Academic literature on the topic 'Aspen Hysys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aspen Hysys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aspen Hysys"
Sultana, Sujala T., and M. Ruhul Amin. "Aspen-Hysys Simulation Of Sulfuric Acid Plant." Journal of Chemical Engineering 26 (March 24, 2012): 47–49. http://dx.doi.org/10.3329/jce.v26i1.10182.
Full textRoy, Partho S., and M. Ruhul Amin. "Aspen-HYSYS Simulation of Natural Gas Processing Plant." Journal of Chemical Engineering 26 (March 24, 2012): 62–65. http://dx.doi.org/10.3329/jce.v26i1.10186.
Full textToyin Olabisi, Odutola, and Ugwu Chukwuemeka Emmanuel. "Simulation of Laboratory Hydrate Loop Using Aspen Hysys." Engineering and Applied Sciences 4, no. 3 (2019): 52. http://dx.doi.org/10.11648/j.eas.20190403.11.
Full textKalashnikov, O. V., S. V. Budniak, Yu V. Ivanov, Yu M. Belyansky, N. O. Aptulina, and A. O. Zobnin. "COMPARISON OF GAZKONDNAFTA AND HYSYS SOFTWARE SYSTEMS IN THE FIELD OF COMPUTER MODELING OF OIL AND GAS TECHNOLOGIES." Energy Technologies & Resource Saving, no. 3 (September 20, 2021): 4–22. http://dx.doi.org/10.33070/etars.3.2021.01.
Full textTaimoor, Aqeel Ahmad. "Virtualization of the process control laboratory using ASPEN HYSYS." Computer Applications in Engineering Education 24, no. 6 (September 7, 2016): 887–98. http://dx.doi.org/10.1002/cae.21758.
Full textSafari, Ayoub. "Automation of control degrees of freedom in Aspen Hysys." IFAC Journal of Systems and Control 19 (March 2022): 100187. http://dx.doi.org/10.1016/j.ifacsc.2022.100187.
Full textOlateju, Idowu Iyabo, Crowei Gibson-Dick, Steve Chidinma Oluwatomi Egede, and Abdulwahab Giwa. "Process Development for Hydrogen Production via Water-Gas Shift Reaction Using Aspen HYSYS." International Journal of Engineering Research in Africa 30 (May 2017): 144–53. http://dx.doi.org/10.4028/www.scientific.net/jera.30.144.
Full textDarabi, Mohsen, Mohammad Mohammadiun, Hamid Mohammadiun, Saeed Mortazavi, and Mostafa Montazeri. "Simulation and optimization integrated gasification combined cycle by used aspen hysys and aspen plus." International Journal of Scientific World 3, no. 1 (May 7, 2015): 178. http://dx.doi.org/10.14419/ijsw.v3i1.4583.
Full textVariny, Miroslav, Dominika Jediná, and Patrik Furda. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13, 6361." Energies 14, no. 20 (October 9, 2021): 6443. http://dx.doi.org/10.3390/en14206443.
Full textSemenov, Ivan, and Aleksandr Shelkovnikov. "MODELING OF THE PROCESS OF ISOPARAFFIN SULFURIC ALKYLATION." Modern Technologies and Scientific and Technological Progress 1, no. 1 (May 17, 2021): 72–73. http://dx.doi.org/10.36629/2686-9896-2021-1-1-72-73.
Full textDissertations / Theses on the topic "Aspen Hysys"
CUNHA, Vânia Maria Borges. "Modelagem e simulação de processos de separação a altas pressões: aplicações com Aspen hysys." Universidade Federal do Pará, 2014. http://repositorio.ufpa.br/jspui/handle/2011/7696.
