Academic literature on the topic 'Artocarpin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Artocarpin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Artocarpin"
Arung, Enos Tangke, Kuniyoshi Shimizu, and Ryuichiro Kondo. "Artocarpus Plants as a Potential Source of Skin Whitening Agents." Natural Product Communications 6, no. 9 (September 2011): 1934578X1100600. http://dx.doi.org/10.1177/1934578x1100600943.
Full textSuhartati, Tati, Khalimatus Sa’diah, Yandri Yandri, and Sutopo Hadi. "Anticancer Activity Study of Modified Artocarpin Compound from Pudau Plant (Artocarpus kemando Miq.)." Emerging Science Journal 7, no. 3 (May 3, 2023): 733–43. http://dx.doi.org/10.28991/esj-2023-07-03-05.
Full textSell, Ana Maria, and Celso Paulino da Costa. "Effects of plant lectins on in vitro fibroblast proliferation." Brazilian Archives of Biology and Technology 46, no. 3 (June 2003): 349–54. http://dx.doi.org/10.1590/s1516-89132003000300006.
Full textSeptama, Abdi Wira, and Eldiza Puji Rahmi, M.Sc. "SYNERGISTIC EFFECT OF COMBINATION BETWEEN CYANOMACLURIN AND ARTOCARPIN FROM ARTOCARPUS HETEROPHYLLUS HEARTWOODS AGAINSTS STREPTOCOCCUS PYOGENES AND STAPHYLOCOCCUS EPIDERMIDIS." Journal of Research in Pharmacy and Pharmaceutical Sciences 1, no. 1 (June 27, 2022): 21–25. http://dx.doi.org/10.33533/jrpps.v1i1.4250.
Full textSuhartati, Tati, Eka Epriyanti, Inggit Borisha, Yandri, Jhons F. Suwandi, Suripto D. Yuwono, Hardoko I. Qudus, and Sutopo Hadi. "In Vivo Antimalarial Test of Artocarpin and in vitro Antimalarial Test of Artonin M Isolated from Artocarpus." Revista de Chimie 71, no. 5 (May 29, 2020): 400–408. http://dx.doi.org/10.37358/rc.20.5.8150.
Full textChowdhury, S., H. Ahmed, and B. P. Chatterjee. "Chemical modification studies of Artocarpus lakoocha lectin artocarpin." Biochimie 73, no. 5 (May 1991): 563–71. http://dx.doi.org/10.1016/0300-9084(91)90024-u.
Full textHu, Stephen Chu-Sung, Chi-Ling Lin, Hui-Min Cheng, Gwo-Shing Chen, Chiang-Wen Lee, and Feng-Lin Yen. "Artocarpin Induces Apoptosis in Human Cutaneous Squamous Cell Carcinoma HSC-1 Cells and Its Cytotoxic Activity Is Dependent on Protein-Nutrient Concentration." Evidence-Based Complementary and Alternative Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/236159.
Full textSuresh, S., P. G. Rani, J. V. Pratap, R. Sankaranarayanan, A. Surolia, and M. Vijayan. "Homology between jacalin and artocarpin from jackfruit (Artocarpus integrifolia) seeds. Partial sequence and preliminary crystallographic studies of artocarpin." Acta Crystallographica Section D Biological Crystallography 53, no. 4 (July 1, 1997): 469–71. http://dx.doi.org/10.1107/s0907444997000851.
Full textChowdhury, Sunanda, and Bishnu P. Charterjee. "Artocarpin-galactomannan interaction: Characterization of combining site of artocarpin." Phytochemistry 32, no. 2 (January 1993): 243–49. http://dx.doi.org/10.1016/s0031-9422(00)94975-6.
Full textNonpanya, Nongyao, Kittipong Sanookpan, Nicharat Sriratanasak, Chanida Vinayanuwattikun, Duangdao Wichadakul, Boonchoo Sritularak, and Pithi Chanvorachote. "Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells." Pharmaceutics 13, no. 4 (April 14, 2021): 554. http://dx.doi.org/10.3390/pharmaceutics13040554.
Full textDissertations / Theses on the topic "Artocarpin"
Pushpakumara, D. K. N. G. "The reproductive biology of Artocarpus heterophyllus Lam." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339053.
Full textDelgado, Maristela. "Lectinas de Artocarpus integrifolia estimulam padrão diferente de citocinas." [s.n.], 1993. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317438.
