Dissertations / Theses on the topic 'Artificiella nätverk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Artificiella nätverk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ruuska, Boquist Philip. "Utveckling av artificiell intelligens med genetiska tekniker och artificiella neurala nätverk." Thesis, University of Skövde, School of Humanities and Informatics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-3082.
Full text
Att använda artificiella neurala nätverk i datorspel blir ett allt mer populärt sätt att styra de datorstyrda agenterna då detta gör att agenterna får ett mer mänskligt beteende och förmågan att generalisera och möta nya situationer och klara sig igenom dessa på ett sätt som andra typer av artificiell intelligens inte alltid kan hantera. Svårigheten med denna teknik är att träna nätverket vilket ofta kräver en lång tid av inlärning och många olika träningfall. Genom att använda genetiska algoritmer för att träna upp nätverken så kan mycket av det både tid och prestandakrävande arbetet undvikas. Denna rapport kommer att undersöka möjligheten att använda genetiska tekniker för att träna artificiella neurala nätverk i en miljö anpassad till och med fokus på spel. Att använda genetiska tekniker för att träna artificiella neurala nätverk är en bra inlärningsteknik för problem där det enkelt går att skapa en passande fitnessfunktion och där andra inlärningstekniker kan vara svåra att använda. Det är dock ingen teknik som helt tar bort arbetet från utvecklare utan istället flyttar det mer åt att utveckla fitnessfunktionen och modifiera variabler.
Ernhagen, Joakim. "Artificiella neurala nätverk som lösning på segmenteringsproblemet vid gestigenkänning." Thesis, University of Skövde, School of Humanities and Informatics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1110.
Full textEtt av de stora problemen med gestigenkänning är det som kallas segmenteringsproblemet. Segmenteringsproblemet är problemet att hitta var en gest börjar och var den slutar, d v s att segmentera upp gester. I detta arbete testas en lösning till detta problem då gester består av figurer ritade i luften. Lösningen går ut på att använda två stycken artificiella neurala nätverk av strukturen FeedForward. Det ena nätverket tränas på att känna igen när handen accelererar från stillastående, vilket representerar starten av en gest, och det andra tränas på att känna igen när handen saktar ner till stillastående, vilket representerar slutet av en gest. Datan till de artificiella neurala nätverken kommer från ett sliding window på ett antal tidssteg där hastighets- och accelerationsförändringar läses av som skalärer.
Foborg, Alexander. "Ett parallelliserat verktyg för simulering av artificiella neurala nätverk." Thesis, University of Skövde, Department of Computer Science, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-239.
Full textDen forskningsgrupp som vid Högskolan i Skövde bedriver forskning om neurala nätverk, har nyligen köpt in en ny beräkningsmaskin, dedikerad för simuleringar av dessa neurala nätverk. Maskinen är en Sun Enterprise 4000, en MIMD-maskin med 6 st UltraSparc CPUer.
Det finns behov av nya verktyg, som underlättar utveckling av ANN modeller till denna maskin, och som dessutom utnyttjar maskinens parallellitet. Detta verktyg ska uppvisa så god prestanda som möjligt. I denna rapport studeras förutsättningarna för ett sådant verktyg.
Av de tänkbara metoder som kan användas för att parallellisera en nätverksimulator, är troligtvis epokbaserad parallellisering den som ger högst prestandaökning på en MIMD-maskin. Detta beror på att den inte kräver lika täta synkroniseringar som exempelvis en neuronbaserad parallellisering.
En implementation av den epokbaserade metoden har skett, både med och utan parallelliserad summering av viktförändringar. Den parallelliserade summeringen av viktförändringar behöver teoretiskt endast log2(n) så lång tid som den serialiserade summeringen kräver (n = antal trådar). Summeringen av viktförändringar är dock en ganska liten del av varje epok, och effektivisering av denna bit har inte så stor praktiskt betydelse.
Ett mindre antal tester har gjorts för att kontrollera om simulatorn är korrekt implementerad. De tester som gjordes gav lyckat resultat och talar för att simulatorn är korrekt.
Ur prestandatesterna som genomförts kan följande slutsatser dras:
* Ökning av antal exempel ökar prestandaökningen
* Ökning av antal vikter minskar prestandaökningen
* Antal epoker påverkar inte prestandaökningen
På det målsystem med 6 CPUer som testerna genomförts på, gäller följande:
* 4-5 trådar ger oftast högst prestandaökning
* 3-5 gångers prestandaökning är normalt
Eftersom prestandan på många av nätverken ligger uppåt 75% (4.5 gånger prestandaökning med 6 st CPUer) av vad målmaskinen klarar av, anser författaren av denna rapport att parallelliseringen är lyckad.
Engerström, Sigurd. "Styrsystem för fordon med hjälp av artificiella neurala nätverk." Thesis, University of Skövde, School of Humanities and Informatics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-46.
Full textDenna rapport jämför två nätverksarkitekturer för artificiella neurala nätverk vars uppgift är att realisera ett styrsystem för ett fordon som det även skall lära sig att styra. Jämförelsen bygger på utförda experiment där de båda nätverken fick lära sig att styra ett fordon längs en slumpgenererad väg. Båda nätverken bygger på belöningsbaserad inlärning för att lära sig lösa uppgiften.
Resultatet av utvärderingen visar både att nätverken inte hade några problem med att lära sig att styra fordonet och att de inte krävde lång tid för att kunna lära sig hur fordonet skulle styras. Resultaten visar inte heller att någon skillnad fanns i vare sig tillförlitlighet eller generaliseringsförmåga hos de båda nätverksarkitekturerna.
Hagqvist, Petter. "Analys av ljudspektroskopisignaler med artificiella neurala eller bayesiska nätverk." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56429.
