrent Neural Network (CRNN)
With large amount of data in the form of customer reviews, it could be time consuming to manually go through each review and decide if its sentiment is positive or negative. This thesis have been done to automatically classify client reviews to determine if a review is positive or negative. This was dealt with by machine learning. Three different deep neural network was tested on greater and lesser datasets, and compared with the help of two different frameworks, TensorFlow and Keras. Different embedding methods were tested on the neural networks. The best combination of a neural network, a framework and anembedding was the Convolutional Neural Network (CNN) which used the word embedding method Word2Vec, was written in Keras framework and gave an accuracy of approximately 88.87% with a deviation of approximately 0.4%. CNN scored a better result in all of the tests in comparison with the two other neural networks, Recurrent NeuralNetwork (RNN) and Convolutional Recurrent Neural Network (CRNN).
APA, Harvard, Vancouver, ISO, and other styles
17

Akterhall, Joakim. "Artificiell intelligens - ANN och evolution i shooterspel." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5984.

Full text
Abstract:
Detta arbete undersöker hur två olika nätverksarkitekturer för artificiella neurala nätverk fungerar i en testmiljö av shooter-karaktär. De två arkitekturer som undersöks är ett feedforward-nätverk samt ett elman-nätverk som tränas med hjälp av evolutionära algoritmer. Skillnaden på de två valda nätverksarkitekturerna är att det sistnämnda har ett korttidsminne. Resultaten visar att det i den testmiljö som använts inte är någon skillnad på de två nätverksarkitekturerna, utan de uppnår i princip samma resultat. Dock så har de beteenden som nätverken uppnått visat på att det är möjligt att använda agenter som är skapade av artificiella neurala nätverk i ett shooter-spel och att de kan generera bra resultat. Något som inte fokuserats på i detta arbete men som skulle vara intressant att kolla vidare på, är till exempel förändring av storleken på nätverken eller att undersöka om ett långtidsminne på det rekurrenta nätverket hade förändrat resultatet.
APA, Harvard, Vancouver, ISO, and other styles
18

Klingberg, Hanna, and Filippa Olofsson. "Att använda AI för att detektera bröstcancer : En explorativ studie kring användning av bildanalys inom svensk sjukvård." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302726.

Full text
Abstract:
Breast cancer is the most common form of cancer for women around the world. In an attempt to decrease the mortality, women in Sweden between the ages of 40-74 years are called to regular mammography screenings to detect the disease as early as possible. Despite this, around 1400 die from the disease every year in Sweden. Every mammography image has to be analyzed by two radiologists. Despite this and regular screening, there are cases that go unnoticed. The factors that lessen the effectiveness of the system are that some cases go unnoticed and analyzing the mammography images is time consuming. This paper has investigated whether AI can be used to help solve these issues. Earlier research examines both of these aspects. Algorithms performing at approximately the same level of accuracy as radiologists and lessening the workload for examining radiologists has been developed [1]. This paper examined how to develop a similar simplified algorithm, how it can be implemented in healthcare and what the consequences of that would be. Hopefully, usage of similar technology will lead to a decrease in mortality and more accurate assessments. The study was conducted by interviewing two experts within the subject, and an attempt to develop an algorithm that through image analysis can classify tumours from mammography images.  The result shows that there is a big potential for using AI within healthcare, and by that enabling more accurate diagnosis and reducing mortality. During development of the algorithm a deeper understanding of the difficulties was given, such as the need for adequate processing power, processing and organization of image databases and the complexity in developing such a ML-algorithm for image analysis. The developed algorithm performed slightly better than random when detecting breast cancer on mammography images.
Bröstcancer är den vanligaste cancern bland kvinnor i världen. För att minska dödligheten kallas kvinnor i Sverige mellan 40-74 år regelbundet till mammografiscreening, i syfte att upptäcka tumörer i tid. Trots detta avlider ca. 1400 av sjukdomen varje år. Varje mammografibild granskas av två läkare. Trots detta och regelbunden screening finns det fall som missas. De faktorer som gör att systemet inte fungerar optimalt idag är att viss cancer inte upptäcks i tid samt att analysering av mammografibilderna är tidskrävande. Det här arbetet har undersökt huruvida användning av AI kan bidra till att lösa dessa problem. I tidigare forskning undersöks även båda dessa aspekter. Det har utvecklats AI-algoritmer som presterar ungefär i nivå med radiologer samt minskar arbetsbördan för undersökande radiologer [1]. I detta arbete undersöktes hur utvecklandet av en liknande algoritm går till, hur den faktiskt kan implementeras i sjukvården samt vilka konsekvenser detta kan ha. Förhoppningsvis kan tillämpning av liknande teknik leda till minskad dödlighet och säkrare bedömning. Studien genomfördes med intervjuer av två experter inom området, samt försök att utveckla en förenklad algoritm som genom bildanalys kan klassificera tumörer från mammografibilder. Resultatet visade att det finns stor potential för att använda AI inom sjukvården och med hjälp av detta uppnå säkrare bedömning och färre dödsfall. Under utvecklingen av algoritmen gavs en djupare förståelse för de svårigheter som uppkommer i utvecklandet av en sådan algoritm; såsom de krav på tillgänglig processorkraft, behandling och organisering av bilddatabaser och komplexiteten i att utveckla en maskininlärningsalgoritm för bildanalys. Algoritmen som utvecklades presterade något bättre än slumpen i detektion av tumörer på mammografier.
APA, Harvard, Vancouver, ISO, and other styles
19

Kloo, Ingela. "Evolution av målsökande och flyende boids." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-6345.

Full text
Abstract:
Detta arbete använder genetiska algoritmer för att få fram ANN hos boids utifrån två uppsättningar regler och jämför de resulterande beteendena med varandra. Boids är simulerade fåglar i en fågelflock som var för sig styrs med enkla regler men som tillsammans bildar ett flockbeteende. Genetiska algoritmer liknar naturens evolution. En population vars egenskaper kodas på ett genom blir bättre på de egenskaperna genom att de bästa individerna väljs ut och får utvecklas mer medans de sämre rensas bort. ANN står för artificiella neurala närvek och ska likna biologiska neurala nätverk och ska med andra ord fungera som en hjärna. Boids följer normalt tre regler. Centrering, hastighetsmatchning och undviker kollisioner. Detta arbete undersöker om boids beter sig mer naturligt om de även måste leta mat och undvika fiender. Det undersöker också en metod för att objektivt kunna mäta naturlighet.
APA, Harvard, Vancouver, ISO, and other styles
20

Alajarva, Sami. "Användarverifiering från webbkamera." Thesis, University of Skövde, School of Humanities and Informatics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-72.

Full text
Abstract:

Arbetet som presenteras i den här rapporten handlar om ansiktsigenkänning från webbkameror med hjälp av principal component analysis samt artificiella neurala nätverk av typen feedforward. Arbetet förbättrar tekniken med hjälp av filterbaserade metoder som bland annat används inom ansiktsdetektering. Dessa filter bygger på att skicka med redundant data av delregioner av ansiktet.

APA, Harvard, Vancouver, ISO, and other styles
21

Roxell, Anders. "Kontrollarkitekturers generaliseringsförmåga vid yt-täckning." Thesis, University of Skövde, School of Humanities and Informatics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-950.

Full text
Abstract:

I dagens samhälle finns det en mängd olika maskiner för att underlätta ardagssysslorna, såsom batteridrivna dammsugare och gräsklippare. Gräsklippardomänen används i detta projekt, för att undersöka vilken av monolitisk och hierarkisk kontrollarkitektur i en batteridriven gräsklippare som har bäst generaliseringsförmåga. Gräsklippardomänen används som testdomän därför att det finns en oändlig mängd olika yt-fromer. Med generalisering menas hur bra gräsklipparen klipper på ytor som den nyligen eller aldrig tränats på. Experiment har utförs på båda kontrollarkitekturerna i en simulator. Val av kontrollarkitektur spelar inte någon större roll för gräsklipparen. Bidraget med detta arbete är att undersöka hur bra de olika arkitekturerna generaliserar.

APA, Harvard, Vancouver, ISO, and other styles
22

Hellner, Simon, and Henrik Syvertsson. "Neurala nätverk försjälvkörande fordon : Utforskande av olika tillvägagångssätt." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84560.

Full text
Abstract:
Artificiella neurala nätverk (ANN) har ett brett tillämpningsområde och blir allt relevantare på flera håll, inte minst för självkörande fordon. För att träna nätverken användsmeta-algoritmer. Nätverken kan styra fordonen med hjälp av olika typer av indata. I detta projekt har vi undersökt två meta-algoritmer: genetisk algoritm (GA) och gradient descent tillsammans med bakåtpropagering (GD & BP). Vi har även undersökt två typer av indata: avståndssensorer och linjedetektering. Vi redogör för teorin bakom de metoder vi har försökt implementera. Vi lyckades inte använda GD & BP för att träna nätverk att köra fordon, men vi redogör för hur vi försökte. I resultatdelen redovisar vi hur det med GA gick att träna ANN som använder avståndssensorer och linjedetektering som indata. Sammanfattningsvis lyckades vi implementera självkörande fordon med två olika typer av indata.
Artificial Neural Networks (ANN) have a broad area of application and are growing increasingly relevant, not least in the field of autonomous vehicles. Meta algorithms are used to train networks, which can control a vehicle using several kinds of input data. In this project we have looked at two meta algorithms: genetic algorithm (GA), and gradient descent with backpropagation (GD & BP). We have looked at two types of input to the ANN: distance sensors and line detection. We explain the theory behind the methods we have tried to implement. We did not succeed in using GD & BP to train ANNs to control vehicles, but we describe our attemps. We did however succeeded in using GA to train ANNs using a combination of distance sensors and line detection as input. In summary we managed to train ANNs to control vehicles using two methods of input, and we encountered interesting problems along the way.
APA, Harvard, Vancouver, ISO, and other styles
23

Fleron, Emil. "Automatic Classification of text regarding Child Sexual Abusive Material." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-357290.