Full textResumo: As duas lectinas presentes em sementes de A. intergrifolia foram obtidas por cromatografia de afinidade. Uma é a lectina não mitogênica Jacalina, ligante de D galactose; e a outra é a lectina mitogênica Artocarpina que possue especificidade para resíduos manosídeos. Essas duas lectinas foram utilizadas para se estudar o perfil de citocinas produzidas por células esplênicas murinas quando estimuladas por lectinas com distintas especificidade para carboidratos. Os resultados mostraram que a F. Arto é capaz de estimular a síntese de IL-2, IL-4, TNF e IFN-?. Esta lectina não foi no entanto capaz de induzir a síntese de TGF-ß. Em contraste a Jacalina induziu altos níveis de TGF-ß, baixos níveis de TNF mas não induziu a secreção de IL-2, IL-4 e IFN-?. As citocinas IL-3/GM-CSF e IL-6 foram estimuladas igualmente por ambas lectinas. Estes resultados sugerem por conseguinte que: as sínteses de TNF, IL-3/GM-CSF e IL-6 estão associadas aos resíduos glicídicos de D manose ou D-galactose; as sínteses de IL-2, IL-4, IFN-? estão associados ao resíduo de D-manose e a síntese de TGF- ß está associada ao resíduo de D-galactose
Abstract: In the present thesis we investigated the pattem of cytokine secretion by murine spleen cells after the stimulation with two lectins specific for distinct carbohydrates. The lectins Jacalin and Artocarpin, specific for D-galactose and D-mannose respectively were obtained from the seeds of Artocarpus integrifolia by affnity chromatography and were used in these studies. Both lectins bind to murine spleen cells but the fate of this binding is different. The binding to the D-mannose containing cell surface molecules caused the spleen cells to proliferate. In contrast the cell activation via D-galactose containing cell surface molecules did not induce the spleen cells to proliferate. Consistent with these results was the pattern of cytokine secreted by the spleen cells. Thus, the activation of the spleen cells with F. Artocarpin caused the secretion of IL 2, IL 4, IFN-? and TNF. However the binding of F.Artocarpin to the spleen cells did not induce the secretion of TGF-ß. In contrast the activation of the spleen cells via the D-galactose cell surface molecules, induced by Jacalin, resulted in large production of TGF-ß, little production of TNF and no secretion of IL 2, IL 4 and IFN-?. The secretion of IL3/GM-CSF and IL 6 was equally induced by the binding of the lectins to either D-mannose or D-galactose containing cell surface molecules
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biolgia
Made available in DSpace on 2018-07-19T01:42:20Z (GMT). No. of bitstreams: 1 Delgado_Maristela_M.pdf: 2676142 bytes, checksum: 8c382e538652cd9b31d0d9a814dc35b7 (MD5) Previous issue date: 1993
Mestrado
Mestre em Imunologia
Silva, Marina Alves Coelho. "Atividade hepatoprotetora do extrato hidroalcólico do resíduo agroindustrial de jabuticaba (Myrciaria cauliflora O. Berg), e do extrato etanólico das folhas de fruta-pão (Artocarpus altilis (Parkinson) Fosberg), em camundongos." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4950.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-27T07:19:50Z (GMT) No. of bitstreams: 2 Dissertação - Marina alves Coelho Silva - 2015.pdf: 1699881 bytes, checksum: 12e78126a8f1072850d257b422de3155 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-27T07:19:50Z (GMT). No. of bitstreams: 2 Dissertação - Marina alves Coelho Silva - 2015.pdf: 1699881 bytes, checksum: 12e78126a8f1072850d257b422de3155 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-04-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Was evaluated the hepatoprotective effect of hydro alcoholic extract of the agroindustrial waste of jaboticaba-paulista (HEJB (Myrciaria cauliflora O. Berg, Myrtaceae) and ethanolic extract of breadfruit leaves (EEBL) (Artocarpus altilis (Park.) Fosberg, Moraceae) in experimental model of hepatotoxicity carbon tetrachloride (CCl4). The jaboticaba tree is native to Brazil and largely grown. It has a potential antioxidant, with phenolic compounds present primarily in the peel of fruit, which is a waste from the manufacturing process jaboticaba wine. Breadfruit is originating to the Pacific Islands and is distributed throughout the world. Fruits and leaves of this plant species have compounds with pharmacological properties, such as flavonoids. Were used Swiss mice, male, divided in eight groups, with five being the control groups (I: Baseline, received no treatment; II: olive oil, 10 mL/kg, i.p.; III: Propylene glycol 50%, 10 ml/kg, v.o. IV: 0.3% CCl4 in olive oil 10 mL/kg, i.p., negative control; V: Silymarin 200 mg/kg, v.o., positive control) and four treated groups, v.o. (VI: HEJB 250 mg/kg, VII: HEJB 500 mg/kg, VIII: EEBL: 250 mg/kg). Except groups I and II, all others received 0.3% CCl4 in olive oil on the 7th day of treatment, 2 hours after administration v.o. Were monitored the weight gain and no had significant difference between groups. At the end of the treatments, blood and liver of the animals were removed for biochemical analysis, after the animals were submitted to euthanasia and macroscopic evaluation of organs and cavities. The potential hepatoprotective and antioxidant activity of plant extracts were observed through the hepatic enzyme L-alanine aminotransferase (ALT), L-aspartate aminotransferase (AST), glutathione peroxidase (GPx ), glutathione reductase (GR) and catalase (CAT) and the dosage of malondialdehyde (MDA) - which required validation analytical HPLC-PDA. The bioanalytical method has a linear, selective, accurate, precise, and without interfering with LOQ 0.5 nmol/mL and LOD of 0.25 nmol/ml, suitable for the dosage of MDA in plasma and liver. There was a decrease of MDA in liver tissue, for the two extracts, as well as decreased levels of AST / ALT and GR to post-treatment with EHJB. The agroindustrial waste of jaboticaba fruit peel and the ethanolic extract of breadfruit leaves showed antioxidant activity in vivo.
