Journal articles on the topic 'Artillery shell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Artillery shell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Jin, Junwei Tian, Zhen Zhang, Xiaoming Lei, Guangyu Sun, and Xiaodan Guo. "Modeling of Micro-downburst accompanied with rain and analysis of its influence on artillery firing accuracy." Journal of Physics: Conference Series 2441, no. 1 (2023): 012065. http://dx.doi.org/10.1088/1742-6596/2441/1/012065.
Full textKubashko, O., V. Kuzmenko, N. Tretiak, and I. Yarysh. "PROCEDURE FOR IDENTIFYING ARTILLERY MEANS OF DESTRUCTION." Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки 20, no. 3 (2024): 50–56. http://dx.doi.org/10.37701/dndivsovt.21.2024.06.
Full textSharma, Manoj, and Subrat Kar. "Estimation of Trajectory of High speed Artillery Shell." Defence Science Journal 73, no. 3 (2023): 313–21. http://dx.doi.org/10.14429/dsj.73.18342.
Full textCastro, Milla José Manuel. "Artillería Rusa en Ucrania: Estrategia, Efectos y Sostenibilidad Logística." Boletín CODESEL 1, no. 2 (2025): 1,4–6. https://doi.org/10.5281/zenodo.15191476.
Full textDidenko, Ye, and O. Stepanenko. "APPLICATION OF THE METHOD SPRINGY DEFORMATIONS OF BARREL DURING SHOT FOR DETERMINING THE INITIAL VELOCITY OF THE SHELL (MINE)." Collection of scientific works of Odesa Military Academy 1, no. 12 (2019): 75–80. http://dx.doi.org/10.37129/2313-7509.2019.12.1.75-80.
Full textGhosh, A. K., S. C. Raisinghani, and S. K. Dehury. "Modeling of Performance of an Artillery Shell Using Neural Networks." Journal of Spacecraft and Rockets 39, no. 3 (2002): 470–72. http://dx.doi.org/10.2514/2.3832.
Full textRuhl, Charles M., Sung Jin Park, Olumide Danisa, et al. "A serious skin sulfur mustard burn from an artillery shell." Journal of Emergency Medicine 12, no. 2 (1994): 159–66. http://dx.doi.org/10.1016/0736-4679(94)90693-9.
Full textKrysinski, Bogdan, and Piotr Zych. "FACTORS INITIATING THE ACTIVATION OF FIRING CHAIN IN ARTILLERY FUSES." PROBLEMY TECHNIKI UZBROJENIA 149, no. 1 (2019): 115–27. http://dx.doi.org/10.5604/01.3001.0013.4055.
Full textOtter, Jenna, Alveena Dawood, and Joseph D'Orazio. "Sulfur Mustard Exposure from Dredged Artillery Shell in a Commercial Clammer." Clinical Practice and Cases in Emergency Medicine 1, no. 4 (2017): 283–86. http://dx.doi.org/10.5811/cpcem.2017.5.34034.
Full textЛитвинов, Р. В., and Л. Р. Галиева. "The possibility of using artillery to extinguish forest fires." Актуальные проблемы безопасности в техносфере, no. 2(14) (July 2, 2024): 65–69. http://dx.doi.org/10.34987/2712-9233.2024.70.68.013.
Full textYevhenii, Dobrynin, Volkov Viktor, Maksymov Maksym, and Boltenkov Viktor. "DEVELOPMENT OF PHYSICAL MODELS FOR THE FORMATION OF ACOUSTIC WAVES AT ARTILLERY SHOTS AND STUDY OF THE POSSIBILITY OF SEPARATE REGISTRATION OF WAVES OF VARIOUS TYPES." Eastern-European Journal of Enterprise Technologies 4, no. 5 (106) (2020): 6–15. https://doi.org/10.15587/1729-4061.2020.209847.
Full textGuo, Zhang Xia, Yu Tian Pan, Yong Cun Wang, and Hai Yan Zhang. "Numerical Simulation of Muzzle Flow Field of Gun Based on CFD." Applied Mechanics and Materials 291-294 (February 2013): 1981–84. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1981.