Full text
Abstract:
Sexual abuse is a horrible reality for many children around the world. As technology improves the availability of encryption schemes and anonymity over the internet, the perpetrators of these acts are increasingly hard to track. There have been several advances in recent time to automate the work of trying to catch these perpetrators and especially image recognition has seen great promise. While image recognition is a natural approach to these subjects as many abuses are documented and shared between perpetrators, there are potentially many leads that go unexplored if only focusing on images and videos. This study evaluates how methods of supervised machine learning solely based on textual data can point us to posts on forums which are connected to the distribution of child sexual abusive material. Feature representation techniques such as word-vectors, paragraphvectors and the FastText algorithm were used in conjunction with supervised machine learning methods based on deep learning, including methods of multilayer perceptrons, convolutional neural networks and long-short term memory models. The models were trained and evaluated on a dataset based on forum posts from a Dark Net leak from last year, and are evaluated as well on text collected from websites that had been manually verified by Ecpat. Those models were compared to a baseline model based on logistic regression. It was found that those state-of-the-art models achieve a similar performance, all outperforming the 'benchmark' logistic regression model. Further improvements can be achieved based on the availability of more annotated data.
APA, Harvard, Vancouver, ISO, and other styles
24

Karlsteen, Joakim. "Fuskdetektion med artificiellt neuralt nätverk." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20527.

Full text
Abstract:
För onlinespel är fuskande spelare ett problem som påverkar både övriga spelare och spelföretagen. Det är därför intressant att ta fram en metod som upptäcker fusk. Detta arbete fokuserar på att upptäcka aimbotfusk inom CS:GO med hjälp av artificiellt neuralt nätverk. Arbetet jämför hur väl ett så kallat MLP kan detektera fusk då informationen representeras i tidsserier eller som frekvensdata. Olika konfigurationer jämförs i syfte att hitta bästa möjliga kombinationen för ett MLP. Resultaten visar att frekvensdata är ett mycket bra sätt att upptäcka aimbotfusk. Förhoppningen är att metoden kan utvecklas för att användas även för att upptäcka andra typer av fusk i onlinespel.

Det finns övrigt digitalt material (t.ex. film-, bild- eller ljudfiler) eller modeller/artefakter tillhörande examensarbetet som ska skickas till arkivet.

APA, Harvard, Vancouver, ISO, and other styles
25

Carlsson, Josefin, and Madeleine Johansson. "Att täcka en obekant yta med Spanning Tree Covering, Topologisk Täckande Algoritm, Trilobite." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1754.

Full text
Abstract:
Det har blivit mer och mer vanligt med ny, datoriserad teknik i hemmen. Fler människor har ett allt stressigare liv och inte längre samma tid att ta hand om det egna hemmet. Behovet av en hjälpande hand med hushållsarbete har blivit allt större. Tänk själv att komma hem från jobbet eller skolan och så har golvet blivit skinande rent utan att Ni knappt har behövt göra någonting! Det finns idag flera olika robotar på marknaden för detta ändamål. En av dessa är den autonoma dammsugaren, som är det vi inriktat vår uppsats på. I huvudsak är uppsatsen inriktad på mjukvaran, som kan användas i en autonom dammsugare. Vi har valt att titta närmare på två stycken sökalgoritmer, som kan användas av autonoma mobila robotar, exempelvis en autonom dammsugare, som har i uppdrag att täcka en hel obekant yta. Dessa algoritmer är Spanning Tree Covering (STC) och ”A Topological Coverage Algorithm”, också kallad ”Landmark-based World Model” (fritt översatt till Topologisk Täckande Algoritm, TTA). Vi har också undersökt hur ett av Sveriges största märken på marknaden för autonoma dammsugare, nämligen Electrolux Trilobite ZA1, klarar sig i test. Vi har även analyserat testet med Trilobiten och jämfört detta med antaget beteende hos Trilobiten ifall den hade varit implementerad med sökalgoritmerna STC eller TTA. Hur fungerar sökalgoritmerna? Hur kan en autonom dammsugare hitta på en hel obekant yta? Hur beter sig Electrolux Trilobite ZA1? Täcker de alla en obekant yta? Är de effektiva?
APA, Harvard, Vancouver, ISO, and other styles
26

Corneliussen, Ilian. "Läckage detektering med artificiellt neuralt nätverk i ett vattendistributionsnät." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255710.

Full text
Abstract:
Tidig läckagedetektion är ett sätt att göra vattendistributionsnät effektivare och hållbart. Målet med detta projekt är att undersöka möjligheten att upptäcka läckage i vattenfördelningsnät med hjälp av artificiellt neuralt nätverk. Projektet bygger på reala data som samlats in från Vattendistributionsnätet i Stockholm och fokuserar på hur man presenterar förutsägelsen från neuralt nätverk på ett intellektuellt sätt genom att implementera och analysera behovet av ett tidsfilter. Studien visar att det kan vara möjligt att upptäcka läckage i ett vattendistributionsnät med en binär noggrannhet på 87%. En förbättring till 98% uppnåddes genom att implementera ett tidsfilter.
Early leakage detection is one way to make water distribution networks more efficient and sustainable. The goal of this project is to investigate the possibility to detect leakages in water distribution networks with the help of artificial neural networks. The project is based on real data collected from Stockholm water distribution network and is focusing on how to present the prediction from neural networks in an intellectual manner, by implementing and analyzing the need of a time filter. The study shows that it might be possible to detect leakages in a water distribution network with a binary accuracy of 87\%. An improvement to 98\% was achieved by implementing a time filter.
APA, Harvard, Vancouver, ISO, and other styles
27

Lundberg, Emil. "Adding temporal plasticity to a self-organizing incremental neural network using temporal activity diffusion." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180346.

Full text
Abstract:
Vector Quantization (VQ) is a classic optimization problem and a simple approach to pattern recognition. Applications include lossy data compression, clustering and speech and speaker recognition. Although VQ has largely been replaced by time-aware techniques like Hidden Markov Models (HMMs) and Dynamic Time Warping (DTW) in some applications, such as speech and speaker recognition, VQ still retains some significance due to its much lower computational cost — especially for embedded systems. A recent study also demonstrates a multi-section VQ system which achieves performance rivaling that of DTW in an application to handwritten signature recognition, at a much lower computational cost. Adding sensitivity to temporal patterns to a VQ algorithm could help improve such results further. SOTPAR2 is such an extension of Neural Gas, an Artificial Neural Network algorithm for VQ. SOTPAR2 uses a conceptually simple approach, based on adding lateral connections between network nodes and creating “temporal activity” that diffuses through adjacent nodes. The activity in turn makes the nearest-neighbor classifier biased toward network nodes with high activity, and the SOTPAR2 authors report improvements over Neural Gas in an application to time series prediction. This report presents an investigation of how this same extension affects quantization and prediction performance of the self-organizing incremental neural network (SOINN) algorithm. SOINN is a VQ algorithm which automatically chooses a suitable codebook size and can also be used for clustering with arbitrary cluster shapes. This extension is found to not improve the performance of SOINN, in fact it makes performance worse in all experiments attempted. A discussion of this result is provided, along with a discussion of the impact of the algorithm parameters, and possible future work to improve the results is suggested.
Vektorkvantisering (VQ; eng: Vector Quantization) är ett klassiskt problem och en enkel metod för mönsterigenkänning. Bland tillämpningar finns förstörande datakompression, klustring och igenkänning av tal och talare. Även om VQ i stort har ersatts av tidsmedvetna tekniker såsom dolda Markovmodeller (HMM, eng: Hidden Markov Models) och dynamisk tidskrökning (DTW, eng: Dynamic Time Warping) i vissa tillämpningar, som tal- och talarigenkänning, har VQ ännu viss relevans tack vare sin mycket lägre beräkningsmässiga kostnad — särskilt för exempelvis inbyggda system. En ny studie demonstrerar också ett VQ-system med flera sektioner som åstadkommer prestanda i klass med DTW i en tillämpning på igenkänning av handskrivna signaturer, men till en mycket lägre beräkningsmässig kostnad. Att dra nytta av temporala mönster i en VQ-algoritm skulle kunna hjälpa till att förbättra sådana resultat ytterligare. SOTPAR2 är en sådan utökning av Neural Gas, en artificiell neural nätverk-algorithm för VQ. SOTPAR2 använder en konceptuellt enkel idé, baserad på att lägga till sidleds anslutningar mellan nätverksnoder och skapa “temporal aktivitet” som diffunderar genom anslutna noder. Aktiviteten gör sedan så att närmaste-granne-klassificeraren föredrar noder med hög aktivitet, och författarna till SOTPAR2 rapporterar förbättrade resultat jämfört med Neural Gas i en tillämpning på förutsägning av en tidsserie. I denna rapport undersöks hur samma utökning påverkar kvantiserings- och förutsägningsprestanda hos algoritmen självorganiserande inkrementellt neuralt nätverk (SOINN, eng: self-organizing incremental neural network). SOINN är en VQ-algorithm som automatiskt väljer en lämplig kodboksstorlek och också kan användas för klustring med godtyckliga klusterformer. Experimentella resultat visar att denna utökning inte förbättrar prestandan hos SOINN, istället försämrades prestandan i alla experiment som genomfördes. Detta resultat diskuteras, liksom inverkan av parametervärden på prestandan, och möjligt framtida arbete för att förbättra resultaten föreslås.
APA, Harvard, Vancouver, ISO, and other styles
28

Bodell, Victor. "Comparing Machine Learning Estimation of Fuel Consumption of Heavy-duty Vehicles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279826.