Estudou-se o efeito hepatoprotetor do extrato hidroalcólico do resíduo agroindustrial de Jabuticaba-paulista (EHJB) (Myrciaria cauliflora O. Berg, Myrtaceae) e do extrato etanólico das folhas de fruta-pão (EEFP) (Artocarpus altilis (Park.). Fosberg, Moraceae) em modelo experimental de hepatotoxicidade por tetracloreto de carbono (CCl4). A jabuticabeira é planta frutífera, nativa do Brasil e muito cultivada. Possui um potencial antioxidante, com compostos fenólicos presentes principalmente na casca dos frutos, que é um dos resíduos do processo de fabricação do vinho de jabuticaba. A fruta-pão é originária das Ilhas do Pacífico e se encontra distribuída por todo o mundo. Frutos e folhas, dessa espécie vegetal, possuem compostos com propriedades farmacológicas, tais como flavonóides. Utilizaram-se camundongos Swiss, machos, divididos em 8 grupos, sendo 5 grupos controles (I: Basal, não recebeu tratamento; II: Azeite, 10 mL/kg, i.p.; III: Propilenoglicol 50%, 10 mL/kg,v.o. IV: CCl4 0,3% em azeite, 10 mL/kg,i.p., controle negativo; V: Silimarina 200 mg/kg, v.o., controle positivo) e quatro grupos tratados, v.o. (VI: EHJB 250 mg/kg; VII: EHJB 500 mg/kg; VIII: EEFP: 250 mg/kg). Exceto os grupos I e II, todos os outros receberam CCl4 0,3% em azeite, no 7º dia de tratamento, 2 horas após as administrações, v.o. Monitorou-se a evolução ponderal e não houve diferença significativa entre os grupos. Ao final dos tratamentos, sangue e fígado dos animais foram colhidos para análise bioquímica, posteriormente estes foram submetidos a eutanásia e avaliação macroscópica dos órgãos e cavidades. O potencial hepatoprotetor e a atividade antioxidante dos extratos vegetais foram observados através da dosagem das enzimas hepáticas L-alanina aminotransferase (ALT), L-aspartato aminotransferase (AST), glutationa peroxidase (GPx), glutationa redutase (GR) e catalase (CAT), assim como da dosagem de malondialdeído (MDA) – que necessitou de validação analítica em HPLC-PDA. O método bioanalítico apresentou-se linear, seletivo, exato, preciso e sem interferentes, com LIQ de 0,5 nmol/mL e LD de 0,25 nmol/mL, adequados para a dosagem de MDA no plasma e no fígado. Houve redução de MDA no tecido hepático, para os dois extratos, assim como houve redução dos níveis de AST/ALT e GR para EHJB pós-tratamento. Os resíduos agroindustriais de cascas de frutos de jabuticaba e o extrato etanólico de folhas de fruta-pão apresentaram atividade antioxidante in vivo.
Gurjar, M. M. "Purification and characterization of galactose binding lectin from artocarpus hirsuta." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1998. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2923.
Full textGrimm, Johanna Elisabeth [Verfasser], Martin [Akademischer Betreuer] Steinhaus, Wilfried [Gutachter] Schwab, and Martin [Gutachter] Steinhaus. "Odor-Active Compounds in Jackfruit (Artocarpus heterophyllus Lam.) and Cempedak (Artocarpus integer (Thunb.) Merr.) / Johanna Elisabeth Grimm ; Gutachter: Wilfried Schwab, Martin Steinhaus ; Betreuer: Martin Steinhaus." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1240384254/34.
Full textTrindade, Melissa Barbano. ""Purificação, caracterização e estudos estruturais de duas lectinas ligantes de quitina das sementes do gênero Artocarpus"." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27092005-110700/.
Full textThis work deals with the preparative-scale purification by chromatographic techniques, the partial primary sequence determination, the spectroscopic characterization by circular dichroism, fluorescence, FT-IR and the investigation of biological activities of two novel chitin-binding lectins from the saline extracts of the seeds of Artocarpus integrifolia, jackfruit, and Artocarpus incisa, breadfruit. Our results revealed that the chitin-binding lectins from jackfruit and breadfruit, jackin and frutackin respectively, are homologous to each other, consiting of monomers of 14 kDa, made up of 3 subunits, linked by S-S bridges. They have 62% of identity between each other; they are rich in cysteines, serines and basic amino acids and they are no homologous to any other known protein, probably constituting a new group of lectins in the chitin-binding lectin superfamily. The CD spectra of jackin and frutackin are similar: both present a beta profile spectra, presenting a maximum about 230 nm and a minimum around 214 nm, this later one, distorted by unordered structures. The fluorescence spectra of jackin and frutackin presented maxima above 340 nm, suggesting that the N-terminals of the 2 up 3 chains of jackin and frutackin (where the tryptophans are) are exposed. Regarding the pH and temperature exposure, monitored by CD and fluorescence, it was observed that the structure of jackin is vulnerable to acid pH and thermally stable. When considered the biological activities, jackin and frutackin presented growth inhibition activity towards Saccharomyces cerevisiae; jackin also promoted the adhesion of the erythroleukemic cell line K562, presented growth inhibition activity towards Fusarium moniliforme at 2,25mg/mL and hemaggluting activity towards rabbit and human red cells from the system ABO, that was not inhibited even by N-acetilglucosamine, suggesting itspreference by oligomers of N-acetilglicosamine or chitin.