Full textLiu, Yang, Xu Yadong, Huang Wenkuan, and Xie Xianxiang. "Research on Fault Diagnosis Technology of Rotational Shell Magazine based on MSCA and SVM." Journal of Physics: Conference Series 2460, no. 1 (2023): 012161. http://dx.doi.org/10.1088/1742-6596/2460/1/012161.
Full textНolovan, V., V. Gerasimov, А. Нolovan, and N. Maslich. "REAL CONDITION AND PROSPECTS OF DEVELOPMENT OF THE RADAR STATIONS OF THE COUNTER BATTERY FIGHTINGV." Collection of scientific works of Odesa Military Academy 1, no. 12 (2019): 30–40. http://dx.doi.org/10.37129/2313-7509.2019.12.1.30-40.
Full textKang, Shinjae, Chul Park, Woosuk Jung, Taesoo Kwon, Juhyeon Park, and Sejin Kwon. "Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption." Journal of the Korean Society of Propulsion Engineers 19, no. 4 (2015): 52–60. http://dx.doi.org/10.6108/kspe.2015.19.4.052.
Full textKonosevich, Boris I., and Yuliya B. Konosevich. "Comparison of two modified point-mass trajectory models of an artillery shell." Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6(64), no. 3 (2019): 463–81. http://dx.doi.org/10.21638/11701/spbu01.2019.311.
Full textNaeem, I., J. Masood, and N. Buchholz. "Percutaneous Nephrolithotomy for Removal of a Calcified Intra-Renal Artillery Shell Fragment." Journal of the Royal Army Medical Corps 155, no. 1 (2009): 30–31. http://dx.doi.org/10.1136/jramc-155-01-09.
Full textYakovenko, Vadim, Bohdan Volochiy, Yuriy Sydorenko, et al. "Building a model of the process of shooting a mobile armored target with directed fragmentation-beam shells in the form of a discrete-continuous stochastic system." Eastern-European Journal of Enterprise Technologies 6, no. 4 (114) (2021): 51–63. http://dx.doi.org/10.15587/1729-4061.2021.245703.
Full textVadim, Yakovenko, Volochiy Bohdan, Sydorenko Yuriy, et al. "Building a model of the process of shooting a mobile armored target with directed fragmentation-beam shells in the form of a discrete-continuous stochastic system." Eastern-European Journal of Enterprise Technologies 6, no. 4 (114) (2021): 51–63. https://doi.org/10.15587/1729-4061.2021.245703.
Full textIvanova, Galina. "Innertial Forces with an Impact on the Parts of an Artillery Shell When Fired." International conference KNOWLEDGE-BASED ORGANIZATION 24, no. 3 (2018): 124–29. http://dx.doi.org/10.1515/kbo-2018-0147.
Full textBORKOWSKI, Jacek, and Bogdan KRYSIŃSKI. "DESIGN AND TECHNOLOGICAL SOLUTION TO MINIMIZE ACCESS TO EXPLOSIVES IN AMMUNITION." PROBLEMY TECHNIKI UZBROJENIA 161, no. 3 (2022): 61–76. http://dx.doi.org/10.5604/01.3001.0016.1162.
Full textMikhaylyuk, V. I. "INFLUENCE OF MILITARY ACTIONS ON THE CONTENT OF ORGANIC MATTER AND NUTRIENTS IN SOILS OF SOUTHERN UKRAINE." Odesa National University Herald. Geography and Geology 29, no. 1(44) (2024): 109–23. http://dx.doi.org/10.18524/2303-9914.2024.1(44).305376.
Full textПіскунов, С. М., А. Ф. Шевченко, О. М. Ставицький, and О. В. Філіппенков. "MATHEMATICAL MODEL OF ANALYSIS OF TRAJECTORIES OF SMALL-CALIBER ANTI-AIRCRAFT ARTILLERY SHELLS." Системи обробки інформації, no. 1(180) (June 27, 2025): 116–22. https://doi.org/10.30748/soi.2025.180.13.
Full textKonosevich, Boris, and Yuliya Konosevich. "Error estimate of the modified point-mass trajectory model of an artillery shell." Nonlinear Dynamics 90, no. 1 (2017): 203–21. http://dx.doi.org/10.1007/s11071-017-3655-2.