Full textApproved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-15T15:00:28Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5)
Made available in DSpace on 2017-02-15T15:00:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5) Previous issue date: 2014
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho, foi elaborada uma base de dados de parâmetros de interação binária de diferentes regras de mistura, para as equações de estado de Soave-Redlich-Kwong (SRK) e Peng-Robinson (PR), a partir de dados experimentais de sistemas binários e multicomponentes de hidrocarbonetos, N2, CO2, água, β-caroteno, etanol, acetona e metanol, com objetivo de aplicar em simulações com o Aspen Hysys aos processos de fracionamento do gás natural em um processo de turbo-expansão simplificado; de fracionamento de óleo, gás e água, em separador trifásico, de extração com CO2 supercrítico de acetona de uma solução aquosa e de β-caroteno de uma solução aquosa, em coluna de multiestágios em contracorrente. De modo geral, não ocorreram diferenças significativas na predição do equilibro de fases dos sistemas binários estudados, para ambas as equações, com as regras de mistura quadrática, Mathias-Klotz-Prausnitz (MKP) com dois e três parâmetros. Cabe destacar que a regra de mistura MKP com 3 parâmetros de interação binária apresentou os menores erros absolutos para os sistemas binários de hidrocarbonetos e CO2/ hidrocarbonetos. Para os ajustes de dados de equilíbrio dos sistemas multicomponentes de hidrocarbonetos, a equação de SRK combinada com a regra de mistura quadrática com 2 parâmetros de interação binária, foi a que apresentou os menores erros médios para os sistemas ternários e para o sistema com 5 componentes em ambas as fases. No estudo de caso do separador trifásico a equação de SRK com a regra de mistura RK-Aspen foi a que apresentou a maior separação da fase aquosa de todas as simulações (285,68 kg/h) contra 256,88 kg/h para a equação SRK, 249,81 kg/h para a equação PR e 152,90 kg/h para a equação PRSV, confirmando a grande influência do uso da matriz de parâmetros de interação binária determinada neste trabalho, com destaque para os parâmetros que representam as interações entre os hidrocarbonetos com a água. Os resultados das simulações com a planta simplificada de turbo-expansão estão de acordo com a análise descrita na literatura, apresentando as seguintes taxas de recuperação de etano: 84,045% para PRSV, 84,042% para SRK, 84,039% para TST e PR e 83,98% para RKAspen. O produto final da simulação publicada na literatura para o fracionamento de uma solução aquosa de acetona utilizando o processo de extração com CO2 supercrítico consistiu na corrente de saída do fundo da coluna de destilação a 65 atm (6586 kPa), com uma composição de 67,67 % de CO2 (74,3 kg/h), 31,11% de acetona (34,15 kg/h) e 1,21% (1,33 kg/h) de água em base mássica. Na simulação com o Aspen Hysys a corrente de saída da coluna de destilação foi submetida a um conjunto de separadores flash para a separação do CO2 atingindo a recuperação de 27 kg/h de acetona em três correntes (11,14 e 15) com menos de 5 kg/h residuais de CO2 e 0,8 kg/h de água. O fracionamento da solução aquosa de β- caroteno foi simulado com o Aspen Hysys, com uma coluna de múltiplos estágios em contracorrente e um separador flash vertical para a separação do CO2. As simulações convergiram com, no mínimo, cinco estágios. Foi obtida uma corrente de fundo (produto) do separador flash com 97,83% de β-caroteno contra 89,95% em massa, para a simulação de um extrator de um único estágio publicada na literatura.
The purpose of this work was to elaborate a database of binary interaction parameters of different mixing rules, for the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations of state, using experimental data of binary and multicomponent systems of hydrocarbons, N2, CO2, water, β-carotene, ethanol, acetone and methanol, in order to apply in simulations with the Aspen Hysys fractionation processes, of natural gas into a simplified turbo-expansion process; fractionation of oil, gas and water, in three-phase separator, supercritical CO2 extraction of acetone from an aqueous solution and β-carotene from an aqueous solution in multistage countercurrent column. In general, there were no significant differences, to both equations, in the phase equilibrium prediction of the binary systems studied, between the quadratic and Mathias-Klotz-Prausnitz (MKP) mixing rules with two and three parameters. It is worth mentioning that the MKP mixing rule with 3 binary interaction parameters presented the smallest absolute errors for hydrocarbon binary systems and CO2/hydrocarbons systems. For the settings of hydrocarbons phase equilibrium multicomponent systems data, the SRK equation combined with quadratic mixture rule with 2 binary interaction parameters, was presented the lowest average errors for ternary systems and for system with 5 components in both phases. In the case study of three-phase separator the SRK equation with the mixing rule RK-Aspen was the one that presented the greater separation of the aqueous phase of all simulations (285.68 kg/h) against 256.88 kg/h to the SRK equation, 249.81 kg/h for the PR equation and 152.90 kg/h to PRSV equation, confirming the great influence of the use the binary interaction parameters matrix determined in this work, with emphasis on the parameters that represent the interactions between the hydrocarbons with water. The results of the simulations with the simplified plant turboexpansion are according to the analysis described in the literature showing the following recovery rates of ethane: 84.045% to PRSV, 84.042% for SRK, 84.039% for TST and PR and 83.98% for RK-Aspen. The final product of the simulation published in the literature for the fractionation of an aqueous solution of acetone by using supercritical CO2 extraction process consisted in the output current from the bottom of the distillation column at 65 atm (6586 kPa), with a composition of 67.67% CO2 (74.3 kg/h), 31.11% of acetone (34.15 kg/h) and 1.21% (1.33 kg/h) of water in mass base. In the simulation with Aspen Hysys the output current of the distillation column was subjected to a set of flash separators for separation of CO2 reaching the recovery of 27 kg/h of acetone in three currents (11.14 and 15) with less than 5 kg/h CO2 waste and 0.8 kg/h of water. The fractionation of aqueous solution of β- carotene was simulated with the Aspen Hysys, with a multistage countercurrent column and a vertical flash separator for separation of CO2. The simulations have converged with a minimum of five stages. It was retrieved from an underflow (product) flash separator with 97.83% of β-carotene against 89.95% by mass for the simulation of an extractor of a single stage published in the literature.