Full text
Abstract:
Fuel consumption is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefor request an estimate of the fuel consumption of a given vehicle. Scania uses modular design when constructing heavy-duty vehicles. The modular design allows a customer to specify which building blocks to use when constructing the vehicle, such as gear box, engine and chassis type. The many possible combinations means that the same vehicle is rarely sold twice, which can make fuel consumption measurements unfeasible. This study investigates the accuracy of machine learning algorithms in predicting fuel consumption for heavy-duty vehicles. The study is conducted at Scania. Scania has also provided the data used in the study. This study also examines the prediction power of different parameters. Performance is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of Linear regression (LR), K-nearest neighbor (KNN) and Artificial neural networks (ANN) is compared using statistical hypothesis testing. It is found that using Country as an input parameter yields a performance increase in all the algorithms. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The performance of the final models is comparable to models of previous studies in both the simulated and operational estimation scenarios.
Bränsleförbrukning utgör en av nyckelfaktorerna för att avgöra hur mycket det kostar att använda tunga lastbilar. En köpare av en tung lastbil kan därmed begära en uppskattning av hur mycket bränsle ett givet fordon förbrukar. Scania använder sig av en modulär designprincip vid fordonskonstruktion, vilket ger kunden möjlighet att bestämma vilka byggnadsblock som ska utgöra ett for- don. Detta gör att det kan vara omöjligt att mäta förbrukningen av ett tidigare icke-producerat fordon. Den här studien undersöker exaktheten av maskininlärningsalgoritmer för att estimera bränsleförbrukning av tunga lastbilar. Studien genomförs vid Scania, som även tillhandahåller data. Användbarheten av olika in-parametrar undersöks. Algoritmernas prestanda utvärderas genom att rapportera det kvadrerade felvärdet uppmätt mellan det riktiga uppmätta värdet och det av algoritmen uppskattade värdet. Bränsleförbrukning estimeras för simulerad data och för uppmätta värden från fordon i bruk. Tre kategorier av algoritmer undersöks: Artificiella neurala nätverk, linjär regression och K-nearest neighbor. Jämförelsen mellan algoritmer använder statistisk hypotes-testning. Resultatet visar att parametern som beskriver vilket land fordonet registrerats i förbättrar samtliga algoritmers estimering. Den statistiska utvärderingen finner att artificiella neurala nätverk ger det lägsta felet av de tre kategorierna av algoritmer i estimering av simulerade och uppmätta värden. De slutgiltiga modellernas exakthet är jämförbar med resultat från tidigare studier.
APA, Harvard, Vancouver, ISO, and other styles
29

Heder, Marcus. "Artificiell intelligens som evolverande animationsverktyg." Thesis, University of Skövde, School of Humanities and Informatics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4075.

Full text
Abstract:

Animationer av karaktärer och objekt är en viktig del vid skapandet av spel. Detta är något som det läggs mycket fokus på att få så realistisk som möjligt, även spelfysik används till viss del här för att ge karaktärer möjlighet att anpassa sig till miljöer. Det här arbetet undersöker och implementerar ett styrsystem, som används för animations generering till en trasdocka, med hjälp av artificiell intelligens. Styrsystemet använder sig av en självorganiserande artificiell intelligens för att generera animationer som följer ett specifikt beteende, i det här arbetet har animationer som fokuserar på att skydda höften skapats.

Arbetet har gett goda resultat som indikerar på att denna lösning fungerar för att generera animationer på en trasdocka, som ska följa ett visst beteende. Detta visade sig möjligt genom att använda artificiellt neuralt nätverk kombinerat med genetisk algoritm.

APA, Harvard, Vancouver, ISO, and other styles
30

Boley, Alexander. "Automatic wind turbine operation analysis through neural networks." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214551.

Full text
Abstract:
This master thesis handles the development of an automatic benchmarking program for wind turbines and the thesis works as the theoretical basis for this program. The program is created at the request of the power company OX2 who wanted this potential to be investigated. The mission given by the company is to: 1. to find a good key point indicator for the efficiency of a wind turbine, 2. to find an efficient way to assess this and 3. to write a program that does this automatically and continuously. The thesis determines with a study of previous research that the best method to utilize for these kinds of continuous analyses are artificial neural networks which can train themselves on historical data and then assess if the wind turbine is working better or worse than it should with regards to its history. This comparison between the neural network predicted operation and the actual operation works as the measurement of the efficiency, the key point indicator for how the turbine work compared to how it historically should operate. The program is based on this principle and is completely written in MATLAB. Further testing of the program found that the best variables to use are wind speed and the blade pitch angle as input variables for the neural network and active power as the target used as the variable to predict and assess the operation. The final program was able to be fully automated and integrated into the OX2 system thanks to the possibility to continuously import wind turbine data through APIs. In the final testing was the program able to identify 75% of the anomalies manually found in the half year and in the five turbines used for this thesis, the small anomalies not found manually but identified by the program excluded.
Den här masteruppsatsen hanterar utvecklandet av ett automatiskt driftanalyseringsprogram för vindkraftverk och fungerar som det teoretiska underlaget för detta program. Programmet utvecklades på uppdrag av kraftbolaget OX2 som ville undersöka potentialen för ett sådant analysprogram i deras verksamhet. Uppdraget givet var att: 1. ta fram en bra indikator när det gäller den faktiska effektiviteten av ett vindkraftverk, 2. att hitta ett effektivt sätt att använda detta måttet i en analys där målet är att hitta avvikelser, och 3. skriva ett program som automatiskt kan använda måttet och metoden över tiden. Rapporten kommer via litteraturstudie fram till att tidigare forskning visar på att neurala nätverk är den mest lovande metoden för att genomföra sådan här analys. Dessa nätverk kan träna sig själva på historiska data och sedan analysera om vindturbinen arbetar bättre eller sämre än historiskt. Den här jämförelsen mellan den historiskt grundade förutspådda kraften ut och den faktiska kraften ut fungerar som kvalitetsmåttet på hur bra turbinen fungerar. Programmet är baserat på den här principen och är helt skriven i MATLAB. Vidare tester av programmet visar att de bästa variablerna att använda för att förutspå kraften ut är vindhastigheten och bladens vinkel mot vinden. Slutprogrammet var kapabelt att fullt automatiskt och integrerat i OX2s system identifiera 75% av alla avvikelser som manuellt hittats i ett halvårs data på de fem turbinerna använda för rapporten, småfel hittade av programmet men inte manuellt exkluderat.
APA, Harvard, Vancouver, ISO, and other styles
31

Ekberg, Marie. "Inlärning och illusionen av intelligenta karaktärer : Undersökning av hur inlärning hos karaktärer påverkar spelarens uppfattning av intelligenta karaktärer i spel." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8479.

Full text
Abstract:
Det här arbetet har undersökt hur inlärning av hur en datorstyrd karaktär fattar sina beslut baserat på det gällande speltillståndet, påverkar spelarens uppfattning om hur mänskligt intelligent dess resulterande beteende uppfattas, med bakgrunden att det finns ett behov av intelligentare beteenden hos karaktärer i spel. Undersökningen har genomförts genom att jämföra en tillståndsmaskin med ett artificiellt neuralt nätverk, implementerade i ett enklare actionspel med en spelare och en datorstyrd karaktär. Nätverket är konstruerat att initialt bete sig som tillståndsmaskinen, men sedan utveckla sitt beteende genom att lära från den individuella spelarens spelstil. Ett antal testpersoner har sedan fått spela spelet mot respektive teknik, och fått ange hur de upplevde respektive beteende i en enkätundersökning. Resultatet av undersökningens sammanställda data särskiljer inte det resulterande beteendet från tillståndsmaskinen med beteendet från det artificiella neurala nätverket, vilket kan ha en förklaring i undersökningens felkällor, samt den mindre domänen teknikerna implementerats i.
APA, Harvard, Vancouver, ISO, and other styles
32

Dahlberg, Emil, Mattias Mineur, Linus Shoravi, and Holger Swartling. "Replacing Setpoint Control with Machine Learning : Model Predictive Control Using Artificial Neural Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413003.