Full textVid analys av fluider med akustisk spektroskopi finns ett behov av att finna multivariata metoder för att utifrån akustiska spektra prediktera storheter såsom viskositet och densitet. Användning av artificiella neurala nätverk och bayesiska nätverk för detta syfte utreds genom teoretiska och praktiska undersökningar. Förbehandling och uppdelning av data samt en handfull linjära och olinjära multivariata analysmetoder beskrivs och implementeras. Prediktionsfelen för de olika metoderna jämförs och PLS (Partial Least Squares) framstår som den starkaste kandidaten för att prediktera de sökta storheterna.
When analyzing fluids using acoustic spectrometry there is a need of finding multivariate methods for predicting properties such as viscosity and density from acoustic spectra. The utilization of artificial neural networks and Bayesian networks for this purpose is analyzed through theoretical and practical investigations. Preprocessing and division of data along with a handful of linear and non-linear multivariate methods of analysis are described and implemented. The errors of prediction for the different methods are compared and PLS (Partial Least Squares) appear to be the strongest candidate for predicting the sought-after properties.
Eklund, Björn. "Uppdelning av ett artificiellt neuralt nätverk." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5667.
Full textKraft, Kristoffer, and Jonathan Sjölund. "Artificiella neurala nätverk för punktabsorberande vågkraftverk: Energiuppskattning och aktiv styrning." Thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301370.
Full textNorberg, David. "SAMEVOLUTION AV ARTIFICIELLTNEURALT NÄTVERK FÖR ATTEVALUERA SPELTILLSTÅND." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9448.
Full textPressdee, Langré Sean. "Skillnaden mellan belöningsbaserade och exempelbaserade artificiella neurala nätverk i en 2D-miljö." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11145.
Full textNorberg, David. "SAMEVOLUTION AV ARTIFICIELLT NEURALT NÄTVERK FÖR ATT EVALUERA SPELTILLSTÅND." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9552.
Full textTorstensson, Robbin. "Jämförelse av evolution och samevolution för att evaluera speltillstånd : I artificiella neurala nätverk kombinerat med minimax." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11005.
Full textTheo, Sobczak. "Maskininlärning och fallklassificering med MEMS-accelerometer : En studie i fallklassificering med artificiella neurala nätverk." Thesis, Högskolan i Gävle, Elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34013.
Full textHedenström, Patrik. "Olika arkitekturer för artificiella neurala nätverk i bilspel : En jämförelse av arkitekturerna feedforward, Elman och ESCN." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10995.
Full textDrottsgård, Alexander, and Jens Andreassen. "Effektivisering av automatiserad igenkänning av registreringsskyltar med hjälp av artificiella neurala nätverk för användning inom smarta hem." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20803.
Full textThe concept of automated recognition and reading of license plates haveevolved a lot the last years and the use of Artificial neural networks have beenintroduced in a small scale with promising results. We looked into thepossibility of using this in an automated garage port system and weimplemented a prototype for testing. The traditional process for reading alicense plate requires multiple steps, sometimes up to five. These steps all givea margin of error which aggregated sometimes leads to over 30% risk forfailure. In this paper we addressed this issue and with the help of a Artificialneural network. We developed a process with only two steps for the entireprocess of reading a license plate, (1) localize license plate (2) read thecharacters on the plate. This reduced the number of steps to half of theprevious number and also reduced the risk for errors with 13%. We performeda Literature Review to find the best suited algorithm for the task oflocalization of the license plate in our specific environment. We found FasterR-CNN, a algorithm which uses multiple artificial neural networks. We usedthe method Design and Creation to implement a proof of concept prototypeusing our approach which proved that this is possible to do in a realenvironment.
Rehn, David. "Strategisk förnyelseplanering av spillvattenledningar : Med ett artificiellt neuralt nätverk som analysverktyg." Thesis, KTH, Vattendragsteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214400.
Full textAging sewer systems and deferred maintenance pose one of the greatest challenges toSwedish municipal infrastructure in the future. This degree project has been completedwith the aim to develop a method with which to sufficiently solve these future challenges,and help decision makers to properly invest in the networks, and optimise the pipe renewalprocess. As a methodology, a survey has been created, and answered by 84representatives from various municipalities and water and waste organisations, in order topresent a deeper understanding of the current situation in Sweden. Furthermore, anartificial neural network has been developed, and trained with data from Täby municipality,with the purpose of predicting which pipes in a sewer network that need to be renewed. The results show that there is a great need for improvement in the strategic renewalplanning. The greatest need, and potential, is found in the collection and processing ofdata, where artificial neural networks can be applied as a highly efficient and intelligenttool, which is proven by the high accuracy (93 %) and strong ability to predict pipes withrenewal needs (ca 10-20 pipes for Täby municipality) that the neural network developedfor this degree project showed. It is, however, important to emphasize that the quality ofthe obtained data from Täby was relatively low, and that the results therefore has to beviewed with some skepticism. It is nevertheless reasonable to assume that artificial intelligence, and more specifically,artificial neural networks, will play an important role in tackling future challenges related tostrategic asset management and renewal planning for underground sewer infrastructure.The main solution lies in the ability to efficiently and intelligently collect, structure, andprocess data, and this is a field where artificial neural networks, as made evident by thisdegree project, certainly have abilities to flourish and contribute to savings in bothfinancial, temporal and human resources.
Gilljam, Daniel, and Mario Youssef. "Jämförelse av artificiella neurala nätverksalgoritmerför klassificering av omdömen." Thesis, KTH, Hälsoinformatik och logistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230660.