Pinho, Costa Souza Thibério. "Simulação de uma planta piloto de Biodisel com estudo da viabilidade econômica preliminar usando o ASPEN/HYSYS." Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/6345.
Full textUniversidade Federal de Pernambuco
Nos últimos anos o biodiesel se tornou uma alternativa para a demanda crescente de combustível. O próximo passo é conseguir produzir um biodiesel economicamente competitivo com o diesel fóssil em um processo em nível industrial. Este trabalho visa estudar do ponto de vista computacional, uma planta piloto de biodiesel, simulando o processo desde a reação de transesterificação de óleos vegetais, chegando até a purificação do biodiesel, utilizando o APEN/HYSYS. Além disso, foi feito o estudo da viabilidade econômica preliminar da mesma, fazendo-se uso do custo anualizado total unitário CATU. Os resultados das simulações foram comparados com os resultados obtidos numa planta piloto montada em Pernambuco/Brasil. Em seguida, foi comparada a viabilidade econômica da planta piloto, com uma planta operando com uma coluna de destilação reativa para produção do referido combustível. Os resultados mostraram que a destilação reativa é um processo mais econômico para a produção do biodiesel do que em um processo em batelada
FERNANDES, Thalita Cristine Ribeiro Lucas. "Estudo da cinética das reações de hidrodesnitrogenação." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1975.
Full textMade available in DSpace on 2018-10-16T12:44:41Z (GMT). No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) Previous issue date: 2017-09-27
CNPq
A hidrodesnitrogenação catalítica é um processo utilizado para remover impurezas de nitrogênio em produtos derivados de petróleo e ocorre mediante o tratamento da carga com hidrogênio a temperatura e pressão elevadas em um reator do tipo tricled-bed. Para otimizar as operações nestes reatores, é necessário que se tenha informações sobre a cinética das várias reações de hidrodesnitrogenação. Entretanto, as equações das taxas das reações não estão disponíveis na literatura. Assim, o objetivo deste trabalho consiste em obter as equações das taxas das reações e os parâmetros cinéticos para a rede reacional dos compostos nitrogenados utilizando o modelo rigoroso de hidrodesnitrogenação do Aspen Hysys como base numérica para as simulações. Experimentos numéricos foram realizados em um reator diferencial no software Aspen Hysys para obter dados de concentração de reagentes e produtos a diferentes alimentações. Diferentes métodos foram utilizados, um método de regressão linear multivariável para obtenção dos coeficientes de regressão, um método de metamodelagem interpoladora estocástica, o Kriging e a otimização do metamodelo Kriging utilizando o método dos mínimos quadrados. Para testar as metodologias propostas, todas as etapas foram aplicadas para um sistema de duas reações simples, uma reversível e outra irreversível, em um reator PFR. Os resultados referentes ao método de regressão linear mostraram que a metodologia pode ser utilizada para estimar parâmetros cinéticos desde que se conheça a equação da taxa correspondente. A comparação entre os dois métodos do tipo Kriging propostos (convencional e otimizado) foi feita a partir de técnicas de análise estatísticas, como o coeficiente de determinação R² e análise de variância (ANOVA). O kriging otimizado mostrou uma melhor aderência aos dados quando comparado com o kriging convencional.
