Dissertations / Theses on the topic 'Artin’s conjecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Artin’s conjecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Celis, Cerón M. A. "Conjectura de Artin para pares de formas aditivas de grau 6." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/4090.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T10:59:19Z (GMT) No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-02-05T10:59:19Z (GMT). No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Celis Cerón, Mónica Andrea. Artin’s conjecture for pairs of additive sextic forms. Goiânia, 2014. 62p. MSc. Dissertation. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consider the system of equations a1xk1+ a2xk2+ + asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; where a1; a2; ; as; b1; b2; ; bs 2 Z A special case of Artin’s conjecture states that the above system must have nontrivial solutions in every p-adic field, Qp, provided only that s 2k2+ 1. In this text we show that the conjecture is true when k = 6.
Celis Cerón, Mónica Andrea. Conjectura de Artin para pares de formas aditivas de grau 6. Goiânia, 2014. 62p. Dissertação de Mestrado. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consideremos o sistema de equações a1xk1+ a2xk2+...+ asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; onde, a 1; a 2; ; as; b1; b2; ; bs 2 Z. Um caso especial da conjectura de Artin nos diz que o sistema anterior tem solução não trivial em todo corpo p-ádico, Qp, sempre que s 2k2+ 1. Neste trabalho mostraremos que a conjectura é válida quando k = 6.
Ferreira, Alaídes Inácio Stival. "Condições de solubilidade p-ádica de pares de formas diagonais e alguns casos especiais." Universidade Federal de Goiás, 2009. http://repositorio.bc.ufg.br/tede/handle/tde/2890.
Full textMade available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) Previous issue date: 2009
This text is above solvability in systems of two forms additive over p-adics fields: with of degree k and variables n > 4k at lesat p > 3k4 ; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11.
Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas: com grau k e variáveis n > 4k apartir de p > 3k4 ; com grau k ímpar apartir de n > 6k +1 variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36 variáveis, com exceções de p = 5 e p = 11.
Lelis, Jean Carlos Aguiar. "Uma confirmação da conjectura de Artin para pares de formas diagonais de graus 2 e 3." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/5567.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T11:34:08Z (GMT) No. of bitstreams: 2 Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-05-19T11:34:08Z (GMT). No. of bitstreams: 2 Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-11-10
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we present some methods used in the study of systems of additive forms on local fields, and a proof for a particular case of Artin’s Conjecture, which says that every systems with R additive forms of degrees k1; :::;kR has non trivial p-adic solution for any prime p, if the number s of variables is higher than k2 1 +k2 2 + +k2R, given by Wooley [12], where he shows that G(3;2) = 11. Keywords
Nesse trabalho, nós apresentamos alguns dos métodos usados no estudo de formas aditivas sobre corpos locais, e uma prova para um caso particular da Conjectura de Artin, que afirma que todo sistema de R formas aditivas de graus k1;k2; :::;kR possui solução p-ádica não trivial para todo p primo, se o número s de variáveis for maior que k2 1 +k2 2 + +k2R , dada por Wooley [12], onde ele mostra que G(3;2) = 11.
Pappalardi, Francesco. "On Artin's conjecture for primitive roots." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41128.
Full textKaesberg, Miriam Sophie [Verfasser]. "Two Cases of Artin's Conjecture / Miriam Sophie Kaesberg." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1228364958/34.
Full textCamacho, Adriana Marcela Fonce. "Conjectura de Artin: um estudo sobre pares de formas aditivas." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/5326.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels.
Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução não trivial nos níveis seguintes.
Souza, Neto Tertuliano Carneiro de. "Pares de formas aditivas e a conjectura de Artin." reponame:Repositório Institucional da UnB, 2011. http://repositorio.unb.br/handle/10482/8840.