Full textWith large amount of data in the form of customer reviews, it could be time consuming to manually go through each review and decide if its sentiment is positive or negative. This thesis have been done to automatically classify client reviews to determine if a review is positive or negative. This was dealt with by machine learning. Three different deep neural network was tested on greater and lesser datasets, and compared with the help of two different frameworks, TensorFlow and Keras. Different embedding methods were tested on the neural networks. The best combination of a neural network, a framework and anembedding was the Convolutional Neural Network (CNN) which used the word embedding method Word2Vec, was written in Keras framework and gave an accuracy of approximately 88.87% with a deviation of approximately 0.4%. CNN scored a better result in all of the tests in comparison with the two other neural networks, Recurrent NeuralNetwork (RNN) and Convolutional Recurrent Neural Network (CRNN).
Akterhall, Joakim. "Artificiell intelligens - ANN och evolution i shooterspel." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5984.
Full textKlingberg, Hanna, and Filippa Olofsson. "Att använda AI för att detektera bröstcancer : En explorativ studie kring användning av bildanalys inom svensk sjukvård." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302726.
Full textBröstcancer är den vanligaste cancern bland kvinnor i världen. För att minska dödligheten kallas kvinnor i Sverige mellan 40-74 år regelbundet till mammografiscreening, i syfte att upptäcka tumörer i tid. Trots detta avlider ca. 1400 av sjukdomen varje år. Varje mammografibild granskas av två läkare. Trots detta och regelbunden screening finns det fall som missas. De faktorer som gör att systemet inte fungerar optimalt idag är att viss cancer inte upptäcks i tid samt att analysering av mammografibilderna är tidskrävande. Det här arbetet har undersökt huruvida användning av AI kan bidra till att lösa dessa problem. I tidigare forskning undersöks även båda dessa aspekter. Det har utvecklats AI-algoritmer som presterar ungefär i nivå med radiologer samt minskar arbetsbördan för undersökande radiologer [1]. I detta arbete undersöktes hur utvecklandet av en liknande algoritm går till, hur den faktiskt kan implementeras i sjukvården samt vilka konsekvenser detta kan ha. Förhoppningsvis kan tillämpning av liknande teknik leda till minskad dödlighet och säkrare bedömning. Studien genomfördes med intervjuer av två experter inom området, samt försök att utveckla en förenklad algoritm som genom bildanalys kan klassificera tumörer från mammografibilder. Resultatet visade att det finns stor potential för att använda AI inom sjukvården och med hjälp av detta uppnå säkrare bedömning och färre dödsfall. Under utvecklingen av algoritmen gavs en djupare förståelse för de svårigheter som uppkommer i utvecklandet av en sådan algoritm; såsom de krav på tillgänglig processorkraft, behandling och organisering av bilddatabaser och komplexiteten i att utveckla en maskininlärningsalgoritm för bildanalys. Algoritmen som utvecklades presterade något bättre än slumpen i detektion av tumörer på mammografier.
Kloo, Ingela. "Evolution av målsökande och flyende boids." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-6345.
Full textAlajarva, Sami. "Användarverifiering från webbkamera." Thesis, University of Skövde, School of Humanities and Informatics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-72.
Full textArbetet som presenteras i den här rapporten handlar om ansiktsigenkänning från webbkameror med hjälp av principal component analysis samt artificiella neurala nätverk av typen feedforward. Arbetet förbättrar tekniken med hjälp av filterbaserade metoder som bland annat används inom ansiktsdetektering. Dessa filter bygger på att skicka med redundant data av delregioner av ansiktet.
Roxell, Anders. "Kontrollarkitekturers generaliseringsförmåga vid yt-täckning." Thesis, University of Skövde, School of Humanities and Informatics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-950.
Full textI dagens samhälle finns det en mängd olika maskiner för att underlätta ardagssysslorna, såsom batteridrivna dammsugare och gräsklippare. Gräsklippardomänen används i detta projekt, för att undersöka vilken av monolitisk och hierarkisk kontrollarkitektur i en batteridriven gräsklippare som har bäst generaliseringsförmåga. Gräsklippardomänen används som testdomän därför att det finns en oändlig mängd olika yt-fromer. Med generalisering menas hur bra gräsklipparen klipper på ytor som den nyligen eller aldrig tränats på. Experiment har utförs på båda kontrollarkitekturerna i en simulator. Val av kontrollarkitektur spelar inte någon större roll för gräsklipparen. Bidraget med detta arbete är att undersöka hur bra de olika arkitekturerna generaliserar.
Hellner, Simon, and Henrik Syvertsson. "Neurala nätverk försjälvkörande fordon : Utforskande av olika tillvägagångssätt." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84560.
Full textArtificial Neural Networks (ANN) have a broad area of application and are growing increasingly relevant, not least in the field of autonomous vehicles. Meta algorithms are used to train networks, which can control a vehicle using several kinds of input data. In this project we have looked at two meta algorithms: genetic algorithm (GA), and gradient descent with backpropagation (GD & BP). We have looked at two types of input to the ANN: distance sensors and line detection. We explain the theory behind the methods we have tried to implement. We did not succeed in using GD & BP to train ANNs to control vehicles, but we describe our attemps. We did however succeeded in using GA to train ANNs using a combination of distance sensors and line detection as input. In summary we managed to train ANNs to control vehicles using two methods of input, and we encountered interesting problems along the way.
Fleron, Emil. "Automatic Classification of text regarding Child Sexual Abusive Material." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-357290.
Full textKarlsteen, Joakim. "Fuskdetektion med artificiellt neuralt nätverk." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20527.
Full textDet finns övrigt digitalt material (t.ex. film-, bild- eller ljudfiler) eller modeller/artefakter tillhörande examensarbetet som ska skickas till arkivet.
Carlsson, Josefin, and Madeleine Johansson. "Att täcka en obekant yta med Spanning Tree Covering, Topologisk Täckande Algoritm, Trilobite." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1754.
Full textCorneliussen, Ilian. "Läckage detektering med artificiellt neuralt nätverk i ett vattendistributionsnät." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255710.