Catalytic hydrodenitrogenation is one process used to remove nitrogen impurities from refinery streams, and it occurs by reacting a given charge with hydrogen at high temperature and pressure in a trickled-bed reactor. In order to optimize the operation of such reactors one needs information about the kinetics of the various hydrodenitrogenation reactions. However, reaction rate expressions are not available in the open literature. Therefore, this work aims at obtaining the reaction rate expressions and parameters for the reaction network of nitrogen compounds using the rigorous hydrodenitrogenation model in Aspen Hysys as the numerical basis for simulations. A differential reactor to simulate the process for different feed streams generated data to estimate of concentration of reagent and products at different feed loads. Three different methods were used, a multivariable linear regression model to obtain the regression coefficients, a stochastic interpolator metamodeling, Kriging and an optimized Kriging with least square method. In a first step, two simple reactions rates were used to test the methodologies in a reactor PFR in Hysys, a reversible and an irreversible. The results showed that linear regression might be use to estimate parameters satisfactory only if you know the reaction rate expression. By using statistical analysis as determination coefficient R² and analyze of variance, ANOVA, it was possible to compare both Krigings (conventional and optimized). Optimized Kriging showed a better adherence to the data when compared to conventional kriging.
Fazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.
Full textLopes, Herbert Senzano. "Simula??o da destila??o molecular de filme descendente para o petr?leo." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br/handle/123456789/19939.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-03-04T00:31:31Z (GMT) No. of bitstreams: 1 HerbertSenzanoLopes_DISSERT.pdf: 1964831 bytes, checksum: a1f3b710808bf3ed42490612f2700bca (MD5)
Made available in DSpace on 2016-03-04T00:31:31Z (GMT). No. of bitstreams: 1 HerbertSenzanoLopes_DISSERT.pdf: 1964831 bytes, checksum: a1f3b710808bf3ed42490612f2700bca (MD5) Previous issue date: 2014-12-23
A parte pesada do petr?leo pode ser utilizada para in?meras finalidades, uma delas ? a obten??o de ?leos lubrificantes. Com base nesse contexto, muitos pesquisadores v?m estudando alternativas de separa??o desses constituintes de petr?leo bruto, entre elas pode ser citada a destila??o molecular, uma t?cnica de evapora??o for?ada diferente dos outros processos convencionais presentes na literatura. Este processo pode ser classificado como um caso especial de destila??o a alto v?cuo com press?es que chegam a atingir faixas extremamente baixas da ordem de 0,1 Pascal. As superf?cies de evapora??o e de condensa??o devem apresentar uma dist?ncia entre si da ordem de grandeza do percurso livre m?dio das mol?culas evaporadas, isto ?, as mol?culas evaporadas facilmente atingir?o o condensador, pois as mesmas encontrar?o um percurso sem obst?culos, o que ? desej?vel. Logo, a principal contribui??o deste trabalho consiste na simula??o do processo de destila??o molecular de filme descendente do petr?leo. O petr?leo bruto foi caracterizado utilizando o UniSim? Design R430 e o Aspen HYSYS? V8.5. Com os resultados desta caracteriza??o foram efetuados, em planilhas de c?lculo no Microsoft? Excel?, os c?lculos das propriedades f?sico-qu?micas dos res?duos de uma amostra de petr?leo, i.e., termodin?micas e de transporte. De posse dessas propriedades estimadas e das condi??es de contorno sugeridas pela literatura, foram resolvidas as equa??es dos perfis de temperatura e concentra??o atrav?s do m?todo de diferen?as finitas impl?cito utilizando a linguagem de programa??o Visual Basic? (VBA) for Excel?. O resultado do perfil de temperatura apresentou-se coerente com os reproduzidos pela literatura, havendo em seus valores iniciais uma leve distor??o em consequ?ncia da natureza do ?leo estudado ser mais leve que o da literatura. Os resultados dos perfis de concentra??o mostraram-se eficientes permitindo perceber que as concentra??es dos mais vol?teis diminuem e as dos menos vol?teis aumentam em fun??o do comprimento do evaporador. De acordo com os fen?menos de transporte presentes no processo, o perfil de velocidade tende a aumentar at? um ponto m?ximo e em seguida diminui e a espessura do filme diminui, ambos em fun??o do comprimento do evaporador. Conclui-se que o c?digo de simula??o em linguagem Visual Basic? (VBA) ? um produto final do trabalho que permite aplica??o para a destila??o molecular do petr?leo e de outras misturas similares.