Rodrigues, Fernanda Nascimento. "Estabelecimento de cultivo in vitro e estudo proteômico de calos caulinares e foliares de Artocarpus incisa L." reponame:Repositório Institucional da UFC, 2016. http://www.repositorio.ufc.br/handle/riufc/21480.
Full textSubmitted by Anderson Silva Pereira (anderson.pereiraaa@gmail.com) on 2017-01-03T20:49:55Z No. of bitstreams: 1 2016_dis_fnrodrigues.pdf: 1058982 bytes, checksum: 85e27505af970a6b39e312b8bc7ac445 (MD5)
Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2017-01-09T22:36:49Z (GMT) No. of bitstreams: 1 2016_dis_fnrodrigues.pdf: 1058982 bytes, checksum: 85e27505af970a6b39e312b8bc7ac445 (MD5)
Made available in DSpace on 2017-01-09T22:36:49Z (GMT). No. of bitstreams: 1 2016_dis_fnrodrigues.pdf: 1058982 bytes, checksum: 85e27505af970a6b39e312b8bc7ac445 (MD5) Previous issue date: 2016
The species Artocarpus incisa, belonging to the Moraceae family, is a tree-sized plant with multiple applications in folk medicine. As a woody species, several difficulties are reported to its spread, such as the delay in its development and low germination rate. In vitro culture of plant tissue, in particular callus culture, can serve as a tool to overcome these difficulties and to facilitate obtaining the compounds of interest. This work was meant to provide the best conditions of callus formation as well as perform histological analysis and proteomic study of A. incisa calluses. For induction of callus, explants were used arising from leaf and shoot, which have been added to the nutritional formulation Woody Plant Medium (WPM), and applied in treatments containing PVP, activated charcoal, and different growth regulators (2,4-D, BAP, NAA and KIN). The results showed that the cultivation of shoot and leaf explants in medium with 0.1% activated charcoal, supplemented with 4.5 uM of 2,4-D and 4.4 uM BAP treatment was the best callus induction with an 88% percentage production. Quantification of proteins by Protein UV from NanoVue detected 15.97 ug protein / uL shoot extract; 20.07 ug protein / uL leaf extract; 0.75 ug protein / uL of shoot callus extract; and 16.85 ug protein / uL of leaf callus extract. The original tissues showed higher protein concentration than those in produced calluses, which can be explained by the differentiation of tissue. Histological analysis indicated that the cells of calluses were homogeneous and viable, with thin cell wall, and large amount of polysaccharide granules. The proteomic study by mass spectrometry led to the identification of peptides that have relation to previously reported plant proteins. We were able to detect proteins related to the defense (KM+, chitinase, catalase), metabolism (fructose-bisphosphate aldolase, glutamate carboxypeptidase) and cell signaling (calmodulin) in calluses, regardless of the origin of these. The work pioneered the proteomic study of A. incisa calluses, and is an initial step in understanding the biochemistry and physiology of the species under study.
A espécie Artocarpus incisa, pertencente à família Moraceae, é uma planta de porte arbóreo com várias aplicações na medicina popular. Por ser uma espécie lenhosa, várias dificuldades são relatadas para sua propagação, como a demora no seu desenvolvimento e a baixa taxa de germinação. A cultura in vitro de tecidos vegetais, em particular a cultura de calos, pode servir como uma ferramenta para contornar essas dificuldades e facilitar a obtenção dos compostos de interesse. O presente trabalho teve como intuito estabelecer as melhores condições de calogênese, bem como realizar a análise histológica e o estudo proteômico de calos de A. incisa. Para a indução dos calos, utilizou-se explantes advindos de folha e de caule, os quais foram adicionados à formulação nutritiva Woody Plant Medium (WPM), e aplicados em tratamentos contendo PVP, carvão ativado, e diferentes reguladores de crescimento (2,4-D, BAP, ANA e CIN). Os resultados mostraram que o cultivo de explantes foliares e caulinares em meio com carvão ativado 0,1%, suplementado com 4,5 µM de 2,4-D e 4,4 µM de BAP foi o melhor tratamento de indução de calos, com um percentual de produção de 88%. A quantificação de proteínas através do Protein UV do NanoVue detectou 15,97 µg de proteína/µL de extrato de caule; 20,07 µg de proteína/µL de extrato de folha; 0,75 µg de proteína/µL de extrato de calos caulinares; e 16,85 µg de proteína/µL de extrato de calos foliares. Os tecidos originais apresentaram maior concentração de proteínas do que os calos produzidos, o que pode ser explicado pela diferenciação do tecido. A análise histológica indicou que as células de calos se mostraram homogêneas e viáveis, com parede celular fina, e com grande quantidade de polissacarídeos em grânulos. O estudo proteômico, através de espectrometria de massas, levou à identificação de peptídeos que apresentam relação com proteínas vegetais já relatadas. Detectou-se proteínas relacionadas com a defesa (KM+, quitinase, catalase), metabolismo (frutose-bifosfato aldolase, glutamato-carboxipeptidase) e sinalização celular (calmodulina) nos calos, independente da origem destes. O trabalho foi pioneiro no estudo proteômico de calos de A. incisa, e é um passo inicial na compreensão da bioquímica e fisiologia da espécie em estudo.