Full textEarly leakage detection is one way to make water distribution networks more efficient and sustainable. The goal of this project is to investigate the possibility to detect leakages in water distribution networks with the help of artificial neural networks. The project is based on real data collected from Stockholm water distribution network and is focusing on how to present the prediction from neural networks in an intellectual manner, by implementing and analyzing the need of a time filter. The study shows that it might be possible to detect leakages in a water distribution network with a binary accuracy of 87\%. An improvement to 98\% was achieved by implementing a time filter.
Lundberg, Emil. "Adding temporal plasticity to a self-organizing incremental neural network using temporal activity diffusion." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180346.
Full textVektorkvantisering (VQ; eng: Vector Quantization) är ett klassiskt problem och en enkel metod för mönsterigenkänning. Bland tillämpningar finns förstörande datakompression, klustring och igenkänning av tal och talare. Även om VQ i stort har ersatts av tidsmedvetna tekniker såsom dolda Markovmodeller (HMM, eng: Hidden Markov Models) och dynamisk tidskrökning (DTW, eng: Dynamic Time Warping) i vissa tillämpningar, som tal- och talarigenkänning, har VQ ännu viss relevans tack vare sin mycket lägre beräkningsmässiga kostnad — särskilt för exempelvis inbyggda system. En ny studie demonstrerar också ett VQ-system med flera sektioner som åstadkommer prestanda i klass med DTW i en tillämpning på igenkänning av handskrivna signaturer, men till en mycket lägre beräkningsmässig kostnad. Att dra nytta av temporala mönster i en VQ-algoritm skulle kunna hjälpa till att förbättra sådana resultat ytterligare. SOTPAR2 är en sådan utökning av Neural Gas, en artificiell neural nätverk-algorithm för VQ. SOTPAR2 använder en konceptuellt enkel idé, baserad på att lägga till sidleds anslutningar mellan nätverksnoder och skapa “temporal aktivitet” som diffunderar genom anslutna noder. Aktiviteten gör sedan så att närmaste-granne-klassificeraren föredrar noder med hög aktivitet, och författarna till SOTPAR2 rapporterar förbättrade resultat jämfört med Neural Gas i en tillämpning på förutsägning av en tidsserie. I denna rapport undersöks hur samma utökning påverkar kvantiserings- och förutsägningsprestanda hos algoritmen självorganiserande inkrementellt neuralt nätverk (SOINN, eng: self-organizing incremental neural network). SOINN är en VQ-algorithm som automatiskt väljer en lämplig kodboksstorlek och också kan användas för klustring med godtyckliga klusterformer. Experimentella resultat visar att denna utökning inte förbättrar prestandan hos SOINN, istället försämrades prestandan i alla experiment som genomfördes. Detta resultat diskuteras, liksom inverkan av parametervärden på prestandan, och möjligt framtida arbete för att förbättra resultaten föreslås.
Bodell, Victor. "Comparing Machine Learning Estimation of Fuel Consumption of Heavy-duty Vehicles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279826.
Full textBränsleförbrukning utgör en av nyckelfaktorerna för att avgöra hur mycket det kostar att använda tunga lastbilar. En köpare av en tung lastbil kan därmed begära en uppskattning av hur mycket bränsle ett givet fordon förbrukar. Scania använder sig av en modulär designprincip vid fordonskonstruktion, vilket ger kunden möjlighet att bestämma vilka byggnadsblock som ska utgöra ett for- don. Detta gör att det kan vara omöjligt att mäta förbrukningen av ett tidigare icke-producerat fordon. Den här studien undersöker exaktheten av maskininlärningsalgoritmer för att estimera bränsleförbrukning av tunga lastbilar. Studien genomförs vid Scania, som även tillhandahåller data. Användbarheten av olika in-parametrar undersöks. Algoritmernas prestanda utvärderas genom att rapportera det kvadrerade felvärdet uppmätt mellan det riktiga uppmätta värdet och det av algoritmen uppskattade värdet. Bränsleförbrukning estimeras för simulerad data och för uppmätta värden från fordon i bruk. Tre kategorier av algoritmer undersöks: Artificiella neurala nätverk, linjär regression och K-nearest neighbor. Jämförelsen mellan algoritmer använder statistisk hypotes-testning. Resultatet visar att parametern som beskriver vilket land fordonet registrerats i förbättrar samtliga algoritmers estimering. Den statistiska utvärderingen finner att artificiella neurala nätverk ger det lägsta felet av de tre kategorierna av algoritmer i estimering av simulerade och uppmätta värden. De slutgiltiga modellernas exakthet är jämförbar med resultat från tidigare studier.
Heder, Marcus. "Artificiell intelligens som evolverande animationsverktyg." Thesis, University of Skövde, School of Humanities and Informatics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4075.
Full textAnimationer av karaktärer och objekt är en viktig del vid skapandet av spel. Detta är något som det läggs mycket fokus på att få så realistisk som möjligt, även spelfysik används till viss del här för att ge karaktärer möjlighet att anpassa sig till miljöer. Det här arbetet undersöker och implementerar ett styrsystem, som används för animations generering till en trasdocka, med hjälp av artificiell intelligens. Styrsystemet använder sig av en självorganiserande artificiell intelligens för att generera animationer som följer ett specifikt beteende, i det här arbetet har animationer som fokuserar på att skydda höften skapats.
Arbetet har gett goda resultat som indikerar på att denna lösning fungerar för att generera animationer på en trasdocka, som ska följa ett visst beteende. Detta visade sig möjligt genom att använda artificiellt neuralt nätverk kombinerat med genetisk algoritm.
Boley, Alexander. "Automatic wind turbine operation analysis through neural networks." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214551.