Full textTang, Hong, Guo Guang Chen, and Hui Zhu He. "Optimization Design and Numerical Simulation for Aerodynamics Shape of an Aircraft." Applied Mechanics and Materials 215-216 (November 2012): 275–78. http://dx.doi.org/10.4028/www.scientific.net/amm.215-216.275.
Full textRong, Zhang, Zhang Yi, Zhou Jikun, and Huang Haiying. "Research on the Artillery Shell Motion Parameters Automatic Detection Technology Based on Image Processing." Procedia Computer Science 52 (2015): 1171–78. http://dx.doi.org/10.1016/j.procs.2015.05.154.
Full textV.V. KOZLOV. "Enhancing the Efficiency of Artillery Fire by Using Passive Shell Direction Finding During Targeting." Military Thought 31, no. 004 (2022): 128–36. http://dx.doi.org/10.21557/mth.82119917.
Full textJang, Ben W. L. "Low-Pressure Radio-Frequency Plasma for Surface Decontamination of Artillery Shell Casings. 1. Dinitrotoluene." Industrial & Engineering Chemistry Research 42, no. 12 (2003): 2767–72. http://dx.doi.org/10.1021/ie020997+.
Full textVoloshchenko, Oleksandr, Mykola Kushnirenko, and Ihor Chernykh. "Improvement of the calculation methodology for covering constructions of the covered field fortifications to ensure the survivability of troops in a modern armed conflict." Strength of Materials and Theory of Structures, no. 106 (May 24, 2021): 282–95. http://dx.doi.org/10.32347/2410-2547.2021.106.282-295.
Full textKulagin, A. V. "One Approach to Assess the Aftereffect Period on a Projectile and on the Bottom of an Artillery Gun Bore." Vestnik IzhGTU imeni M.T. Kalashnikova 28, no. 1 (2025): 59–66. https://doi.org/10.22213/2413-1172-2025-1-59-66.
Full textFan, Jiang, Zhu Yunpu, Zou Quan, and Wang Manyi. "Reinforcement Learning based position control of shell-fetching manipulator with extreme random trees." Journal of Physics: Conference Series 2460, no. 1 (2023): 012160. http://dx.doi.org/10.1088/1742-6596/2460/1/012160.
Full textHoncharuk, A. A., and S. V. Bondarenko. "Method of receipt of dependence of artillery shell ballistic coefficient from the corner of casting." Military Technical Collection, no. 6 (May 4, 2012): 100–103. http://dx.doi.org/10.33577/2312-4458.6.2012.100-103.
Full textDeineko, L. M., V. M. Nadtoka, P. I. Loboda, and D. V. Harbuz. "Main trends in development of heat treatment technologies of forged pipe shell for artillery barrels." Physical Metallurgy and Heat Treatment of Metals, no. 2 (April 23, 2019): 36–44. http://dx.doi.org/10.30838/j.pmhtm.2413.230419.366.291.
Full textYogeshkumar, Velari, Nikunj Rathi, and P. A. Ramakrishna. "Solid Fuel rich Propellant Development for use in a Ramjet to Propel an Artillery Shell." Defence Science Journal 70, no. 3 (2020): 329–35. http://dx.doi.org/10.14429/dsj.70.15061.
Full textRasico, James G., Craig A. Newman, and Morten Rikard Jensen. "Modelling fragmentation of a 155 mm artillery shell IED in a buried mine blast event." International Journal of Vehicle Performance 4, no. 4 (2018): 323. http://dx.doi.org/10.1504/ijvp.2018.095752.
Full textRasico, James G., Morten Rikard Jensen, and Craig A. Newman. "Modelling fragmentation of a 155 mm artillery shell IED in a buried mine blast event." International Journal of Vehicle Performance 4, no. 4 (2018): 323. http://dx.doi.org/10.1504/ijvp.2018.10016905.
Full textThengne, Anand V., and Subhash N. Waghmare. "A Critical Review on Study of Behavior of Artillery Shell Using 6 Degrees of Freedom." International Journal of Innovations in Engineering and Science 8, no. 9 (2023): 1–5. http://dx.doi.org/10.46335/ijies.2023.8.9.1.