El-Sawa, Sherine. "Pollination and breeding of jackfruit (Artocarpus heterophyllus lam.) in South Florida." FIU Digital Commons, 1998. http://digitalcommons.fiu.edu/etd/3129.
Full textNeto, Antonio EufrÃsio Vieira. "CaracterizaÃÃo estrutural da frutalina, uma lectina α-D-Galactose ligante de sementes de Artocarpus incisa e anÃlise das suas bases moleculares de ligaÃÃo a D-galactose." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15539.
Full textAs lectinas sÃo proteÃnas que contÃm pelo menos um domÃnio nÃo catalÃtico que lhes permite reconhecer seletivamente e se ligar de uma forma reversÃvel a glicanos especÃficos. A Frutalina à uma lectina obtida a partir das sementes de Artocarpus incisa, conhecida popularmente como fruta-pÃo. O isolamento foi realizado por cromatografia de afinidade em coluna de Agarose-D-Galactose e sua caracterizaÃÃo demonstrou que a Frutalina à uma glicoproteÃna, principalmente α-D-galactose ligante, mas que tambÃm reconhece α-D-Manose. Possui 2,1% de carboidratos e apresenta, em seu perfil de SDS-PAGE, duas bandas protÃicas com massas moleculares aparentes de 12 e 15 kDa, sendo uma proteÃna oligomÃrica, encontrando-se como tetrÃmero apenas em pH alcalino, com massa molecular aparente de 60 kDa. Massas diversas em torno de 16 kDa foram observadas nos espectros deconvoluÃdos em espectrometria de massas, o que corrobora a presenÃa de isoformas. Este trabalho mostra a cristalizaÃÃo e anÃlises dos dados obtidos por difraÃÃo de raios-x para determinaÃÃo da estrutura tridimensional desta lectina, e para isso foram realizados ensaios de cristalizaÃÃo da Frutalina isolada a partir das sementes maduras, na presenÃa do ligante (α-D-galactose) e na sua forma apo (sem ligantes). Os cristais de Frutalina cresceram principalmente em poÃos de pH 8,5 contendo PEG como precipitante e etileno-glicol e os melhores cristais apareceram apÃs uma semana de maturaÃÃo, sendo difratados a uma resoluÃÃo mÃxima de 1,81 Ã. A melhor soluÃÃo para o grupo espacial, considerando eixos e planos de simetria, foi obtida para o grupo espacial I2 com a obtenÃÃo de um Rfactor de 38,6% e LLG de 19,9. A estrutura da Frutalina apresenta, em cada unidade monomÃrica, um β prisma simÃtrico, com trÃs grupos de 4 folhas beta, cada. O sÃtio de reconhecimento a carboidratos, à semelhante ao da Jacalina, e envolve o N-terminal da cadeia α, demonstrando, na regiÃo, um enovelamento caracterÃstico de lectinas da famÃlia Moraceae. O sÃtio de ligaÃÃo da Frutalina consiste numa cavidade prÃxima ao N-terminal da cadeia α, formada por quatro resÃduos-chave: Gly25, Tyr146, Trp147 e Asp149. As bases de interaÃÃo com o ligante sÃo relacionadas ao nÃmero de interaÃÃes, que ocorrem entre a hidroxila do C1 e o resÃduo Tyr146, a hidroxila do C3 e o resÃduo Gly25, a hidroxila do C4 e os resÃduos de Gly25 e Asp149 e a hidroxila do carbono 6 aos resÃduos Tyr146, Trp147 e Asp149. Algumas hidroxilas da α-D-Galactose tambÃm utilizam de interaÃÃes com molÃculas de Ãgua estruturais, para buscar estabilidade no sÃtio de reconhecimento a carboidratos. O grande nÃmero de interaÃÃes corrobora com a grande afinidade que a Frutalina tÃm a galactose e à sua grande capacidade de aglutinaÃÃo, alÃm de proporcionar uma anÃlise das dimensÃes da lectina em relaÃÃo ao ligante, onde se visualiza que o sitio de ligaÃÃo à muito maior que o aÃÃcar, o que pode justificar a preferÃncia que a Frutalina costuma apresentar por glicoconjugados de maior massa molecular, proporcionando maior encaixe, e maior nÃmero de interaÃÃes quÃmicas entre um glicoconjugado maior.