The heavy part of the oil can be used for numerous purposes, e.g. to obtain lubricating oils. In this context, many researchers have been studying alternatives such separation of crude oil components, among which may be mentioned molecular distillation. Molecular distillation is a forced evaporation technique different from other conventional processes in the literature. This process can be classified as a special distillation case under high vacuum with pressures that reach extremely low ranges of the order of 0.1 Pascal. The evaporation and condensation surfaces must have a distance from each other of the magnitude order of mean free path of the evaporated molecules, that is, molecules evaporated easily reach the condenser, because they find a route without obstacles, what is desirable. Thus, the main contribution of this work is the simulation of the falling-film molecular distillation for crude oil mixtures. The crude oil was characterized using UniSim? Design and R430 Aspen HYSYS? V8.5. The results of this characterization were performed in spreadsheets of Microsoft? Excel?, calculations of the physicochemical properties of the waste of an oil sample, i.e., thermodynamic and transport. Based on this estimated properties and boundary conditions suggested by the literature, equations of temperature and concentration profiles were resolved through the implicit finite difference method using the programming language Visual Basic? (VBA) for Excel?. The result of the temperature profile showed consistent with the reproduced by literature, having in their initial values a slight distortion as a result of the nature of the studied oil is lighter than the literature, since the results of the concentration profiles were effective allowing realize that the concentration of the more volatile decreases and of the less volatile increases due to the length of the evaporator. According to the transport phenomena present in the process, the velocity profile tends to increase to a peak and then decreases, and the film thickness decreases, both as a function of the evaporator length. It is concluded that the simulation code in Visual Basic? language (VBA) is a final product of the work that allows application to molecular distillation of petroleum and other similar mixtures.
Vivarelli, Simone. "Analisi della sezione di blowdown di un impianto di produzione di catalizzatori di Ziegler-Natta." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textYounes, George. "Integration of offshore renewable energy sources for the production of chemical energy vectors: The case of Hydrogen." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textRiotto, Antonio. "Analisi termodinamica di cicli di potenza complessi a CO2 supercritica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22430/.
Full textEl, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.
Full textRezakazemi, M., Nejat Rahmanian, Hassan Jamil, and S. Shirazian. "Process simulation and evaluation of ethane recovery process using Aspen-HYSYS." 2018. http://hdl.handle.net/10454/18405.
Full textIn this work, the process of ethane recovery plant was simulated for the purpose of Front End Engineering Design. The main objective is to carry out a series of simulation using Aspen HYSYS to compare recovery of ethane from Joule Thomson (JT) Valve, Turbo-Expander and Twister Technology. Twister technology offers high efficiency, more ethane recovery and lower temperature than JT valve and turbo-expander process. It lies somewhere between isenthalpic and isentropic process due to its mechanical configuration. Three processes were compared in terms of recovery of ethane. To conduct the simulations, a real gas plant composition and design data were utilized to perform the study for comparison among chosen technologies which are available for ethane recovery. The same parameters were used for the comparisons. Effect of operating conditions including pressure, temperature, and flow rate as well as carbon dioxide on the recovery of ethane was examined.
Books on the topic "Aspen Hysys"
Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Wiley-Interscience, 2019.
Find full textHaydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2018.
Find full textHaydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2019.
Find full textBugaeva, Lyudmila, Tatiana Boyko, and Yuriy Beznosyk. System analysis of chemical-technological complexes. KPI named after Igor Sikorsky, 2017. http://dx.doi.org/10.30888/textbook.sach-tc.2017.
Full textBook chapters on the topic "Aspen Hysys"
Lemessa, Addis, Melkamu Birlie, Metadel Kassahun, and Yared Mengistu. "Process Revamping of H2SO4 Plant to Double Contact Double Absorption (DCDA) Using ASPEN HYSYS to Reduce SO2 Emission: Case of Awash Melkassa Sulfuric Acid Factory." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 59–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93709-6_5.
Full textChemmangattuvalappil, Nishanth, and Siewhui Chong. "Basics of Process Simulation With Aspen HYSYS." In Chemical Engineering Process Simulation, 233–52. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803782-9.00011-x.