Full textDen här masteruppsatsen hanterar utvecklandet av ett automatiskt driftanalyseringsprogram för vindkraftverk och fungerar som det teoretiska underlaget för detta program. Programmet utvecklades på uppdrag av kraftbolaget OX2 som ville undersöka potentialen för ett sådant analysprogram i deras verksamhet. Uppdraget givet var att: 1. ta fram en bra indikator när det gäller den faktiska effektiviteten av ett vindkraftverk, 2. att hitta ett effektivt sätt att använda detta måttet i en analys där målet är att hitta avvikelser, och 3. skriva ett program som automatiskt kan använda måttet och metoden över tiden. Rapporten kommer via litteraturstudie fram till att tidigare forskning visar på att neurala nätverk är den mest lovande metoden för att genomföra sådan här analys. Dessa nätverk kan träna sig själva på historiska data och sedan analysera om vindturbinen arbetar bättre eller sämre än historiskt. Den här jämförelsen mellan den historiskt grundade förutspådda kraften ut och den faktiska kraften ut fungerar som kvalitetsmåttet på hur bra turbinen fungerar. Programmet är baserat på den här principen och är helt skriven i MATLAB. Vidare tester av programmet visar att de bästa variablerna att använda för att förutspå kraften ut är vindhastigheten och bladens vinkel mot vinden. Slutprogrammet var kapabelt att fullt automatiskt och integrerat i OX2s system identifiera 75% av alla avvikelser som manuellt hittats i ett halvårs data på de fem turbinerna använda för rapporten, småfel hittade av programmet men inte manuellt exkluderat.
Ekberg, Marie. "Inlärning och illusionen av intelligenta karaktärer : Undersökning av hur inlärning hos karaktärer påverkar spelarens uppfattning av intelligenta karaktärer i spel." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8479.
Full textDahlberg, Emil, Mattias Mineur, Linus Shoravi, and Holger Swartling. "Replacing Setpoint Control with Machine Learning : Model Predictive Control Using Artificial Neural Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413003.
Full textBibehållande av inomhusklimat står för en avsevärd del av världens totala energikonsumtion. Med dagens klimatförändringar där minskad energikonsumtion är viktigt för den hållbara utvecklingen så är inomhusklimat ett lämpligt mål för att förhindra slösad energi. Konventionell styrning av inomhusklimat använder sig av börvärdeskurvor, baserade enbart på utomhustemperatur, vilket kan leda till anmärkningsvärt energispill. Detta projekt utvärderar möjligheten att ersätta denna styrmetod med ett system baserat på model predictive control (MPC) och använda detta i en av Akademiska sjukhusets lokaler i Uppsala. En MPC styrenhet som använder Artificiella Neurala Nätverk (ANN) som sin modell utvecklades. Systemet använder sig av flera datakällor däribland inomhus- och utomhustemperatur, radiatorslingornas framlednings- och returtemperatur, rådande solinstrålning såväl som prognoser för solinstrålning och utomhustemperatur. Systemet sattes inte i produktion men dess prognos stämmer väl överens med tillgänglig väderdata och husets termiska beteende. De presenterade resultaten påvisar metoden vara ett lämpligt substitut för styrning med börvärdeskurvor.
Phung, Viet-Anh. "Input Calibration, Code Validation and Surrogate Model Development for Analysis of Two-phase Circulation Instability and Core Relocation Phenomena." Doctoral thesis, KTH, Kärnkraftssäkerhet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202957.
Full textValidering av datorkoder och kvantifiering av osäkerhetsfaktorer är viktiga delar vid säkerhetsanalys av kärnkraftsreaktorer. Datorkodanvändaren måste hantera ett stort antal osäkra parametrar vid beskrivningen av fysikaliska fenomen i flera dimensioner från mikro- till makroskala. För att göra analysresultaten mer robusta, är det viktigt att utveckla och tillämpa rutiner för att vägleda användaren vid kvantifiering av osäkerheter.Detta arbete syftar till att vidareutveckla metoder och förfaranden för validering av systemkoder och deras tillämpning på praktiska problem i säkerhetsanalysen. Arbetet delas in i två delar.Första delen presenterar validering av de termohydrauliska systemkoderna (STH) RELAP5 och TRACE vid analys av tvåfasinstabilitet i cirkulationsflödet.Målen för den första delen är att: (a) utveckla och tillämpa effektiva metoder för kalibrering av indatafiler och validering av STH mot flödesexperiment med tvåfas cirkulationsflödeinstabilitet och (b) granska datorkodernas förmåga att förutsäga momentana termohydrauliska parametrar och flödesregimer under transienta förlopp.Två metoder har utvecklats: en icke-automatisk procedur baserad på separat hantering av osäkra indataparametrar (UIPs) och en automatiserad metod som använder genetisk algoritm. Ett flertal uppmätta parametrar och systemresponser (SRQs) används i både kalibrering av osäkra parametrar i indatafilen och validering av RELAP5 och TRACE. Resultatet av modifikationer i hur RELAP5 identifierar olika flödesregimer, och särskilt hur detta påverkar datorkodens prediktioner av termohydrauliska parametrar, har studerats.Resultatet av valideringen visar att RELAP5 och TRACE kan återge det kvalitativa beteende av två-fas flödets instabilitet. Däremot kan ingen av koderna korrekt identifiera den momentana flödesregimen, det var därför ej möjligt att förutsäga experimentella värden på svängningsperiod och maximal inloppsflödeshastighet samtidigt. Resultatet belyser betydelsen av samtidig behandling av flera SRQs liksom olika experimentella flödesregimer för kvantitativ kodvalidering.Den andra delen av detta arbete behandlar härdnedbrytning och omfördelning till reaktortankens nedre plenumdel i en kokarvatten reaktor (BWR). Egenskaper hos härdrester i nedre plenum ger inledande förutsättningar för reaktortanksgenomsmältning, hur smältan rinner ut ur reaktortanken och händelseförloppet i reaktorinneslutningen.Målen i den andra delen är att: (a) erhålla en representativ databas över koden MELCOR:s analysresultat för egenskaperna hos härdrester i nedre plenum under olika händelseförlopp, och (b) utveckla en beräkningseffektiv surrogatsmodell som kan användas i omfattande osäkerhetsanalyser för att förutsäga partikelbäddsegenskaper.MELCOR, kopplad till en genetisk algoritm med slumpmässigt urval användes för att generera en databas av analysresultat med tillämpning på smältans omfördelning i reaktortanken i en Nordisk BWR.Analysen av hur härden omfördelas visar att det finns två huvudgrupper av scenarier: med relativt liten (<20 ton) och stor (> 100 ton) total mängd omfördelade härdrester i nedre plenum. Dessa domäner är åtskilda av övergångsregioner, där små variationer i indata kan resultera i stora ändringar i den slutliga partikelmassan. Flergrupps artificiella neurala nätverk med klassificering av händelseförloppet har använts för utvecklingen av en surrogatmodell för att hantera problemet med kaotiska resultat av den fullständiga modellen, särskilt i övergångsregionen.