Full text
Abstract:
Indoor climate control is responsible for a substantial amount of the world's total energy expenditure. In a time of climate crisis where a reduction of energy consumption is crucial to avoid climate disaster, indoor climate control is a ripe target for eliminating energy waste. The conventional method of adjusting the indoor climate with the use of setpoint curves, based solely on outdoor temperature, may lead to notable inefficiencies. This project evaluates the possibility to replace this method of regulation with a system based on model predictive control (MPC) in one of Uppsala University Hospitals office buildings. A prototype of an MPC controller using Artificial Neural Networks (ANN) as its system model was developed. The system takes several data sources into account, including indoor and outdoor temperatures, radiator flowline and return temperatures, current solar radiation as well as forecast for both solar radiation and outdoor temperature. The system was not set in production but the controller's predicted values correspond well to the buildings current thermal behaviour and weather data. These theoretical results attest to the viability of using the method to regulate the indoor climate in buildings in place of setpoint curves.
Bibehållande av inomhusklimat står för en avsevärd del av världens totala energikonsumtion. Med dagens klimatförändringar där minskad energikonsumtion är viktigt för den hållbara utvecklingen så är inomhusklimat ett lämpligt mål för att förhindra slösad energi. Konventionell styrning av inomhusklimat använder sig av börvärdeskurvor, baserade enbart på utomhustemperatur, vilket kan leda till anmärkningsvärt energispill. Detta projekt utvärderar möjligheten att ersätta denna styrmetod med ett system baserat på model predictive control (MPC) och använda detta i en av Akademiska sjukhusets lokaler i Uppsala. En MPC styrenhet som använder Artificiella Neurala Nätverk (ANN) som sin modell utvecklades. Systemet använder sig av flera datakällor däribland inomhus- och utomhustemperatur, radiatorslingornas framlednings- och returtemperatur, rådande solinstrålning såväl som prognoser för solinstrålning och utomhustemperatur. Systemet sattes inte i produktion men dess prognos stämmer väl överens med tillgänglig väderdata och husets termiska beteende. De presenterade resultaten påvisar metoden vara ett lämpligt substitut för styrning med börvärdeskurvor.
APA, Harvard, Vancouver, ISO, and other styles
33

Phung, Viet-Anh. "Input Calibration, Code Validation and Surrogate Model Development for Analysis of Two-phase Circulation Instability and Core Relocation Phenomena." Doctoral thesis, KTH, Kärnkraftssäkerhet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202957.

Full text
Abstract:
Code validation and uncertainty quantification are important tasks in nuclear reactor safety analysis. Code users have to deal with large number of uncertain parameters, complex multi-physics, multi-dimensional and multi-scale phenomena. In order to make results of analysis more robust, it is important to develop and employ procedures for guiding user choices in quantification of the uncertainties.   The work aims to further develop approaches and procedures for system analysis code validation and application to practical problems of safety analysis. The work is divided into two parts.   The first part presents validation of two reactor system thermal-hydraulic (STH) codes RELAP5 and TRACE for prediction of two-phase circulation flow instability.   The goals of the first part are to: (a) develop and apply efficient methods for input calibration and STH code validation against unsteady flow experiments with two-phase circulation flow instability, and (b) examine the codes capability to predict instantaneous thermal hydraulic parameters and flow regimes during the transients.   Two approaches have been developed: a non-automated procedure based on separate treatment of uncertain input parameters (UIPs) and an automated method using genetic algorithm. Multiple measured parameters and system response quantities (SRQs) are employed in both calibration of uncertain parameters in the code input deck and validation of RELAP5 and TRACE codes. The effect of improvement in RELAP5 flow regime identification on code prediction of thermal-hydraulic parameters has been studied.   Result of the code validations demonstrates that RELAP5 and TRACE can reproduce qualitative behaviour of two-phase flow instability. However, both codes misidentified instantaneous flow regimes, and it was not possible to predict simultaneously experimental values of oscillation period and maximum inlet flow rate. The outcome suggests importance of simultaneous consideration of multiple SRQs and different test regimes for quantitative code validation.   The second part of this work addresses core degradation and relocation to the lower head of a boiling water reactor (BWR). Properties of the debris in the lower head provide initial conditions for vessel failure, melt release and ex-vessel accident progression.   The goals of the second part are to: (a) obtain a representative database of MELCOR solutions for characteristics of debris in the reactor lower plenum for different accident scenarios, and (b) develop a computationally efficient surrogate model (SM) that can be used in extensive uncertainty analysis for prediction of the debris bed characteristics.   MELCOR code coupled with genetic algorithm, random and grid sampling methods was used to generate a database of the full model solutions and to investigate in-vessel corium debris relocation in a Nordic BWR. Artificial neural networks (ANNs) with classification (grouping) of scenarios have been used for development of the SM in order to address the issue of chaotic response of the full model especially in the transition region.   The core relocation analysis shows that there are two main groups of scenarios: with relatively small (<20 tons) and large (>100 tons) amounts of total relocated debris in the reactor lower plenum. The domains are separated by transition regions, in which small variation of the input can result in large changes in the final mass of debris.  SMs using multiple ANNs with/without weighting between different groups effectively filter out the noise and provide a better prediction of the output cumulative distribution function, but increase the mean squared error compared to a single ANN.
Validering av datorkoder och kvantifiering av osäkerhetsfaktorer är viktiga delar vid säkerhetsanalys av kärnkraftsreaktorer. Datorkodanvändaren måste hantera ett stort antal osäkra parametrar vid beskrivningen av fysikaliska fenomen i flera dimensioner från mikro- till makroskala. För att göra analysresultaten mer robusta, är det viktigt att utveckla och tillämpa rutiner för att vägleda användaren vid kvantifiering av osäkerheter.Detta arbete syftar till att vidareutveckla metoder och förfaranden för validering av systemkoder och deras tillämpning på praktiska problem i säkerhetsanalysen. Arbetet delas in i två delar.Första delen presenterar validering av de termohydrauliska systemkoderna (STH) RELAP5 och TRACE vid analys av tvåfasinstabilitet i cirkulationsflödet.Målen för den första delen är att: (a) utveckla och tillämpa effektiva metoder för kalibrering av indatafiler och validering av STH mot flödesexperiment med tvåfas cirkulationsflödeinstabilitet och (b) granska datorkodernas förmåga att förutsäga momentana termohydrauliska parametrar och flödesregimer under transienta förlopp.Två metoder har utvecklats: en icke-automatisk procedur baserad på separat hantering av osäkra indataparametrar (UIPs) och en automatiserad metod som använder genetisk algoritm. Ett flertal uppmätta parametrar och systemresponser (SRQs) används i både kalibrering av osäkra parametrar i indatafilen och validering av RELAP5 och TRACE. Resultatet av modifikationer i hur RELAP5 identifierar olika flödesregimer, och särskilt hur detta påverkar datorkodens prediktioner av termohydrauliska parametrar, har studerats.Resultatet av valideringen visar att RELAP5 och TRACE kan återge det kvalitativa beteende av två-fas flödets instabilitet. Däremot kan ingen av koderna korrekt identifiera den momentana flödesregimen, det var därför ej möjligt att förutsäga experimentella värden på svängningsperiod och maximal inloppsflödeshastighet samtidigt. Resultatet belyser betydelsen av samtidig behandling av flera SRQs liksom olika experimentella flödesregimer för kvantitativ kodvalidering.Den andra delen av detta arbete behandlar härdnedbrytning och omfördelning till reaktortankens nedre plenumdel i en kokarvatten reaktor (BWR). Egenskaper hos härdrester i nedre plenum ger inledande förutsättningar för reaktortanksgenomsmältning, hur smältan rinner ut ur reaktortanken och händelseförloppet i reaktorinneslutningen.Målen i den andra delen är att: (a) erhålla en representativ databas över koden MELCOR:s analysresultat för egenskaperna hos härdrester i nedre plenum under olika händelseförlopp, och (b) utveckla en beräkningseffektiv surrogatsmodell som kan användas i omfattande osäkerhetsanalyser för att förutsäga partikelbäddsegenskaper.MELCOR, kopplad till en genetisk algoritm med slumpmässigt urval användes för att generera en databas av analysresultat med tillämpning på smältans omfördelning i reaktortanken i en Nordisk BWR.Analysen av hur härden omfördelas visar att det finns två huvudgrupper av scenarier: med relativt liten (<20 ton) och stor (> 100 ton) total mängd omfördelade härdrester i nedre plenum. Dessa domäner är åtskilda av övergångsregioner, där små variationer i indata kan resultera i stora ändringar i den slutliga partikelmassan. Flergrupps artificiella neurala nätverk med klassificering av händelseförloppet har använts för utvecklingen av en surrogatmodell för att hantera problemet med kaotiska resultat av den fullständiga modellen, särskilt i övergångsregionen.

QC 20170309

APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Nancy. "Spectral Portfolio Optimisation with LSTM Stock Price Prediction." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273611.