Full textSousa, Ana M., Henrique A. Matos, and Maria J. Pereira. "Modelling Paraffin Wax Deposition Using Aspen HYSYS and MATLAB." In Computer Aided Chemical Engineering, 973–78. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818634-3.50163-6.
Full textSingh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Petrochemical Catalyst Materials, Processes, and Emerging Technologies, 164–76. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9975-5.ch007.
Full textSingh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Natural Resources Management, 1584–96. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0803-8.ch075.
Full textM. Fadayini, Oluwafemi, Adekunle A. Obisanya, Gloria O. Ajiboye, Clement Madu, Tajudeen O. Ipaye, Taiwo O. Rabiu, Shola J. Ajayi, and Joseph T. Akintola. "Simulation and Optimization of an Integrated Process Flow Sheet for Cement Production." In Cement Industry - Optimization, Characterization and Sustainable Application. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95269.
Full textSantos, Pedro, and Tom Van Gerven. "Aspen Hysys – Unity Interconnection. An Approach for Rigorous Computer- Based Chemical Engineering Training." In Computer Aided Chemical Engineering, 2053–58. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-823377-1.50343-8.
Full textAzad, A. K., M. G. Rasul, M. M. K. Khan, Sukanta Kumar Mondal, and Rubayat Islam. "Modeling and Simulation of Heat and Mass Flow by ASPEN HYSYS for Petroleum Refining Process in Field Application." In Thermofluid Modeling for Energy Efficiency Applications, 227–57. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-802397-6.00010-5.
Full textConference papers on the topic "Aspen Hysys"
Øi, Lars Erik, and Irene Yuste Tirados. "Heat Pump Efficiencies Simulated with Aspen HYSYS and Aspen Plus." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15119141.
Full textDinca, Cristian, Nela Slavu, Adrian Badea, Nela Slavu, and Adrian Badea. "CO2 adsorption process simulation in ASPEN Hysys." In 2017 International Conference on Energy and Environment (CIEM). IEEE, 2017. http://dx.doi.org/10.1109/ciem.2017.8120808.
Full textNaji, Fatimah, Adnan Ateeq, and Mohammed Al-Mayyahi. "Characterization of Iraqi crude oil using Aspen Hysys." In Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 7-9 September 2021, Sakarya, Turkey. EAI, 2022. http://dx.doi.org/10.4108/eai.7-9-2021.2314846.
Full textØi, Lars Erik, Andrea Haukås, Solomon Aromada, and Nils Eldrup. "Automated Cost Optimization of CO2 Capture Using Aspen HYSYS." In The First SIMS EUROSIM Conference on Modelling and Simulation, SIMS EUROSIM 2021, and 62nd International Conference of Scandinavian Simulation Society, SIMS 2021, September 21-23, Virtual Conference, Finland. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp21185293.
Full textØi, Lars Erik, and Jon Hovland. "Simulation of Condensation in Compressed Raw Biogas Using Aspen HYSYS." In The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway. Linköping University Electronic Press, 2018. http://dx.doi.org/10.3384/ecp1815331.
Full textRhenals Julio, Jesús David, Carlos Manuel Romero Luna, and Diogo Nunes. "Simulation of air-steam gasification of glycerol using aspen HYSYS." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-2065.
Full textNema, P., Himanshu Patel, and A. Sahu. "Steady state analysis of compressor and oil removal system with Aspen HYSYS." In The International Conference on Communication and Computing Systems (ICCCS-2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315364094-164.
Full textØi, Lars Erik, Nils Eldrup, Solomon Aromada, Andrea Haukås, Joakim HelvigIda Hæstad, and Anne Marie Lande. "Process Simulation, Cost Estimation and Optimization of CO2 Capture using Aspen HYSYS." In SIMS Conference on Simulation and Modelling SIMS 2020, September 22-24, Virtual Conference, Finland. Linköping University Electronic Press, 2021. http://dx.doi.org/10.3384/ecp20176326.
Full textIslam, Md, F. Banat, A. Baba, and S. Abuyahya. "Design and Development of a Small Multistage Flash Desalination System Using Aspen HYSYS." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4975.
Full textTAKAKURA, A. K., E. C. COSTA, N. T. MACHADO, M. E. ARAÚHO, and L. E. P. BORGES. "SIMULAÇÃO DO CRAQUEAMENTO TÉRMICO DE ÓLEO DE CANOLA, EMPREGANDO O SIMULADOR ASPEN HYSYS®." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-0947-22208-189044.
Full text