Full textSubmitted by wiliam de oliveira aguiar (wiliam@bce.unb.br) on 2011-06-27T17:20:02Z No. of bitstreams: 1 2011_TertulianoCarneirodeSouzaNeto.pdf: 489280 bytes, checksum: c757fc5257dd8408cbf6a1d641c6cbee (MD5)
Approved for entry into archive by Repositorio Gerência(repositorio@bce.unb.br) on 2011-06-30T17:50:48Z (GMT) No. of bitstreams: 1 2011_TertulianoCarneirodeSouzaNeto.pdf: 489280 bytes, checksum: c757fc5257dd8408cbf6a1d641c6cbee (MD5)
Made available in DSpace on 2011-06-30T17:50:48Z (GMT). No. of bitstreams: 1 2011_TertulianoCarneirodeSouzaNeto.pdf: 489280 bytes, checksum: c757fc5257dd8408cbf6a1d641c6cbee (MD5)
Seja f(x1, ..., xn) = a1xk 1 + ... + anxk n g(x1, ..., xn) = b1xk 1 + ... + bnxk n (1) um par de formas aditivas de grau pΤ (p − 1). Estamos interessados em obter condições que garantam a existência de zeros p-ádicos para o par (1). Uma conhecida conjectura, devida a Emil Artin, afirma que a condição n > 2k2 é suficiente. Utilizando técnicas da Teoria Combinatória dos Números, provamos que a condição n > 2 p (p/ P – 1) k2 − 2k é suficiente se k = 2.3Τ ou 4.5Τ, e em qualquer caso se Τ≥ (p – 1)/ 2. _____________________________________________________________________________________ ABSTRACT
Let f(x1, ..., xn) = a1xk 1 + ... + anxk n g(x1, ..., xn) = b1xk 1 + ... + bnxk n (1) be a pair of additive forms of degree pΤ (p − 1). We are interested in finding conditions which guarantee the existence of p-adic zeros to the pair (2). A well-known conjecture due to Emil Artin states that the condition n > 2k2 is sufficient. By means of techniques of Combinatorial Number Theory, we prove that n > 2 p (p/ P – 1) k2 − 2k is sufficient if k = 2.3Τ ou 4.5Τ, and in any case if Τ≥ (p – 1)/ 2.
Ambrose, Christopher Daniel [Verfasser], Valentin [Akademischer Betreuer] Blomer, and Preda [Akademischer Betreuer] Mihăilescu. "On Artin's primitive root conjecture / Christopher Daniel Ambrose. Gutachter: Valentin Blomer ; Preda Mihailescu. Betreuer: Valentin Blomer." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1054191484/34.
Full textVeras, Daiane Soares. "Formas aditivas sobre corpos p-ádicos." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/24228.
Full textSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-20T16:20:27Z No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-22T18:33:23Z (GMT) No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5)
Made available in DSpace on 2017-08-22T18:33:23Z (GMT). No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) Previous issue date: 2017-08-22
Davenport e Lewis provaram uma versão da Conjectura de Artin que diz que, denotando por Γ* (k , p) o menor número de variáveis para o qual uma forma aditiva com coeficientes inteiros e grau k possui solução p−ádica não trivial, onde p é um número primo, então Γ* (k , p) ≤ k 2 +1 e a igualdade acontece quando p = k+1. Sabe-se que, em geral, quando k + 1 é composto essa cota é suficiente, mas não é necessária. Nessa tese melhoramos a cota dada pela conjectura e obtemos o número exato de variáveis necessárias para garantir a solubilidade p-ádica não trivial de uma forma aditiva de grau k com coeficientes inteiros, sempre que p − 1 divide k. Mais precisamente, escrevendo k = γq + r onde γ depende do grau k e0 ≤ r ≤ γ − 1, provamos que Γ* (k , p)≤( p γ−1) q+ p r , e a igualdade vale para os primos p tais que p − 1 divide k. Como aplicação desse resultado, mostramos que, se k = 54, então 1049 variáveis são suficientes para garantir a solubilidade p-ádica não trivial para todo p. Para k = 24, M. P. Knapp mostrou que são necessárias 289 variáveis para garantir a solubilidade p-ádica não trivial para todo p, entretanto, ainda como aplicação do resultado citado acima, provamos que, se p ≠ 13, então 140 variáveis são suficientes para garantir a solubilidade desejada. Além disso, encontramos o valor exato de Γ* (10 , p) para cada p primo.
Davenport and Lewis have proved a version of Artin’s Conjecture wich states that, denoting by Γ* (k , p) the least number of variables for wich an additive form with integer coefficients and degree k has a nontrivial p-adic solution, where p is a prime number, then Γ* (k , p)≤ k 2 +1 and the equality occurs when p = k + 1. It is known that in general when k + 1 is composite this bound is sufficient but it is not necessary. In this work we improve the conjecture´s bound and give the exact number of necessary variables to states that an additive form with integers coefficients and degree k has a nontrivial p-adic solution, since p − 1 divide k. More precisely, writing k = γq + r with γ depending of degree k and 0 ≤ r ≤ γ − 1, then Γ* (k , p)≤ ( p γ−1) q+ p r , and the equality occurs when p − 1 divide k. As an application of this result we show that, if k = 54, then 1049 variables are sufficient to ensure the nontrivial p-adic solubility for all p. For k = 24, M. P. Knapp has proved that 289 variables are necessary to ensure the nontrivial p-adic solution for all p, however, still as an application of the previous result, we show that, if p ≠ 13, then 140 variables are sufficient to ensure de solubility desired. Moreover, we give the exact value to Γ* (10, p ) for each prime p.