Lectins are proteins containing at least one non-catalytic domain that allows them to recognize and selectively bind a reversible specific glycans. Frutalin is a lectin obtained from Artocarpus incisa seeds, popularly known as breadfruit. The isolation was performed by affinity chromatography on column of Agarose-D-Galactose and their characterization shows that frutalin is a glycoprotein mainly α-D-galactose ligand, because it also recognizes epimers of α-D-mannose. It has 2.1% of carbohydrates and presents, in its SDS-PAGE profile, two protein bands with apparent molecular masses of 12 and 15 kDa, with an oligomeric protein, lying as tetramer only in alkaline pH, with apparent molecular mass of 60 kDa. Several masses around 16 kDa was observed in deconvoluted spectra in Mass Spectrometry, which confirms the presence of isoforms. This work shows the crystallization and analysis of data obtained by x-ray diffraction to determine the three-dimensional structure of this lectin, and that were performed crystallization trials of frutalin isolated from the mature seeds in the presence of ligand (D-galactose) and the way apo (no binders). The frutalin crystals have grown primarily in wells of pH 8.5 containing PEG as precipitant and ethylene glycol and the best crystals appeared after one week of maturation being diffracted to a maximum resolution of 1.81 Ã. The best solution, for the space group, considering axes and planes of symmetry, has been obtained for the I2 space group, with the construction of an Rfactor of 38.6% and LLG = 19.9. The structure of frutalin presents in each monomeric unit, a symmetrical β-prism with three groups of four beta strands each. The carbohydrate recognition site is similar to the jacalin, and involves the N-terminus of the α chain, showing, in the region, a characteristic folding of the Moraceae family. The frutalin binding site cavity is near the N-terminus of the α chain formed by four key residues Gly25, Tyr146, Asp149, and Trp147. The bases of interaction with the binder are related to the number of interactions occurring between the C1 hydroxyl and Tyr146 residue, C3 hydroxyl and Gly25 residue, C4 hydroxyl and Asp149/Gly25 residues, and C6 hydroxyl and Tyr146/Trp147/Asp149 residues. Some hydroxyls of α-D-galactose also utilize interactions called structural waters, to seek stability in the carbohydrate recognition site. The large number of interactions agrees with the high affinity that frutalin has with galactose and its great capacity for agglutination, in addition to providing an analysis of the dimensions of the lectin in relation to the binder, which may justify the preference that frutalin tends to present by higher molecular weight glycoconjugates, and that happens due to the most fitting, and the greatest number of chemical interactions among a larger glycoconjugate.
Vieira, Neto Antonio Eufrásio. "Caracterização estrutural da frutalina, uma lectina α-D-Galactose ligante de sementes de Artocarpus incisa e análise das suas bases moleculares de ligação a D-galactose." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/16474.
Full textSubmitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-03-22T17:47:01Z No. of bitstreams: 1 2016_dis_aevneto.pdf: 1681651 bytes, checksum: 2953060bc810e7a4ab0f8a702a2583f8 (MD5)
Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-04-28T20:57:34Z (GMT) No. of bitstreams: 1 2016_dis_aevneto.pdf: 1681651 bytes, checksum: 2953060bc810e7a4ab0f8a702a2583f8 (MD5)
Made available in DSpace on 2016-04-28T20:57:34Z (GMT). No. of bitstreams: 1 2016_dis_aevneto.pdf: 1681651 bytes, checksum: 2953060bc810e7a4ab0f8a702a2583f8 (MD5) Previous issue date: 2016
Lectins are proteins containing at least one non-catalytic domain that allows them to recognize and selectively bind a reversible specific glycans. Frutalin is a lectin obtained from Artocarpus incisa seeds, popularly known as breadfruit. The isolation was performed by affinity chromatography on column of Agarose-D-Galactose and their characterization shows that frutalin is a glycoprotein mainly α-D-galactose ligand, because it also recognizes epimers of α-D-mannose. It has 2.1% of carbohydrates and presents, in its SDS-PAGE profile, two protein bands with apparent molecular masses of 12 and 15 kDa, with an oligomeric protein, lying as tetramer only in alkaline pH, with apparent molecular mass of 60 kDa. Several masses around 16 kDa was observed in deconvoluted spectra in Mass Spectrometry, which confirms the presence of isoforms. This work shows the crystallization and analysis of data obtained by x-ray diffraction to determine the three-dimensional structure of this lectin, and that were performed crystallization trials of frutalin isolated from the mature seeds in the presence of ligand (D-galactose) and the way apo (no binders). The frutalin crystals have grown primarily in wells of pH 8.5 containing PEG as precipitant and ethylene glycol and the best crystals appeared after one week of maturation being diffracted to a maximum resolution of 1.81 Å. The best solution, for the space group, considering axes and planes of symmetry, has been obtained for the I2 space group, with the construction of an Rfactor of 38.6% and LLG = 19.9. The structure of frutalin presents in each monomeric unit, a symmetrical β-prism with three groups of four beta strands each. The carbohydrate recognition site is similar to the jacalin, and involves the N-terminus of the α chain, showing, in the region, a characteristic folding of the Moraceae family. The frutalin binding site cavity is near the N-terminus of the α chain formed by four key residues Gly25, Tyr146, Asp149, and Trp147. The bases of interaction with the binder are related to the number of interactions occurring between the C1 hydroxyl and Tyr146 residue, C3 hydroxyl and Gly25 residue, C4 hydroxyl and Asp149/Gly25 residues, and C6 hydroxyl and Tyr146/Trp147/Asp149 residues. Some hydroxyls of α-D-galactose also utilize interactions called structural waters, to seek stability in the carbohydrate recognition site. The large number of interactions agrees with the high affinity that frutalin has with galactose and its great capacity for agglutination, in addition to providing an analysis of the dimensions of the lectin in relation to the binder, which may justify the preference that frutalin tends to present by higher molecular weight glycoconjugates, and that happens due to the most fitting, and the greatest number of chemical interactions among a larger glycoconjugate.
As lectinas são proteínas que contêm pelo menos um domínio não catalítico que lhes permite reconhecer seletivamente e se ligar de uma forma reversível a glicanos específicos. A Frutalina é uma lectina obtida a partir das sementes de Artocarpus incisa, conhecida popularmente como fruta-pão. O isolamento foi realizado por cromatografia de afinidade em coluna de Agarose-D-Galactose e sua caracterização demonstrou que a Frutalina é uma glicoproteína, principalmente α-D-galactose ligante, mas que também reconhece α-D-Manose. Possui 2,1% de carboidratos e apresenta, em seu perfil de SDS-PAGE, duas bandas protéicas com massas moleculares aparentes de 12 e 15 kDa, sendo uma proteína oligomérica, encontrando-se como tetrâmero apenas em pH alcalino, com massa molecular aparente de 60 kDa. Massas diversas em torno de 16 kDa foram observadas nos espectros deconvoluídos em espectrometria de massas, o que corrobora a presença de isoformas. Este trabalho mostra a cristalização e análises dos dados obtidos por difração de raios-x para determinação da estrutura tridimensional desta lectina, e para isso foram realizados ensaios de cristalização da Frutalina isolada a partir das sementes maduras, na presença do ligante (α-D-galactose) e na sua forma apo (sem ligantes). Os cristais de Frutalina cresceram principalmente em poços de pH 8,5 contendo PEG como precipitante e etileno-glicol e os melhores cristais apareceram após uma semana de maturação, sendo difratados a uma resolução máxima de 1,81 Å. A melhor solução para o grupo espacial, considerando eixos e planos de simetria, foi obtida para o grupo espacial I2 com a obtenção de um Rfactor de 38,6% e LLG de 19,9. A estrutura da Frutalina apresenta, em cada unidade monomérica, um β prisma simétrico, com três grupos de 4 folhas beta, cada. O sítio de reconhecimento a carboidratos, é semelhante ao da Jacalina, e envolve o N-terminal da cadeia α, demonstrando, na região, um enovelamento característico de lectinas da família Moraceae. O sítio de ligação da Frutalina consiste numa cavidade próxima ao N-terminal da cadeia α, formada por quatro resíduos-chave: Gly25, Tyr146, Trp147 e Asp149. As bases de interação com o ligante são relacionadas ao número de interações, que ocorrem entre a hidroxila do C1 e o resíduo Tyr146, a hidroxila do C3 e o resíduo Gly25, a hidroxila do C4 e os resíduos de Gly25 e Asp149 e a hidroxila do carbono 6 aos resíduos Tyr146, Trp147 e Asp149. Algumas hidroxilas da α-D-Galactose também utilizam de interações com moléculas de água estruturais, para buscar estabilidade no sítio de reconhecimento a carboidratos. O grande número de interações corrobora com a grande afinidade que a Frutalina têm a galactose e à sua grande capacidade de aglutinação, além de proporcionar uma análise das dimensões da lectina em relação ao ligante, onde se visualiza que o sitio de ligação é muito maior que o açúcar, o que pode justificar a preferência que a Frutalina costuma apresentar por glicoconjugados de maior massa molecular, proporcionando maior encaixe, e maior número de interações químicas entre um glicoconjugado maior.
Books on the topic "Artocarpin"
Berg, C. C. Moreae, Artocarpeae, and Dorstenia (Moraceae): With introductions to the family and Ficus and with additions and corrections to Flora Neotropica Monograph 7. Bronx, N.Y: Published for the Organization for Flora Neotropica by the New York Botanical Garden, 2001.
Find full textWanderings in the great forests of Borneo. Singapore: Oxford University Press, 1986.
Find full textWanderings in the great forests of Borneo. Singapore: Oxford University Press, 1989.
Find full textInternational Plant Genetic Resources Institute. Jackfruit (Artocarpus Heterophyllus). International Plant Genetics Research Institute, 2000.
Find full textV, Glaxy. Allelopathic Effect of Artocarpus Heterophyllus L. and Artocarpus Altilis L. on the Seed Germination of Vigna Radiata L. Independently Published, 2020.
Find full textMathew, Jiby John, Sajeshkumar N. K, and Alen N. Albin. Morphological Diversity of Jackfruit (Artocarpus Heterophyllus) Varieties in Kerala. Independently Published, 2018.
Find full textBerg, Cornelis C. Moreae, Artocarpeae, and Dorstenia (Moraceae): With Introductions to the Family and Ficus and With Additions and Corrections to Flora Neotropica Monograph 7(Flora Neotropica Mongraph No. 83). The New York Botanical Garden Press, 2001.
Find full textBook chapters on the topic "Artocarpin"
Lim, T. K. "Artocarpus hypargyreus." In Edible Medicinal And Non Medicinal Plants, 284–86. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_36.
Full textLim, T. K. "Artocarpus altilis." In Edible Medicinal And Non Medicinal Plants, 287–300. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_37.
Full textLim, T. K. "Artocarpus anisophyllus." In Edible Medicinal And Non Medicinal Plants, 301–3. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_38.
Full textLim, T. K. "Artocarpus camansi." In Edible Medicinal And Non Medicinal Plants, 304–8. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_39.
Full textLim, T. K. "Artocarpus dadah." In Edible Medicinal And Non Medicinal Plants, 309–11. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_40.
Full textLim, T. K. "Artocarpus elasticus." In Edible Medicinal And Non Medicinal Plants, 312–15. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_41.
Full textLim, T. K. "Artocarpus glaucus." In Edible Medicinal And Non Medicinal Plants, 316–17. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_42.
Full textLim, T. K. "Artocarpus heterophyllus." In Edible Medicinal And Non Medicinal Plants, 318–36. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_43.
Full textLim, T. K. "Artocarpus integer." In Edible Medicinal And Non Medicinal Plants, 337–43. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_44.
Full textLim, T. K. "Artocarpus odoratissimus." In Edible Medicinal And Non Medicinal Plants, 344–47. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2534-8_45.
Full textConference papers on the topic "Artocarpin"
Lorena de Brito Rodrigues, PATRICYA, FRANCISCO de Oliveira Mesquita, ANA Célia Maia Meireles, WILLIAN Nunes da Silva, and CAMILA Edjanie Alencar Silva. "MUDAS DE Artocarpus heterophylus E Artocarpus integrifólia EM SUBSTRATO COM BIOFERTILIZANTES IRRIGADO COM ÁGUAS SALINAS." In II Congresso Internacional das Ciência Agrárias. Instituto Internacional Despertando Vocações, 2017. http://dx.doi.org/10.31692/2526-7701.iicointerpdvagro.2017.00379.
Full textMalinao, Ronjie Mar L., and Alexander A. Hernandez. "Artocarpus Trees Classification using Convolutional Neural Network." In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM). IEEE, 2018. http://dx.doi.org/10.1109/hnicem.2018.8666322.
Full textJagadeesh S.L., Reddy B.S., Hegde L.N., Swamy G.S.K., and Raghavan G.S.V. "Value Addition in Jackfruit (Artocarpus heterophyllus Lam.)." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21509.
Full textHakim, Aliefman, Eka Junaidi, and Dwi Laksmiwati. "Characteristics of Flavanones from the Genus Artocarpus." In Proceedings of the 2nd International Colloquium on Interdisciplinary Islamic Studies (ICIIS) in Conjunction with the 3rd International Conference on Quran and Hadith Studies (ICONQUHAS). EAI, 2020. http://dx.doi.org/10.4108/eai.7-11-2019.2294559.
Full textLulan, Theodore Y. K., Sri Fatmawati, Mardi Santoso, and Taslim Ersam. "Free radical scavenging activity of Artocarpus champeden extracts." In THE 3RD INTERNATIONAL SEMINAR ON CHEMISTRY: Green Chemistry and its Role for Sustainability. Author(s), 2018. http://dx.doi.org/10.1063/1.5082460.
Full textLenny, Sovia, and Cut Fatimah Zuhra. "Antibacterial properties of breadfruit (Artocarpus alitilis) leaves extracts." In THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136073.
Full textAnggraini, Septi, Nur Mita, and Arsyik Ibrahim. "FORMULASI KRIM ANTIOKSIDAN DAUN CEMPEDAK (Artocarpus champeden Spreng)." In Mulawarman Pharmaceuticals Conferences. Fakultas Farmasi, Universitas Mulawarman, Samarinda, 2015. http://dx.doi.org/10.25026/mpc.v2i1.32.
Full textGaneson, Suhassni, Muhammad Mahadi bin Abdul Jamil, Radzi Bin Ambar, and Ridhwan Abdul Wahab. "Influence of Artocarpus Altilis Fruit Extract on Cancer Cell." In 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC). IEEE, 2018. http://dx.doi.org/10.1109/icsgrc.2018.8657520.
Full textSilva, Edna, Victor Souza, Guilherme de Souza, Susana Cordeiro, Jessica de Oliveira, Elen da Silva, Anna Barros, and Ana Martins. "Benefícios da Farinha do Caroço de Jaca (Artocarpus Heterophyllus)." In XXI I Congresso Brasileiro de Nutrologia. Thieme Revinter Publicações Ltda, 2018. http://dx.doi.org/10.1055/s-0038-1674500.
Full textZuhra, Cut Fatimah, M. Zulham Efendi Sinaga, S. Suharman, Riska Alvi Salsabila Nasution, and Siti Nurhadija. "Oxidation of breadfruit starch (Artocarpus altilis) using hydrogen peroxide." In THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136101.
Full text