Academic literature on the topic 'ArUco-Marker'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ArUco-Marker.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ArUco-Marker"
Tocci, Tommaso, Lorenzo Capponi, and Gianluca Rossi. "ArUco marker-based displacement measurement technique: uncertainty analysis." Engineering Research Express 3, no. 3 (August 30, 2021): 035032. http://dx.doi.org/10.1088/2631-8695/ac1fc7.
Full textUKIGAI, Yuuki, Syuuhei SANTOKI, Atsushi FUJIMORI, and Shinsuke OH-HARA. "Formation control between quadrotor and mobile robot using an aruco marker." Proceedings of Yamanashi District Conference 2018 (2018): YC2018–009. http://dx.doi.org/10.1299/jsmeyamanashi.2018.yc2018-009.
Full textWubben, Jamie, Francisco Fabra, Carlos T. Calafate, Tomasz Krzeszowski, Johann M. Marquez-Barja, Juan-Carlos Cano, and Pietro Manzoni. "Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition." Electronics 8, no. 12 (December 12, 2019): 1532. http://dx.doi.org/10.3390/electronics8121532.
Full textBotta, Andrea, and Giuseppe Quaglia. "Performance Analysis of Low-Cost Tracking System for Mobile Robots." Machines 8, no. 2 (June 2, 2020): 29. http://dx.doi.org/10.3390/machines8020029.
Full textZakiev, Aufar, Ksenia Shabalina, and Evgeni Magid. "Pilot Virtual Experiments on ArUco and AprilTag Systems Comparison for Fiducial Marker Rotation Resistance." Proceedings of International Conference on Artificial Life and Robotics 24 (January 10, 2019): 132–35. http://dx.doi.org/10.5954/icarob.2019.os4-7.
Full textYu, Jing, Wensong Jiang, Zai Luo, and Li Yang. "Application of a Vision-Based Single Target on Robot Positioning System." Sensors 21, no. 5 (March 5, 2021): 1829. http://dx.doi.org/10.3390/s21051829.
Full textAalerud, Atle, Joacim Dybedal, and Geir Hovland. "Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers." Sensors 19, no. 7 (March 31, 2019): 1561. http://dx.doi.org/10.3390/s19071561.
Full textBi, Shusheng, Dongsheng Yang, and Yueri Cai. "Automatic Calibration of Odometry and Robot Extrinsic Parameters Using Multi-Composite-Targets for a Differential-Drive Robot with a Camera." Sensors 18, no. 9 (September 14, 2018): 3097. http://dx.doi.org/10.3390/s18093097.
Full textБурыкин, Ю. Г. "A Video Tracking System for the Registration of Upper Extremity Motions." Успехи кибернетики / Russian Journal of Cybernetics, no. 3(3) (September 30, 2020): 23–32. http://dx.doi.org/10.51790/2712-9942-2020-1-3-3.
Full textPoroykov, Anton, Pavel Kalugin, Sergey Shitov, and Irina Lapitskaya. "Modeling ArUco Markers Images for Accuracy Analysis of Their 3D Pose Estimation." Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2, December 17, 2020, short14–1—short14–7. http://dx.doi.org/10.51130/graphicon-2020-2-4-14.
Full textDissertations / Theses on the topic "ArUco-Marker"
Bilda, Sebastian. "Optische Methoden zur Positionsbestimmung auf Basis von Landmarken." Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-226934.
Full textIndoor Positioning is receiving more and more attention nowadays. Beside the navigation through a building, Location Bases Services offer the possibility to get more information about certain objects in the enviroment. Because GPS signals are too weak to penetrate buildings, other techniques for localization must be found. Beneath the commonly used positioning via the evaluation of received radio signals, optical methods for localization with the help of landmarks can be used. These camera-based procedures have the advantage, that an inch-perfect positioning is possible. In this master thesis, the determination of the position in a building is chieved through the detection of ArUco-Marker and door signs in images gathered by a camera. The evaluation is done with the Microsoft Kinect v2 and the Lenovo Phab 2 Pro Smartphone. They offer depth data gained by a time of flight sensor beside the color images. The range to a detected landmark is calculated by comparing the object´s corners in the image with the real metrics, extracted from a database. Additionally, the distance is determined by the evaluation of the depth data. Finally, both procedures are compared with each other and a statement about the accuracy and responsibility is made
Karlsson, Christoffer. "Vision based control and landing of Micro aerial vehicles." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-73225.