Dejou, Gaëlle. "Conjecture de brumer-stark non abélienne." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00618624.
Full textLeite, Samuel Volkweis. "Uma conjectura de Artin e sua resolução por Ax e Kochen via teoria dos modelos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/119528.
Full textThe present work has objective to present a proof of a theorem due to James Ax and Simon B. Kochen related to an Artin's conjecture. The demonstration shown uses essencially Model Theory and Valuation Theory. The theorem tell us that for each degree dεn* exists a bound nd such that, for all prime p>=nd, each homogeneous polynomial over Qp of degree d in more than d² variables has a non-trivial root in the field of p-adic numbers Qp. The solution found by Ax and Kochen for the Artin's conjecture is one of the most important examples of application of Model Theory - a branche of Mathematical Logic - to Algebra, in this case, to Number Theory.
Miranda, Bruno de Paula. "Diagonal forms over the unramified quadratic extension of Q2." reponame:Repositório Institucional da UnB, 2018. http://repositorio.unb.br/handle/10482/32193.
Full textSubmitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-04T19:56:19Z No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-09T17:43:26Z (GMT) No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5)
Made available in DSpace on 2018-07-09T17:43:26Z (GMT). No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) Previous issue date: 2018-07-04
Em 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0.
In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0.
Ventura, Luciana Lima. "A confirmação da Conjectura de Artin para pares de formas aditivas de graus 2T.3 e 3T.2." reponame:Repositório Institucional da UnB, 2013. http://repositorio.unb.br/handle/10482/14101.
Full textSubmitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2013-09-09T14:24:13Z No. of bitstreams: 1 2013_LucianaLimaVentura.pdf: 572550 bytes, checksum: 0ce7cf628a3d83b89a7518122378820d (MD5)
Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-09-09T15:46:43Z (GMT) No. of bitstreams: 1 2013_LucianaLimaVentura.pdf: 572550 bytes, checksum: 0ce7cf628a3d83b89a7518122378820d (MD5)
Made available in DSpace on 2013-09-09T15:46:43Z (GMT). No. of bitstreams: 1 2013_LucianaLimaVentura.pdf: 572550 bytes, checksum: 0ce7cf628a3d83b89a7518122378820d (MD5)
Uma versão da Conjectura de Artin afirma que para um sistema homogêneo com duas equações diagonais de grau k, cujos coeficientes são inteiros, ter solução p-ádica não trivial é suficiente que o número de variáveis seja maior que 2 k2. Nesse trabalho, vamos mostrar que a conjectura é verdadeira quando o grau é 2T . 3 ou 3T . 2, para T≥ 2. ______________________________________________________________________________ ABSTRACT
One version of Artin's Conjecture states that for a homogeneous system with two diagonal equations of degree k, whose coe cients are integers, exists a nontrivial p-adic solution provided the number of variables is greater than 2 k2. In this paper, we show that the conjecture is true when the degree is 2T . 3 or 3T . 2, for T≥ 2.
Yu, Yih-Jeng, and 余屹正. "On Artin's Conjecture." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/52037345141412041864.
Full text國立臺灣大學
數學系研究所
86
In this thesis, we discuss about the properties of Artin L-functions,the the ory of Artin and Brauer on the characters, the structure ofM-groups, and also compute some examples of characters and groups wherethe Artin's conjecture are true. The definition of Artin L-function andits properties are in Chapter 2. Artin and Brauer's theory are in Chapter3. In Chapter 4, we discuss about M- groups, and give some examples in Chapter 5.
Yu, Yi-Zheng, and 余屹正. "On Artin's conjecture." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/30897156871346031757.
Full textAmbrose, Christopher Daniel. "On Artin's primitive root conjecture." Doctoral thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5F1A-F.
Full textKaesberg, Miriam Sophie. "Two Cases of Artin's Conjecture." Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-158A-8.
Full textFELIX, ADAM TYLER. "Variations on Artin's Primitive Root Conjecture." Thesis, 2011. http://hdl.handle.net/1974/6635.
Full textThesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-08-03 10:45:47.408
Sen, Gupta Sourav. "Artin's Conjecture: Unconditional Approach and Elliptic Analogue." Thesis, 2008. http://hdl.handle.net/10012/3845.
Full textCamire, Patrice. "Artin's Primitive Root Conjecture and its Extension to Compositie Moduli." Thesis, 2008. http://hdl.handle.net/10012/3844.
Full textTweedle, David. "The Lang-Trotter conjecture for Drinfeld modules." Thesis, 2011. http://hdl.handle.net/10012/6106.
Full textCho, Jaehyun. "Automorphic L-functions and their applications to Number Theory." Thesis, 2012. http://hdl.handle.net/1807/32684.
Full text