Full text
Abstract:
Nobel Prize-winning modern portfolio theory (MPT) has been considered to be one of the most important and influential economic theories within finance and investment management. MPT assumes investors to be riskaverse and uses the variance of asset returns as a proxy of risk to maximise the performance of a portfolio. Successful portfolio management reply, thus on accurate risk estimate and asset return prediction. Risk estimates are commonly obtained through traditional asset pricing factor models, which allow the systematic risk to vary over time domain but not in the frequency space. This approach can impose limitations in, for instance, risk estimation. To tackle this shortcoming, interest in applications of spectral analysis to financial time series has increased lately. Among others, the novel spectral portfolio theory and the spectral factor model which demonstrate enhancement in portfolio performance through spectral risk estimation [1][11]. Moreover, stock price prediction has always been a challenging task due to its non-linearity and non-stationarity. Meanwhile, Machine learning has been successfully implemented in a wide range of applications where it is infeasible to accomplish the needed tasks traditionally. Recent research has demonstrated significant results in single stock price prediction by artificial LSTM neural network [6][34]. This study aims to evaluate the combined effect of these two advancements in a portfolio optimisation problem and optimise a spectral portfolio with stock prices predicted by LSTM neural networks. To do so, we began with mathematical derivation and theoretical presentation and then evaluated the portfolio performance generated by the spectral risk estimates and the LSTM stock price predictions, as well as the combination of the two. The result demonstrates that the LSTM predictions alone performed better than the combination, which in term performed better than the spectral risk alone.
Den nobelprisvinnande moderna portföjlteorin (MPT) är utan tvekan en av de mest framgångsrika investeringsmodellerna inom finansvärlden och investeringsstrategier. MPT antar att investerarna är mindre benägna till risktagande och approximerar riskexponering med variansen av tillgångarnasränteavkastningar. Nyckeln till en lyckad portföljförvaltning är därmed goda riskestimat och goda förutsägelser av tillgångspris. Riskestimering görs vanligtvis genom traditionella prissättningsmodellerna som tillåter risken att variera i tiden, dock inte i frekvensrummet. Denna begränsning utgör bland annat ett större fel i riskestimering. För att tackla med detta har intresset för tillämpningar av spektraanalys på finansiella tidsserier ökat de senast åren. Bland annat är ett nytt tillvägagångssätt för att behandla detta den nyintroducerade spektralportföljteorin och spektralfak- tormodellen som påvisade ökad portföljenprestanda genom spektralriskskattning [1][11]. Samtidigt har prediktering av aktierpriser länge varit en stor utmaning på grund av dess icke-linjära och icke-stationära egenskaper medan maskininlärning har kunnat använts för att lösa annars omöjliga uppgifter. Färska studier har påvisat signifikant resultat i aktieprisprediktering med hjälp av artificiella LSTM neurala nätverk [6][34]. Detta arbete undersöker kombinerade effekten av dessa två framsteg i ett portföljoptimeringsproblem genom att optimera en spektral portfölj med framtida avkastningar predikterade av ett LSTM neuralt nätverk. Arbetet börjar med matematisk härledningar och teoretisk introduktion och sedan studera portföljprestation som genereras av spektra risk, LSTM aktieprispredikteringen samt en kombination av dessa två. Resultaten visar på att LSTM-predikteringen ensam presterade bättre än kombinationen, vilket i sin tur presterade bättre än enbart spektralriskskattningen.
APA, Harvard, Vancouver, ISO, and other styles
35

Bjärehall, Johannes, and Johan Hallberg. "Återskapa mänskligt beteende med artificiell intelligens i 2D top-down wave shooter spel." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18708.

Full text
Abstract:
Arbetet undersöker mänskligt beteende hos beteendeträd och LSTM nätverk. Ett spel skapades som testades av personer i en undersökning där deltagarna fick spela tillsammans med vardera agent i slumpmässig ordning för att bedöma agenternas beteende. Resultatet från undersökningen visade att beteendeträdet var den mänskliga varianten enligt deltagarna oavsett ordning som testpersonerna spelade med vardera agent. Problemet med resultatet beror antagligen till störst del på att det inte fanns tillräckligt med tid och bristande CPU kraft för att utveckla LSTM agenten ytterligare. För att förbättra och arbeta vidare med arbetet kan mer tid läggas på att träna LSTM nätverket och finjustera beteendeträdet. För att förbättra testet borde riktig multiplayer funktionalitet implementeras som gör att det går att testa agenterna jämfört med riktiga mänskliga spelare.
APA, Harvard, Vancouver, ISO, and other styles
36

Rosenquist, Emil. "Hur presterar ett artificiellt neuralt nätverk gentemot sökalgoritmen alpha-beta pruning i spelet Othello? : Jämförelse av ANN system och ABP system på spelet Othello." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17011.

Full text
Abstract:
Deterministiska turbaserad tvåspelarspel är ett område som används inom AI forskning för att jämföra AI system. Detta arbete fokuserar på att jämföra teknikerna artificiell neuralt nätverk och alpha-beta pruning i spelet othello. Arbetet undersökte hur dessa tekniker presterar i relation till beräkningstiden. Othello positionerna representeras i en 8 x 8 matris som teknikerna använder för att hitta det optimala draget. Systemen värderades enligt en definierat metod som använder ett befintlig AI system för othello Edax. De testades på 154 othello partier med 77 stycken förbestämda startpositioner. Nätverket tränades med inlärningsdata som bestod av drag från professionella othello matcher och från Edax. Resultatet visade att ABP systemen värderades linjärt mot exponentiell beräkningstid medans ANN systemen värderades konstant mot linjär beräkningstid. Resultatet av ANN systemen tyder på att inlärningsdatan är bristande. Framtida arbete bör använda mer och bättre inlärningsdata.
APA, Harvard, Vancouver, ISO, and other styles
37

Granström, Daria, and Johan Abrahamsson. "Loan Default Prediction using Supervised Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252312.

Full text
Abstract:
It is essential for a bank to estimate the credit risk it carries and the magnitude of exposure it has in case of non-performing customers. Estimation of this kind of risk has been done by statistical methods through decades and with respect to recent development in the field of machine learning, there has been an interest in investigating if machine learning techniques can perform better quantification of the risk. The aim of this thesis is to examine which method from a chosen set of machine learning techniques exhibits the best performance in default prediction with regards to chosen model evaluation parameters. The investigated techniques were Logistic Regression, Random Forest, Decision Tree, AdaBoost, XGBoost, Artificial Neural Network and Support Vector Machine. An oversampling technique called SMOTE was implemented in order to treat the imbalance between classes for the response variable. The results showed that XGBoost without implementation of SMOTE obtained the best result with respect to the chosen model evaluation metric.
Det är nödvändigt för en bank att ha en bra uppskattning på hur stor risk den bär med avseende på kunders fallissemang. Olika statistiska metoder har använts för att estimera denna risk, men med den nuvarande utvecklingen inom maskininlärningsområdet har det väckt ett intesse att utforska om maskininlärningsmetoder kan förbättra kvaliteten på riskuppskattningen. Syftet med denna avhandling är att undersöka vilken metod av de implementerade maskininlärningsmetoderna presterar bäst för modellering av fallissemangprediktion med avseende på valda modelvaldieringsparametrar. De implementerade metoderna var Logistisk Regression, Random Forest, Decision Tree, AdaBoost, XGBoost, Artificiella neurala nätverk och Stödvektormaskin. En översamplingsteknik, SMOTE, användes för att behandla obalansen i klassfördelningen för svarsvariabeln. Resultatet blev följande: XGBoost utan implementering av SMOTE visade bäst resultat med avseende på den valda metriken.
APA, Harvard, Vancouver, ISO, and other styles
38

Brolin, John, and Malmborg Alexander Hörsne. "Positionering med hjälp av Accesspunkter i ett slutet WiFi-nätverk : En delstudie för Sjöfartshögskolan i Kalmar." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103577.

Full text
Abstract:
Artificiell intelligens syftar på en maskins förmåga att fatta egna beslut. Maskinen skall sedan utföra en handling baserat på beslutet, allt detta utan människans inblandning. Positionsnoggrannheten för fartyg är något som på senare tid ställs allt högre krav på, inte minst i offshoreindustrin. Med hjälp av ett Dynamic Positioning system kan högre noggrannhet uppnås. I detta projekt undersöks vilket system som är lämpligast att använda för ett positioneringssystem för en modell av skolfartyget Calmare Nyckel. Projektet utvärderar positionering med hjälp av fyra accesspunkter jämnt fördelat över två nätverk. Projektet belyser en rad olika tekniker baserade på datasignaler som sedan moduleras av en hårdvaruenhet. Då projektet är av så kallat low-cost resulterade valet i en ESP32 och WiFi som teknik. Laborationer påvisade ett väl fungerande system. Uppmätt noggrannhet var dock inte tillräcklig för att använda rakt av i det fortsatta projektet.
Artificial intelligence is a machines ability to make its own decisions. The machine is then supposed to take action based on the decision, this without the involvement of a human. The positional accuracy for ships is something that has become increasingly more demanding, especially in the offshore industry. With the aid of a Dynamic positioning system, a great accuracy can be achieved. This undertaking investigates which system that will be most suited to use for a positioning system aimed for a model of the ship, Calmare Nyckel. The project evaluates positioning with the aid of four access points evenly distributed over two networks. The project illustrates a number of different techniques based on data signals, which are then modulated by a hardware unit. Because of the low-cost aim, this resulted in the usage of ESP32 and WiFi as the systems of choice. Laborations in the undertaking proved a well working system. Measured accuracy, however, was not sufficient to use directly in the continued project.
APA, Harvard, Vancouver, ISO, and other styles
39

Tenov, Rosen Nikolaev. "Evaluating the use of Machine Learning for Fault Detection using Log File Analysis." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42441.