QC 20170309
Wang, Nancy. "Spectral Portfolio Optimisation with LSTM Stock Price Prediction." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273611.
Full textDen nobelprisvinnande moderna portföjlteorin (MPT) är utan tvekan en av de mest framgångsrika investeringsmodellerna inom finansvärlden och investeringsstrategier. MPT antar att investerarna är mindre benägna till risktagande och approximerar riskexponering med variansen av tillgångarnasränteavkastningar. Nyckeln till en lyckad portföljförvaltning är därmed goda riskestimat och goda förutsägelser av tillgångspris. Riskestimering görs vanligtvis genom traditionella prissättningsmodellerna som tillåter risken att variera i tiden, dock inte i frekvensrummet. Denna begränsning utgör bland annat ett större fel i riskestimering. För att tackla med detta har intresset för tillämpningar av spektraanalys på finansiella tidsserier ökat de senast åren. Bland annat är ett nytt tillvägagångssätt för att behandla detta den nyintroducerade spektralportföljteorin och spektralfak- tormodellen som påvisade ökad portföljenprestanda genom spektralriskskattning [1][11]. Samtidigt har prediktering av aktierpriser länge varit en stor utmaning på grund av dess icke-linjära och icke-stationära egenskaper medan maskininlärning har kunnat använts för att lösa annars omöjliga uppgifter. Färska studier har påvisat signifikant resultat i aktieprisprediktering med hjälp av artificiella LSTM neurala nätverk [6][34]. Detta arbete undersöker kombinerade effekten av dessa två framsteg i ett portföljoptimeringsproblem genom att optimera en spektral portfölj med framtida avkastningar predikterade av ett LSTM neuralt nätverk. Arbetet börjar med matematisk härledningar och teoretisk introduktion och sedan studera portföljprestation som genereras av spektra risk, LSTM aktieprispredikteringen samt en kombination av dessa två. Resultaten visar på att LSTM-predikteringen ensam presterade bättre än kombinationen, vilket i sin tur presterade bättre än enbart spektralriskskattningen.
Bjärehall, Johannes, and Johan Hallberg. "Återskapa mänskligt beteende med artificiell intelligens i 2D top-down wave shooter spel." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18708.
Full textRosenquist, Emil. "Hur presterar ett artificiellt neuralt nätverk gentemot sökalgoritmen alpha-beta pruning i spelet Othello? : Jämförelse av ANN system och ABP system på spelet Othello." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17011.
Full textGranström, Daria, and Johan Abrahamsson. "Loan Default Prediction using Supervised Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252312.
Full textDet är nödvändigt för en bank att ha en bra uppskattning på hur stor risk den bär med avseende på kunders fallissemang. Olika statistiska metoder har använts för att estimera denna risk, men med den nuvarande utvecklingen inom maskininlärningsområdet har det väckt ett intesse att utforska om maskininlärningsmetoder kan förbättra kvaliteten på riskuppskattningen. Syftet med denna avhandling är att undersöka vilken metod av de implementerade maskininlärningsmetoderna presterar bäst för modellering av fallissemangprediktion med avseende på valda modelvaldieringsparametrar. De implementerade metoderna var Logistisk Regression, Random Forest, Decision Tree, AdaBoost, XGBoost, Artificiella neurala nätverk och Stödvektormaskin. En översamplingsteknik, SMOTE, användes för att behandla obalansen i klassfördelningen för svarsvariabeln. Resultatet blev följande: XGBoost utan implementering av SMOTE visade bäst resultat med avseende på den valda metriken.
Brolin, John, and Malmborg Alexander Hörsne. "Positionering med hjälp av Accesspunkter i ett slutet WiFi-nätverk : En delstudie för Sjöfartshögskolan i Kalmar." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103577.
Full textArtificial intelligence is a machines ability to make its own decisions. The machine is then supposed to take action based on the decision, this without the involvement of a human. The positional accuracy for ships is something that has become increasingly more demanding, especially in the offshore industry. With the aid of a Dynamic positioning system, a great accuracy can be achieved. This undertaking investigates which system that will be most suited to use for a positioning system aimed for a model of the ship, Calmare Nyckel. The project evaluates positioning with the aid of four access points evenly distributed over two networks. The project illustrates a number of different techniques based on data signals, which are then modulated by a hardware unit. Because of the low-cost aim, this resulted in the usage of ESP32 and WiFi as the systems of choice. Laborations in the undertaking proved a well working system. Measured accuracy, however, was not sufficient to use directly in the continued project.
Tenov, Rosen Nikolaev. "Evaluating the use of Machine Learning for Fault Detection using Log File Analysis." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42441.
Full textDuring the last years machine learning was gaining more and more popularity in the society. It is widely implemented in many fields of computer science, e.g. recognition of speech, video, objects, sentiment analysis, etc. Additionally, modern computer systems and programs generate large files with log data through their execution. These log files contain usually immense amount of data, which is a struggle for processing it manually. Thus, using machine learning techniques in the analysis of log data for detection of anomaly behavior is of a high interest for achieving scalable maintaining of the systems. The purpose of this work was to look into available prominent approaches of implementing machine learning for log fault detection and evaluate one of them. The paper focused on evaluating DeepLog artificial neural network that incorporates Long short-term memory. The evaluation included measuring the execution time needed and what precision, recall, accuracy and F1-index were achieved by the machine learning fault detection model when using two different log datasets, one from OpenStack and another from Hadoop Distributed File System. The results showed that DeepLog performed better when using OpenStack dataset by achieving high results for all indexes, especially the recall index of around 90%, minimizing the false negative predictions, which is important in the log fault detection. When using DeepLog with HDFS dataset the execution time was slightly improved but the accuracy and recall of the model were dropped. Future works includes trying another log datasets or ML models for log fault detection.
Melcherson, Tim. "Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.
Full textAlmkvist, Jimmy. "Empirecraft." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-41372.
Full textJag har i mitt examensarbete producerat en början av ett flerspelar, voxel, strategi och sandlådespel med avancerad AI. Världen är uppbyggd av voxlar i form av block som både spelaren och andra enheter har möjlighet att påverka och förändra. En värld där varje block följer fysiska lagar för både vätska och fysik. Spelet är designat för flera spelare som strider om områden och resurser med hjälp av sina AI kontrollerade bybor.
Ariss, Joseph, and Salim Rabat. "A comparison between a traditional PID controller and an Artificial Neural Network controller in manipulating a robotic arm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259365.
Full textRobotoch kontrollindustrin implementerar olika kontrolltekniker för att styra rörelsen och placeringen av en robotarm. PID-styrenheter är de mest använda kontrollerna inom roboten och kontrollindustrin på grund av dess enkelhet och lätt implementering. PID:s prestanda lider emellertid i bullriga miljöer. I denna undersökning undersöks en styrenhet baserad på Artificiell Neuralt Nätverk (ANN) som kallas modellreferenskontrollen för att ersätta traditionella PID-kontroller för att styra en robotarm i bullriga miljöer. Simuleringar och implementeringar av båda kontrollerna utfördes i MATLAB. Utbildningen av ANN:et gjordes också i MATLAB med hjälp av Supervised Learning (SL) -modellen och LevenbergMarquardt backpropagationsalgoritmen. Resultat visar att ANN-implementeringen fungerar bättre än traditionella PID-kontroller i bullriga miljöer.
Midhall, Ruben, and Amir Parmbäck. "Utvärdering av Multilayer Perceptron modeller för underlagsdetektering." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43469.
Full textThe number of devices connected to the internet, the Internet of Things (IoT), is constantly increasing. By 2035, it is estimated to be 1,000 billion Internet of Things devices in the world. At the same time as the number of devices increase, the load on the internet networks to which the devices are connected, increases. The Internet of Things devices in our environment collect data that describes our physical environment and is sent to the cloud for computation. To reduce the load on the internet networks, the calculations are done on the IoT devices themselves instead of in the cloud. This way no data needs to be sent over the internet and is called edge computing. In edge computing, however, other challenges arise. IoT devices are often resource-efficient devices with limited computing capacity. This means that when designing, for example, machine learning models that are to be run with edge computing, the models must be designed based on the resources available on the device. In this work, we have evaluated different multilayer perceptron models for microcontrollers based on a number of different experiments. The machine learning models have been designed to detect road surfaces. The goal has been to identify how different parameters affect the machine learning systems. We have tried to maximize the performance and minimize the memory allocation of the models. The models have been designed to run on a microcontroller on the edge. The data was collected using an accelerometer integrated in a microcontroller mounted on a bicycle. The study evaluates two different machine learning systems that were developed in a previous thesis. The main focus of the work has been to create algorithms for detecting road surfaces. The data collection was done with a microcontroller equipped with an accelerometer mounted on a bicycle. One of the systems succeeds in achieving an accuracy of 93.1\% for the classification of 3 road surfaces. The work also evaluates how much physical memory is required by the various machine learning systems. The systems required between 1.78kB and 5,71kB of physical memory.
Friberg, Oscar. "Recognizing Semantics in Human Actions with Object Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212579.
Full textFaltningsnätverk i två strömmar är just nu den mest lyckade tillvägagångsmetoden för mänsklig aktivitetsigenkänning, vilket delar upp rumslig och timlig information i en rumslig ström och en timlig ström. Den rumsliga strömmen tar emot individella RGB bildrutor för igenkänning, medan den timliga strömmen tar emot en sekvens av optisk flöde. Försök i att utöka ramverket för faltningsnätverk i två strömmar har gjorts i tidigare arbete. Till exempel har försök gjorts i att komplementera dessa två nätverk med ett tredje nätverk som tar emot extra information. I detta examensarbete söker vi metoder för att utöka faltningsnätverk i två strömmar genom att introducera en semantisk ström med objektdetektion. Vi gör i huvudsak två bidrag i detta examensarbete: Först visar vi att den semantiska strömmen tillsammans med den rumsliga strömmen och den timliga strömmen kan bidra till små förbättringar för mänsklig aktivitetsigenkänning i video på riktmärkesstandarder. För det andra söker vi efter divergensutökningstekniker som tvingar den semantiska strömme att komplementera de andra två strömmarna genom att modifiera förlustfunktionen under träning. Vi ser små förbättringar med att använda dessa tekniker för att öka divergens.
Kostias, Aristotelis, and Georgios Tagkoulis. "Development of an Artificial Intelligent Software Agent using Artificial Intelligence and Machine Learning Techniques to play Backgammon Variants." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251923.