Full textKaplan, A. V. "Wounding of Marshal (commemorating the 100th anniversary of K.K. Rokossovskiy)." N.N. Priorov Journal of Traumatology and Orthopedics 3, no. 3 (1996): 69–72. http://dx.doi.org/10.17816/vto103024.
Full textGite, L. K., and R. S. Deodhar. "A Novel Method to Estimate Base Drag and Burn Time from Flight Data Using Extended Kalman Filter." Defence Science Journal 74, no. 4 (2024): 428–38. http://dx.doi.org/10.14429/dsj.74.19352.
Full textProskuryakov, Evgeny, Mikhail Sorokin, and Aleksandr Poshekhonov. "PROBLEMS OF PENETRATION OF AN UNDEFORMABLE DRUMMER INTO AN OBSTACLE." Interexpo GEO-Siberia 9 (2019): 106–15. http://dx.doi.org/10.33764/2618-981x-2019-9-106-115.
Full textGritskevich, A. A., D. M. Monakov, M. V. Epifanova, et al. "The endoscopic removal of urethral foreign body (a fragment of an artillery shell): a clinical case." Andrology and Genital Surgery 24, no. 4 (2023): 155–60. http://dx.doi.org/10.17650/2070-9781-2023-24-4-155-160.
Full textZozulia, V., O. Yula, and O. Sliednikova. "ANALYSIS OF DEVICES AND SYSTEMS FOR MEASURING MUZZLE VELOCITY." Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки 15, no. 1 (2023): 49–61. http://dx.doi.org/10.37701/dndivsovt.15.2023.07.
Full textYang, Xinyu, Yan Li, and Yulin He. "Ballistic wind parameter identification based on PSO-LM algorithm." Journal of Physics: Conference Series 2977, no. 1 (2025): 012031. https://doi.org/10.1088/1742-6596/2977/1/012031.
Full textSahoo, S., and M. K. Laha. "Coefficient of Drag and Trajectory Simulation of 130 mm Supersonic Artillery Shell with Recovery Plug or Fuze." Defence Science Journal 64, no. 6 (2014): 502–8. http://dx.doi.org/10.14429/dsj.64.8110.
Full textOhol, Rajesh B., B. A. Parate, and Dineshsingh Thakur. "Plastic Deformation of High Explosive Projectile 155 mm during Gun Launch Conditions using Finite Element Method." Defence Science Journal 72, no. 6 (2022): 793–800. http://dx.doi.org/10.14429/dsj.72.18197.
Full textLichorobiec, Stanislav, Vladimir Kavický, and Lucia Figuli. "Comprehensive Assessment of Potential Threats to All Kinds of Events Arising from the Explosion of Pipe Bomb." Key Engineering Materials 755 (September 2017): 219–28. http://dx.doi.org/10.4028/www.scientific.net/kem.755.219.
Full textБуркин, В. В., А. С. Дьячковский, А. Н. Ищенко та ін. "ОЦЕНКА ПРЕДЕЛЬНЫХ ВОЗМОЖНОСТЕЙ ВЫСТРЕЛА С ИСПОЛЬЗОВАНИЕМ ВЫСОКОПЛОТНЫХ ТОПЛИВ ДЛЯ ПОВЫШЕНИЯ ДУЛЬНОЙ СКОРОСТИ СНАРЯДА". Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, № 74 (2021): 71–78. http://dx.doi.org/10.17223/19988621/74/8.
Full textDecrocq, Cédric, Bastien Martinez, Marie Albisser, et al. "Aerodynamic prediction of a projectile fitted with fins." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 5 (2018): 1218–36. http://dx.doi.org/10.1108/hff-06-2017-0259.
Full textCooper, M. G., A. C. Gebels, R. J. Bailey, and D. K. M. Whish. "Unusual Partnerships: The Corfe–McMurdie Anaesthetic Inhaler of 1918 and the 2nd Australian Casualty Clearing Station." Anaesthesia and Intensive Care 46, no. 1_suppl (2018): 29–34. http://dx.doi.org/10.1177/0310057x180460s105.
Full textNarolia, Tejkaran, Vijay K. Gupta, and IA Parinov. "Design and experimental study of rotary-type energy harvester." Journal of Intelligent Material Systems and Structures 31, no. 13 (2020): 1594–603. http://dx.doi.org/10.1177/1045389x20930085.
Full text