Full text
Abstract:
Under de senaste åren fick maskininlärning mer och mer popularitet i samhället. Den implementeras i stor utsträckning inom många datavetenskapliga områden, t.ex. igenkänning av tal, video, objekt, sentimentanalys osv. Dessutom genererar moderna datorsystem och program stora filer med loggdata under deras körning och användning. Dessa loggfiler innehåller vanligtvis enorma mängder data, vilket leder till svårigheter att bearbeta all data manuellt. Således är användning av maskininlärningstekniker vid analys av loggdata för detektering av anomalibeteende av stort intresse för att uppnå skalbar underhåll av systemen. Syftet med detta arbete var att undersöka tillgängliga framträdande metoder för att implementera maskininlärning för upptäckning av loggfel och utvärdera en av dessa metoder. Uppsatsen fokuserade på att utvärdera DeepLog artificiella neurala nätverk som innehåller Long short-term memory algoritm. Utvärderingen omfattade mätning av den exekveringstid som behövdes och vilken precision, återkallande, noggrannhet och F1-index uppnåddes med modellen för maskininlärningsfelsdetektering vid användning av två olika loggdatamängder, en från OpenStack och en annan från Hadoop Distributed File System. Resultaten visade att DeepLog presterade bättre när man använde OpenStack-datamängd genom att uppnå höga resultat för alla index, särskilt recallsindex på cirka 90% som minimerade falska negativa förutsägelser, vilket är viktigt vid loggfelsdetektering. När DeepLog användes med HDFS-datamängd förbättrades körningstiden något men noggrannheten och recall av modellen tappades. Framtida arbete inkluderar att försöka och testa modellen med andra loggdatamängder eller andra ML-modeller för upptäckning av loggfel.
During the last years machine learning was gaining more and more popularity in the society. It is widely implemented in many fields of computer science, e.g. recognition of speech, video, objects, sentiment analysis, etc. Additionally, modern computer systems and programs generate large files with log data through their execution. These log files contain usually immense amount of data, which is a struggle for processing it manually. Thus, using machine learning techniques in the analysis of log data for detection of anomaly behavior is of a high interest for achieving scalable maintaining of the systems. The purpose of this work was to look into available prominent approaches of implementing machine learning for log fault detection and evaluate one of them. The paper focused on evaluating DeepLog artificial neural network that incorporates Long short-term memory. The evaluation included measuring the execution time needed and what precision, recall, accuracy and F1-index were achieved by the machine learning fault detection model when using two different log datasets, one from OpenStack and another from Hadoop Distributed File System. The results showed that DeepLog performed better when using OpenStack dataset by achieving high results for all indexes, especially the recall index of around 90%, minimizing the false negative predictions, which is important in the log fault detection. When using DeepLog with HDFS dataset the execution time was slightly improved but the accuracy and recall of the model were dropped. Future works includes trying another log datasets or ML models for log fault detection.
APA, Harvard, Vancouver, ISO, and other styles
40

Melcherson, Tim. "Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.

Full text
Abstract:
Research in the Arctic is of ever growing importance, and modern technology is used in news ways to map and understand this very complex region and how it is effected by climate change. Here, animals and vegetation are tightly coupled with their environment in a fragile ecosystem, and when the environment undergo rapid changes it risks damaging these ecosystems severely.  Understanding what kind of data that has potential to be used in artificial intelligence, can be of importance as many research stations have data archives from decades of work in the Arctic. In this thesis, a YOLOv4 object detection model has been trained on two classes of images to investigate the performance impacts of disturbances in the training data set. An expanded data set was created by augmenting the initial data to contain various disturbances. A model was successfully trained on the augmented data set and a correlation between worse performance and presence of noise was detected, but changes in saturation and altered colour levels seemed to have less impact than expected. Reducing noise in gathered data is seemingly of greater importance than enhancing images with lacking colour levels. Further investigations with a larger and more thoroughly processed data set is required to gain a clearer picture of the impact of the various disturbances.
APA, Harvard, Vancouver, ISO, and other styles
41

Almkvist, Jimmy. "Empirecraft." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-41372.

Full text
Abstract:
I have in my thesis produced a start of a multiplayer, voxel, strategy sandbox game with advanced AI. The world is made out of voxels in the form of blocks that both the players and other units can affect and change. In a world where every block follows the laws of physics for both fluids and physics. The game is designed for several players that fights for controll over land and resources.
Jag har i mitt examensarbete producerat en början av ett flerspelar, voxel, strategi och sandlådespel med avancerad AI. Världen är uppbyggd av voxlar i form av block som både spelaren och andra enheter har möjlighet att påverka och förändra. En värld där varje block följer fysiska lagar för både vätska och fysik. Spelet är designat för flera spelare som strider om områden och resurser med hjälp av sina AI kontrollerade bybor.
APA, Harvard, Vancouver, ISO, and other styles
42

Ariss, Joseph, and Salim Rabat. "A comparison between a traditional PID controller and an Artificial Neural Network controller in manipulating a robotic arm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259365.

Full text
Abstract:
Robotic and control industry implements different control technique to control the movement and the position of a robotic arm. PID controllers are the most used controllers in the robotics and control industry because of its simplicity and easy implementation. However, PIDs’ performance suffers under noisy environments. In this research, a controller based on Artificial Neural Networks (ANN) called the model reference controller is examined to replace traditional PID controllers to control the position of a robotic arm in a noisy environment. Simulations and implementations of both controllers were carried out in MATLAB. The training of the ANN was also done in MATLAB using the Supervised Learning (SL) model and Levenberg-Marquardt backpropagation algorithm. Results shows that the ANN implementation performs better than traditional PID controllers in noisy environments.
Robotoch kontrollindustrin implementerar olika kontrolltekniker för att styra rörelsen och placeringen av en robotarm. PID-styrenheter är de mest använda kontrollerna inom roboten och kontrollindustrin på grund av dess enkelhet och lätt implementering. PID:s prestanda lider emellertid i bullriga miljöer. I denna undersökning undersöks en styrenhet baserad på Artificiell Neuralt Nätverk (ANN) som kallas modellreferenskontrollen för att ersätta traditionella PID-kontroller för att styra en robotarm i bullriga miljöer. Simuleringar och implementeringar av båda kontrollerna utfördes i MATLAB. Utbildningen av ANN:et gjordes också i MATLAB med hjälp av Supervised Learning (SL) -modellen och LevenbergMarquardt backpropagationsalgoritmen. Resultat visar att ANN-implementeringen fungerar bättre än traditionella PID-kontroller i bullriga miljöer.
APA, Harvard, Vancouver, ISO, and other styles
43

Midhall, Ruben, and Amir Parmbäck. "Utvärdering av Multilayer Perceptron modeller för underlagsdetektering." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43469.

Full text
Abstract:
Antalet enheter som är uppkopplade till internet, Internet of Things (IoT), ökar hela tiden. År 2035 beräknas det finnas 1000 miljarder Internet of Things-enheter. Samtidigt som antalet enheter ökar, ökar belastningen på internet-nätverken som enheterna är uppkopplade till. Internet of Things-enheterna som finns i vår omgivning samlar in data som beskriver den fysiska tillvaron och skickas till molnet för beräkning. För att hantera belastningen på internet-nätverket flyttas beräkningarna på datan till IoT-enheten, istället för att skicka datan till molnet. Detta kallas för edge computing. IoT-enheter är ofta resurssnåla enheter med begränsad beräkningskapacitet. Detta innebär att när man designar exempelvis "machine learning"-modeller som ska köras med edge computing måste algoritmerna anpassas utifrån de resurser som finns tillgängliga på enheten. I det här arbetet har vi utvärderat olika multilayer perceptron-modeller för mikrokontrollers utifrån en rad olika experiment. "Machine learning"-modellerna har varit designade att detektera vägunderlag. Målet har varit att identifiera hur olika parametrar påverkar "machine learning"-systemen. Vi har försökt att maximera prestandan och minimera den mängd fysiskt minne som krävs av modellerna. Vi har även behövt förhålla oss till att mikrokontrollern inte haft tillgång till internet. Modellerna har varit ämnade att köras på en mikrokontroller "on the edge". Datainsamlingen skedde med hjälp av en accelerometer integrerad i en mikrokontroller som monterades på en cykel. I studien utvärderas två olika "machine learning"-system, ett som är en kombination av binära klassificerings modeller och ett multiklass klassificerings system som framtogs i ett tidigare arbete. Huvudfokus i arbetet har varit att träna modeller för klassificering av vägunderlag och sedan utvärdera modellerna. Datainsamlingen gjordes med en mikrokontroller utrustad med en accelerometer monterad på en cykel. Ett av systemen lyckas uppnå en träffsäkerhet på 93,1\% för klassificering av 3 vägunderlag. Arbetet undersöker även hur mycket fysiskt minne som krävs av de olika "machine learning"-systemen. Systemen krävde mellan 1,78kB och 5,71kB i fysiskt minne.
The number of devices connected to the internet, the Internet of Things (IoT), is constantly increasing. By 2035, it is estimated to be 1,000 billion Internet of Things devices in the world. At the same time as the number of devices increase, the load on the internet networks to which the devices are connected, increases. The Internet of Things devices in our environment collect data that describes our physical environment and is sent to the cloud for computation. To reduce the load on the internet networks, the calculations are done on the IoT devices themselves instead of in the cloud. This way no data needs to be sent over the internet and is called edge computing. In edge computing, however, other challenges arise. IoT devices are often resource-efficient devices with limited computing capacity. This means that when designing, for example, machine learning models that are to be run with edge computing, the models must be designed based on the resources available on the device. In this work, we have evaluated different multilayer perceptron models for microcontrollers based on a number of different experiments. The machine learning models have been designed to detect road surfaces. The goal has been to identify how different parameters affect the machine learning systems. We have tried to maximize the performance and minimize the memory allocation of the models. The models have been designed to run on a microcontroller on the edge. The data was collected using an accelerometer integrated in a microcontroller mounted on a bicycle. The study evaluates two different machine learning systems that were developed in a previous thesis. The main focus of the work has been to create algorithms for detecting road surfaces. The data collection was done with a microcontroller equipped with an accelerometer mounted on a bicycle. One of the systems succeeds in achieving an accuracy of 93.1\% for the classification of 3 road surfaces. The work also evaluates how much physical memory is required by the various machine learning systems. The systems required between 1.78kB and 5,71kB of physical memory.
APA, Harvard, Vancouver, ISO, and other styles
44