Full textI detta examensarbete presenteras ett visionsbaserat kontrollsystem for dronaren Crazy ie 2.0som har utvecklats av Bitcraze AB. Malet med detta arbete ar att utforma och implementeraett externt kontrollsystem baserat pa data som inhamtas av en kamera for att reglera fordonetsposition och riktning med avseende pa en markor placerad i synfaltet av kameran. Genom attintegrera kameran tillsammans med en tradlos videosandare pa plattformen, visar vi i dennaavhandling att det ar mojligt att astadkomma autonom navigering och landning i narheten avmarkoren.Kontrollsystemet utvecklades i programmeringsspraket Python och all processering avvisions-datan sker pa en extern dator. Metoderna som anvands for att utvecklakontrollsystemet och som beskrivs i denna rapport har testats under ett ertal experiment somvisar pa hur val systemet kan detektera markoren och hur val de olika ingaendekomponenterna samspelar for att kunna utfora den autonoma styrningen. Genom den metodsom presenteras i den har rapporten for att berakna styrsignalerna till dronaren med hjalp avvisuell data, visar vi att det ar mojligt att astadkomma autonom styrning och landning motmalet inom en radie av 10 centimeter.
Book chapters on the topic "ArUco-Marker"
Lebedev, Igor, Aleksei Erashov, and Aleksandra Shabanova. "Accurate Autonomous UAV Landing Using Vision-Based Detection of ArUco-Marker." In Lecture Notes in Computer Science, 179–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60337-3_18.
Full textKoeda, Masanao, Daiki Yano, Naoki Shintaku, Katsuhiko Onishi, and Hiroshi Noborio. "Development of Wireless Surgical Knife Attachment with Proximity Indicators Using ArUco Marker." In Lecture Notes in Computer Science, 14–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91244-8_2.
Full textZakiev, Aufar, Ksenia Shabalina, Tatyana Tsoy, and Evgeni Magid. "Pilot Virtual Experiments on ArUco and ArTag Systems Comparison for Fiducial Marker Rotation Resistance." In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”, 455–64. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9267-2_37.
Full textConference papers on the topic "ArUco-Marker"
Wang, Yutao, Zongpeng Zheng, Zhiqi Su, Gang Yang, Zhong Wang, and Yu Luo. "An Improved ArUco Marker for Monocular Vision Ranging." In 2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020. http://dx.doi.org/10.1109/ccdc49329.2020.9164176.
Full textLi, Boxuan, Jiezhang Wu, Xiaojun Tan, and Benfei Wang. "ArUco Marker Detection under Occlusion Using Convolutional Neural Network." In 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE). IEEE, 2020. http://dx.doi.org/10.1109/cacre50138.2020.9230250.
Full textKam, Ho Chuen, Ying Kin Yu, and Kin Hong Wong. "An Improvement on ArUco Marker for Pose Tracking Using Kalman Filter." In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, 2018. http://dx.doi.org/10.1109/snpd.2018.8441049.
Full textRen, Ranzhen, Lichuan Zhang, Yijie Yuan, Zhimo Wang, and Lu Liu. "Underwater Visual Tracking Method Based on KCF Algorithm of ArUco Marker." In Global Oceans 2020: Singapore - U.S. Gulf Coast. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf38699.2020.9389441.
Full textMeleško, Jaroslav. "ROBUST AUGMENTED REALITY SYSTEM." In Inžinerinė grafika ir projektavimas. Informacinių technologijų sauga ir informacinės sistemos. VGTU Technika, 2016. http://dx.doi.org/10.3846/itsis.2016.09.
Full textElangovan, Nathan, Anany Dwivedi, Lucas Gerez, Che-Ming Chang, and Minas Liarokapis. "Employing IMU and ArUco Marker Based Tracking to Decode the Contact Forces Exerted by Adaptive Hands." In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE, 2019. http://dx.doi.org/10.1109/humanoids43949.2019.9035051.
Full textSani, Mohammad Fattahi, and Ghader Karimian. "Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker and inertial sensors." In 2017 International Conference on Computer and Drone Applications (IConDA). IEEE, 2017. http://dx.doi.org/10.1109/iconda.2017.8270408.
Full textZakiev, Aufar, Tatyana Tsoy, Ksenia Shabalina, Evgeni Magid, and Subir Kumar Saha. "Virtual Experiments on ArUco and AprilTag Systems Comparison for Fiducial Marker Rotation Resistance under Noisy Sensory Data." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9207701.
Full text