Full textArtificiell intelligens har sett enorma framsteg inom många discipliner de senare åren. Speciellt, digitaliserade brädspel kräver implementering av Artificiell intelligens då deras beslutfattande logik är väldigt komplex. Dataspelutvecklarnas syfte och mål är att skapa programvaror som är intelligenta, adaptiva och lyhörda. Dock konstruktionsoch utvecklingsprocess för att kunna skapa en sådan mjukvara är långtifrån att vara faställd, mest på grund av diversitet av naturen av varje spel. Denna avhandlingen forskar och föreslår en detaljerad procedur för att bygga en "Software Agent" för olika slags Backagammon, genom att använda AI neurala nätvärk och back-propagation metoder. Olika artificiell intelligensoch maskininlärningsalgoritmer som används i brädspel forskas och presenteras. Slutligen denna avhandling beskriver implementeringen och utvecklingen av ett mjukvaru agent för en backgammonvariant, närmare bestämt av "Svenska Tabeller" samt utvärderar dess prestanda.
Edlund, Mattias. "Artificial Intelligence in Games : Faking Human Behavior." Thesis, Uppsala universitet, Institutionen för speldesign, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-258222.
Full textDenna rapport undersöker möjligheterna att förfalska mänskligt beteende genom artificiell intelligens i datorspel, med hjälp av effektiva metoder som sparar värdefull utvecklingstid och som även skapar en rikare upplevelse för spelare. Den specifika implementationen av artificiell intelligens som utvecklas och diskuteras är ett neuralt nätverk som kontrollerar en finite-state machine. Målet var att efterlikna mänskligt beteende snarare än att simulera verklig intelligens. Ett 2D shooter-spel utvecklas och används för utförda experiment med mänskliga och artificiell intelligens-kontrollerade spelare. De sessioner som spelades under experimenten spelades in, för att sedan låta andra människor titta på inspelningarna. Både spelare och åskådare av spelsessionerna lämnade återkoppling och rapporter för senare analysering. Datan som samlats in från experimenten analyserades, och reflektioner utfördes på hela projektet. Tips och idéer presenteras till utvecklare av shooter-spel som är intresserade av en mer människolik artificiell intelligens. Slutsatser läggs fram och extra information presenteras för att kunna fortsätta iterera vidare på denna undersökning.
Örn, Fredrik. "Computer Vision for Camera Trap Footage : Comparing classification with object detection." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447482.
Full textCARON, MATHIEU. "Long-term forecasting model for future electricity consumption in French non-interconnected territories." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299457.
Full textI samband med utfasningen av fossila källor för elproduktion i franska icke-sammankopplade territorier är kunskapen om framtida elbehov, särskilt årlig förbrukning och topplast på lång sikt, avgörande för att utforma ny infrastruktur för förnybar energi. Hittills är dessa territorier, främst öar som ligger i Stilla havet och Indiska oceanen, beroende av anläggningar med fossila bränslen. Energipolitiken planerar att på bred front utveckla förnybar energi för att gå mot en koldioxidsnål elmix till 2028. Denna avhandling fokuserar på den långsiktiga prognosen för elbehov per timme. En metod är utvecklad för att utforma och välja en modell som kan passa korrekt historisk data och för att förutsäga framtida efterfrågan inom dessa specifika områden. Historiska data analyseras först genom en klusteranalys för att identifiera trender och mönster, baserat på en k-means klusteralgoritm. Specifika kalenderinmatningar utformas sedan för att beakta dessa första observationer. Externa inmatningar, såsom väderdata, ekonomiska och demografiska variabler, ingår också. Prognosalgoritmer väljs utifrån litteraturen och de testas och jämförs på olika inmatade dataset. Dessa inmatade dataset, förutom den nämnda kalenderdatan och externa variabler, innehåller olika antal fördröjda värden, från noll till tre. Kombinationen av modell och inmatat dataset som ger de mest exakta resultaten på testdvärdena väljs för att förutsäga framtida elbehov. Införandet av fördröjda värden leder till betydande förbättringar i exakthet. Även om gradientförstärkande regression har de lägsta felen kan den inte upptäcka toppar av elbehov korrekt. Tvärtom, visar artificiella neurala nätverk (ANN) en stor förmåga att passa historiska data och visar en god noggrannhet på testuppsättningen, liksom för förutsägelse av toppefterfrågan. En generaliserad tillsatsmodell, en relativt ny modell inom energiprognosfältet, ger lovande resultat eftersom dess prestanda ligger nära den för ANN och representerar en intressant modell för framtida forskning. Baserat på de framtida värdena på indata, prognostiserades elbehovet 2028 i Réunion med ANN. Elbehovet förväntas nå mer än 2,3 GWh och toppbehovet cirka 485 MW. Detta motsvarar en tillväxt på 12,7% respektive 14,6% jämfört med 2019 års nivåer.
Malmgren, Henrik. "Revision of an artificial neural network enabling industrial sorting." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392690.
Full textEkelöf, Alexander, and Mikaela Stålring. "Framtidens industri: Från visionen Industri 4.0 idag till verkligheten imorgon : En fallstudie på HordaGruppen AB." Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53644.
Full textThe future of industry is in companies own hands. Today we are going to a more automated manufacturing industry where human beings are less involved and it is more crucial than ever before to adapt to new changes in the industry and technology. Internet of things and cyber physical systems are becoming a bigger part of our lives. This case study on HordaGruppen is focused on how HordaGruppen from the plastic industry can develop with some ideas from the vision Industry 4.0 in order to ensure the quality of the product. Most of the technology needed for Industry 4.0 is available today and there is no reason not to start using it. The study will introduce to Industry 4.0 and the basic ideas that the vision stands for and then try to define and solve some problems within one machine in one of their plants. The results presented in this study shows that using sensors and other technology available today you can take the first steps towards Industry 4.0.