Friberg, Oscar. "Recognizing Semantics in Human Actions with Object Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212579.

Full text
Abstract:
Two-stream convolutional neural networks are currently one of the most successful approaches for human action recognition. The two-stream convolutional networks separates spatial and temporal information into a spatial stream and a temporal stream. The spatial stream accepts a single RGB frame, while the temporal stream accepts a sequence of optical flow. There have been attempts to further extend the work of the two-stream convolutional network framework. For instance there have been attempts to extend with a third network for auxiliary information, which this thesis mainly focuses on. We seek to extend the two-stream convolutional neural network by introducing a semantic stream by using object detection systems. Two contributions are made in thesis: First we show that this semantic stream can provide slight improvements over two-stream convolutional neural networks for human action recognition on standard benchmarks. Secondly, we attempt to seek divergence enhancements techniques to force our new semantic stream to complement the spatial and the temporal streams by modifying the loss function during training. Slight gains are seen using these divergence enhancement techniques.
Faltningsnätverk i två strömmar är just nu den mest lyckade tillvägagångsmetoden för mänsklig aktivitetsigenkänning, vilket delar upp rumslig och timlig information i en rumslig ström och en timlig ström. Den rumsliga strömmen tar emot individella RGB bildrutor för igenkänning, medan den timliga strömmen tar emot en sekvens av optisk flöde. Försök i att utöka ramverket för faltningsnätverk i två strömmar har gjorts i tidigare arbete. Till exempel har försök gjorts i att komplementera dessa två nätverk med ett tredje nätverk som tar emot extra information. I detta examensarbete söker vi metoder för att utöka faltningsnätverk i två strömmar genom att introducera en semantisk ström med objektdetektion. Vi gör i huvudsak två bidrag i detta examensarbete: Först visar vi att den semantiska strömmen tillsammans med den rumsliga strömmen och den timliga strömmen kan bidra till små förbättringar för mänsklig aktivitetsigenkänning i video på riktmärkesstandarder. För det andra söker vi efter divergensutökningstekniker som tvingar den semantiska strömme att komplementera de andra två strömmarna genom att modifiera förlustfunktionen under träning. Vi ser små förbättringar med att använda dessa tekniker för att öka divergens.
APA, Harvard, Vancouver, ISO, and other styles
45

Kostias, Aristotelis, and Georgios Tagkoulis. "Development of an Artificial Intelligent Software Agent using Artificial Intelligence and Machine Learning Techniques to play Backgammon Variants." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251923.

Full text
Abstract:
Artificial Intelligence has seen enormous progress in many disciplines in the recent years. Particularly, digitalized versions of board games require artificial intelligence application due to their complex decision-making environment. Game developers aim to create board game software agents which are intelligent, adaptive and responsive. However, the process of designing and developing such a software agent is far from straight forward due the nature and diversity of each game. The thesis examines and presents a detailed procedure of constructing a software agent for backgammon variants, using temporal difference, artificial neural networks and backpropagation. Different artificial intelligence and machine learning algorithms used in board games, are overviewed and presented. Finally, the thesis describes the development and implementation of a software agent for the backgammon variant called Swedish Tables and evaluates its performance.
Artificiell intelligens har sett enorma framsteg inom många discipliner de senare åren. Speciellt, digitaliserade brädspel kräver implementering av Artificiell intelligens då deras beslutfattande logik är väldigt komplex. Dataspelutvecklarnas syfte och mål är att skapa programvaror som är intelligenta, adaptiva och lyhörda. Dock konstruktionsoch utvecklingsprocess för att kunna skapa en sådan mjukvara är långtifrån att vara faställd, mest på grund av diversitet av naturen av varje spel. Denna avhandlingen forskar och föreslår en detaljerad procedur för att bygga en "Software Agent" för olika slags Backagammon, genom att använda AI neurala nätvärk och back-propagation metoder. Olika artificiell intelligensoch maskininlärningsalgoritmer som används i brädspel forskas och presenteras. Slutligen denna avhandling beskriver implementeringen och utvecklingen av ett mjukvaru agent för en backgammonvariant, närmare bestämt av "Svenska Tabeller" samt utvärderar dess prestanda.
APA, Harvard, Vancouver, ISO, and other styles
46

Edlund, Mattias. "Artificial Intelligence in Games : Faking Human Behavior." Thesis, Uppsala universitet, Institutionen för speldesign, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-258222.

Full text
Abstract:
This paper examines the possibilities of faking human behavior with artificial intelligence in computer games, by using efficient methods that save valuable development time and also creates a more rich experience for the players of a game. The specific implementation of artificial intelligence created and discussed is a neural network controlling a finite-state machine. The objective was to mimic human behavior rather than simulating true intelligence. A 2D shooter game is developed and used for experiments performed with human and artificial intelligence controlled players. The game sessions played were recorded in order for other humans to replay. Both players and spectators of the game sessions left feedbacks and reports that could later be analyzed. The data collected from these experiments was then analyzed, and reflections were made on the entire project. Tips and ideas are proposed to developers of shooter games who are interested in making human-like artificial intelligence. Conclusions are made and extra information is provided in order to further iterate on this research.
Denna rapport undersöker möjligheterna att förfalska mänskligt beteende genom artificiell intelligens i datorspel, med hjälp av effektiva metoder som sparar värdefull utvecklingstid och som även skapar en rikare upplevelse för spelare. Den specifika implementationen av artificiell intelligens som utvecklas och diskuteras är ett neuralt nätverk som kontrollerar en finite-state machine. Målet var att efterlikna mänskligt beteende snarare än att simulera verklig intelligens. Ett 2D shooter-spel utvecklas och används för utförda experiment med mänskliga och artificiell intelligens-kontrollerade spelare. De sessioner som spelades under experimenten spelades in, för att sedan låta andra människor titta på inspelningarna. Både spelare och åskådare av spelsessionerna lämnade återkoppling och rapporter för senare analysering. Datan som samlats in från experimenten analyserades, och reflektioner utfördes på hela projektet. Tips och idéer presenteras till utvecklare av shooter-spel som är intresserade av en mer människolik artificiell intelligens. Slutsatser läggs fram och extra information presenteras för att kunna fortsätta iterera vidare på denna undersökning.
APA, Harvard, Vancouver, ISO, and other styles
47

Örn, Fredrik. "Computer Vision for Camera Trap Footage : Comparing classification with object detection." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447482.

Full text
Abstract:
Monitoring wildlife is of great interest to ecologists and is arguably even more important in the Arctic, the region in focus for the research network INTERACT, where the effects of climate change are greater than on the rest of the planet. This master thesis studies how artificial intelligence (AI) and computer vision can be used together with camera traps to achieve an effective way to monitor populations. The study uses an image data set, containing both humans and animals. The images were taken by camera traps from ECN Cairngorms, a station in the INTERACT network. The goal of the project is to classify these images into one of three categories: "Empty", "Animal" and "Human". Three different methods are compared, a DenseNet201 classifier, a YOLOv3 object detector, and the pre-trained MegaDetector, developed by Microsoft. No sufficient results were achieved with the classifier, but YOLOv3 performed well on human detection, with an average precision (AP) of 0.8 on both training and validation data. The animal detections for YOLOv3 did not reach an as high AP and this was likely because of the smaller amount of training examples. The best results were achieved by MegaDetector in combination with an added method to determine if the detected animals were dogs, reaching an average precision of 0.85 for animals and 0.99 for humans. This is the method that is recommended for future use, but there is potential to improve all the models and reach even more impressive results.Teknisk-naturvetenskapliga
APA, Harvard, Vancouver, ISO, and other styles
48

CARON, MATHIEU. "Long-term forecasting model for future electricity consumption in French non-interconnected territories." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299457.

Full text
Abstract:
In the context of decarbonizing the electricity generation of French non-interconnected territories, the knowledge of future electricity demand, in particular annual and peak demand in the long-term, is crucial to design new renewable energy infrastructures. So far, these territories, mainly islands located in the Pacific and Indian ocean, relies mainly on fossil fuels powered facilities. Energy policies envision to widely develop renewable energies to move towards a low-carbon electricity mix by 2028.  This thesis focuses on the long-term forecasting of hourly electricity demand. A methodology is developed to design and select a model able to fit accurately historical data and to forecast future demand in these particular territories. Historical data are first analyzed through a clustering analysis to identify trends and patterns, based on a k-means clustering algorithm. Specific calendar inputs are then designed to consider these first observations. External inputs, such as weather data, economic and demographic variables, are also included.  Forecasting algorithms are selected based on the literature and they are than tested and compared on different input datasets. These input datasets, besides the calendar and external variables mentioned, include different number of lagged values, from zero to three. The combination of model and input dataset which gives the most accurate results on the testing set is selected to forecast future electricity demand. The inclusion of lagged values leads to considerable improvements in accuracy. Although gradient boosting regression features the lowest errors, it is not able to detect peaks of electricity demand correctly. On the contrary, artificial neural network (ANN) demonstrates a great ability to fit historical data and demonstrates a good accuracy on the testing set, as well as for peak demand prediction. Generalized additive model, a relatively new model in the energy forecasting field, gives promising results as its performances are close to the one of ANN and represent an interesting model for future research.  Based on the future values of inputs, the electricity demand in 2028 in Réunion was forecasted using ANN. The electricity demand is expected to reach more than 2.3 GWh and the peak demand about 485 MW. This represents a growth of 12.7% and 14.6% respectively compared to 2019 levels.
I samband med utfasningen av fossila källor för elproduktion i franska icke-sammankopplade territorier är kunskapen om framtida elbehov, särskilt årlig förbrukning och topplast på lång sikt, avgörande för att utforma ny infrastruktur för förnybar energi. Hittills är dessa territorier, främst öar som ligger i Stilla havet och Indiska oceanen, beroende av anläggningar med fossila bränslen. Energipolitiken planerar att på bred front utveckla förnybar energi för att gå mot en koldioxidsnål elmix till 2028.  Denna avhandling fokuserar på den långsiktiga prognosen för elbehov per timme. En metod är utvecklad för att utforma och välja en modell som kan passa korrekt historisk data och för att förutsäga framtida efterfrågan inom dessa specifika områden. Historiska data analyseras först genom en klusteranalys för att identifiera trender och mönster, baserat på en k-means klusteralgoritm. Specifika kalenderinmatningar utformas sedan för att beakta dessa första observationer. Externa inmatningar, såsom väderdata, ekonomiska och demografiska variabler, ingår också.  Prognosalgoritmer väljs utifrån litteraturen och de testas och jämförs på olika inmatade dataset. Dessa inmatade dataset, förutom den nämnda kalenderdatan och externa variabler, innehåller olika antal fördröjda värden, från noll till tre. Kombinationen av modell och inmatat dataset som ger de mest exakta resultaten på testdvärdena väljs för att förutsäga framtida elbehov. Införandet av fördröjda värden leder till betydande förbättringar i exakthet. Även om gradientförstärkande regression har de lägsta felen kan den inte upptäcka toppar av elbehov korrekt. Tvärtom, visar artificiella neurala nätverk (ANN) en stor förmåga att passa historiska data och visar en god noggrannhet på testuppsättningen, liksom för förutsägelse av toppefterfrågan. En generaliserad tillsatsmodell, en relativt ny modell inom energiprognosfältet, ger lovande resultat eftersom dess prestanda ligger nära den för ANN och representerar en intressant modell för framtida forskning.  Baserat på de framtida värdena på indata, prognostiserades elbehovet 2028 i Réunion med ANN. Elbehovet förväntas nå mer än 2,3 GWh och toppbehovet cirka 485 MW. Detta motsvarar en tillväxt på 12,7% respektive 14,6% jämfört med 2019 års nivåer.
APA, Harvard, Vancouver, ISO, and other styles
49

Malmgren, Henrik. "Revision of an artificial neural network enabling industrial sorting." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392690.

Full text
Abstract:
Convolutional artificial neural networks can be applied for image-based object classification to inform automated actions, such as handling of objects on a production line. The present thesis describes theoretical background for creating a classifier and explores the effects of introducing a set of relatively recent techniques to an existing ensemble of classifiers in use for an industrial sorting system.The findings indicate that it's important to use spatial variety dropout regularization for high resolution image inputs, and use an optimizer configuration with good convergence properties. The findings also demonstrate examples of ensemble classifiers being effectively consolidated into unified models using the distillation technique. An analogue arrangement with optimization against multiple output targets, incorporating additional information, showed accuracy gains comparable to ensembling. For use of the classifier on test data with statistics different than those of the dataset, results indicate that augmentation of the input data during classifier creation helps performance, but would, in the current case, likely need to be guided by information about the distribution shift to have sufficiently positive impact to enable a practical application. I suggest, for future development, updated architectures, automated hyperparameter search and leveraging the bountiful unlabeled data potentially available from production lines.
APA, Harvard, Vancouver, ISO, and other styles
50

Ekelöf, Alexander, and Mikaela Stålring. "Framtidens industri: Från visionen Industri 4.0 idag till verkligheten imorgon : En fallstudie på HordaGruppen AB." Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53644.

Full text
Abstract:
Företags framtid ligger i dess egna händer; beroende på hur väl de anpassar sig till nya förutsättningar i alla dess former så kommer vissa att överleva medan andra går i graven. Under flera hundra år har utvecklingen inom industrin medfört att företag kommit och gått. Idag står vi enligt flera inför randen till en ny teknisk era med en fjärde industriell revolution som följd, Industri 4.0. Vi har en evolution mot en mer automatiserad tillverkningsindustri där allt fler moment sker utan en människas händer bakom spakarna. Industri 4.0 ses av många som en vision om hur framtiden kommer att se ut inom tillverkningsindustrin. Många av de idéer samt teknik som finns inom denna vision går att ta del av redan idag och möjligheterna till att förbereda sig för framtiden finns redan och det gäller att så snabbt som möjligt börja ställa om för detta. I takt med att industrin och dess konkurrens förändras kommer kraven på kvalité öka samtidigt som tillverkningen måste blir mer resurseffektiv. Området är mycket viktigt att belysa då det är ett nytt område där det tidigare inte skett mycket forskning. Att belysa detta område kan även komma att inspirera andra till ytterligare studier inom området och främja utvecklingen för fler företag än endast fallföretaget i denna studie: HordaGruppen. Syftet med studien har varit att inledningsvis få en förståelse för vilka tankar och idéer om framtiden som finns inom industrin idag för att senare kunna testa lösningar baserade på dessa idéer på några befintliga problem inom HordaGruppen, vars verksamhet finns inom plastindustrin. Lösningarna kan ses som de första stegen mot Industri 4.0 för att underlätta för företaget ifråga inför en framtida utveckling och ger även företaget möjlighet att börja samla in data kring processen, vilket i framtiden ger företag som HordaGruppen en fördel gentemot konkurrenter som påbörjar sin omställning senare. Utgångspunkten för studien har varit en kvalitativ studie med aktionsforskning och fallstudie som angreppsätt. Fallstudien har utförts genom en intervju med John Lejon, affärsutvecklare på HordaGruppen och en öppen diskussion med produktionsledare Valdet Berisha angående maskinen som är fokuserad på. Data till studien har erhållits genom artiklar skrivna inom området samt en intervju med grundaren till ett stort statligt projekt i Tyskland, Philipp Ramin, där de startat ett innovationscentrum för Industri 4.0. Resultatet i rapporten är att med hjälp av dagens teknik går det att ta de första stegen mot visionen Industri 4.0. All teknik finns självklart inte, men med hjälp av den teknik som finns idag kan olika företag inom tillverkningsindustrin dra fördelar av att starta omställningen mot Industri 4.0 redan idag.
The future of industry is in companies own hands. Today we are going to a more automated manufacturing industry where human beings are less involved and it is more crucial than ever before to adapt to new changes in the industry and technology. Internet of things and cyber physical systems are becoming a bigger part of our lives. This case study on HordaGruppen is focused on how HordaGruppen from the plastic industry can develop with some ideas from the vision Industry 4.0 in order to ensure the quality of the product. Most of the technology needed for Industry 4.0 is available today and there is no reason not to start using it. The study will introduce to Industry 4.0 and the basic ideas that the vision stands for and then try to define and solve some problems within one machine in one of their plants. The results presented in this study shows that using sensors and other technology available today you can take the first steps towards Industry 4.0.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography