Academic literature on the topic 'Aspen Hysys'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aspen Hysys.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aspen Hysys"

1

Sultana, Sujala T., and M. Ruhul Amin. "Aspen-Hysys Simulation Of Sulfuric Acid Plant." Journal of Chemical Engineering 26 (March 24, 2012): 47–49. http://dx.doi.org/10.3329/jce.v26i1.10182.

Full text
Abstract:
This work presents a theoretical investigation of the simulation of Sulfuric acid process plant. In the production of the acid in contact process liquid sulfur is sequentially oxidized to Sulfur tri oxide via an exothermic reaction which is absorbed by 98% Sulfuric acid in an absorption tower. In this research Aspen One V7.2 has been successfully used to design every sub-process of the sulfuric acid plant in one integrated environment. In order to simulate the process as accurately as possible COM thermo was selected as advanced thermodynamics. Electrolyte NRTL and Peng-Robinson were used for liquid and vapor phase respectively as fluid package and HYSYS properties were used for simulation. The simulation of sulfuric acid process included automatic chemistry generation and the capacity of handling electrolyte reactions for all unit models. Aspen-HYSYS provides specialized thermodynamics models and built-in data to represent the non-ideal behavior of liquid phase components in order to get accurate results. Material and energy flows, sized unit operations blocks can be used to conduct economic assessment of each process and optimize each of them for profit maximization. The simulation model developed can also be used as a guide for understanding the process and the economics, and also a starting point for more sophisticated models for plant designing and process equipment specifying. DOI: http://dx.doi.org/10.3329/jce.v26i1.10182 JCE 2011; 26(1): 47-49
APA, Harvard, Vancouver, ISO, and other styles
2

Roy, Partho S., and M. Ruhul Amin. "Aspen-HYSYS Simulation of Natural Gas Processing Plant." Journal of Chemical Engineering 26 (March 24, 2012): 62–65. http://dx.doi.org/10.3329/jce.v26i1.10186.

Full text
Abstract:
In this time of energy crisis low production rate against the increasing demand of the gas production regularly hampers both the domestic and industrial operations since natural gas is the major power source of this country. Unless other power source is developed, natural gas is our only hope. Almost all the existing processing plants are now operating beyond their capacities. Nonetheless there has been a dwindling situation in the gas production. Besides political indecision regarding new establishment of gas plant and other power source have made the situation nothing but complicated. In such a case an idea of optimization of the gas processing plant will surely pave a way to a sustainable solution. This project has the intention to carry out the simulation of the Bakhrabad gas processing plant (at Sylhet) using the Aspen-HYSYS process simulator. The steady state simulation of the gas processing plant shall be performed based on both the design and physical property data of the plant. DOI: http://dx.doi.org/10.3329/jce.v26i1.10186 JCE 2011; 26(1): 62-65
APA, Harvard, Vancouver, ISO, and other styles
3

Toyin Olabisi, Odutola, and Ugwu Chukwuemeka Emmanuel. "Simulation of Laboratory Hydrate Loop Using Aspen Hysys." Engineering and Applied Sciences 4, no. 3 (2019): 52. http://dx.doi.org/10.11648/j.eas.20190403.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kalashnikov, O. V., S. V. Budniak, Yu V. Ivanov, Yu M. Belyansky, N. O. Aptulina, and A. O. Zobnin. "COMPARISON OF GAZKONDNAFTA AND HYSYS SOFTWARE SYSTEMS IN THE FIELD OF COMPUTER MODELING OF OIL AND GAS TECHNOLOGIES." Energy Technologies & Resource Saving, no. 3 (September 20, 2021): 4–22. http://dx.doi.org/10.33070/etars.3.2021.01.

Full text
Abstract:
The experimental and calculated according to program systems GasCondOil, Aspen-HYSYS and PRO-II compositions of the gas — liquid phases (hydrocarbon and aqueous solutions) and their thermodynamic properties are compared, as well as the accuracy of technological calculations of field pipelines and natural gas and oil treatment processes. It is shown that some of the field technological processes, calculated by the program system GasCondOil, are not modeled on Aspen-HYSYS. Bibl. 16, Fig. 9, Tab. 15.
APA, Harvard, Vancouver, ISO, and other styles
5

Taimoor, Aqeel Ahmad. "Virtualization of the process control laboratory using ASPEN HYSYS." Computer Applications in Engineering Education 24, no. 6 (September 7, 2016): 887–98. http://dx.doi.org/10.1002/cae.21758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Safari, Ayoub. "Automation of control degrees of freedom in Aspen Hysys." IFAC Journal of Systems and Control 19 (March 2022): 100187. http://dx.doi.org/10.1016/j.ifacsc.2022.100187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olateju, Idowu Iyabo, Crowei Gibson-Dick, Steve Chidinma Oluwatomi Egede, and Abdulwahab Giwa. "Process Development for Hydrogen Production via Water-Gas Shift Reaction Using Aspen HYSYS." International Journal of Engineering Research in Africa 30 (May 2017): 144–53. http://dx.doi.org/10.4028/www.scientific.net/jera.30.144.

Full text
Abstract:
The development of a process for the production of hydrogen through water-gas shift reaction has been developed and simulated in this work using Aspen HYSYS. This was achieved by picking the pieces of process equipment of the plant from the appropriate section of the Aspen HYSYS environment and connecting them together through appropriate streams. In addition, the components involved in the process were selected from the Aspen HYSYS databank. Peng-Robinson Stryjek-Vera (PRSV) was used as the fluid package of the developed process for property estimation during the simulation. The reaction of the process was modelled as an equilibrium type, the equilibrium constant of which was estimated using Gibbs Free Energy. From the results obtained, it has been established that pure hydrogen can be obtained from a plant comprising of a mixer, a reactor (with approximately 80.07% conversion of the reactants), a separator and two heat exchangers based on the fact that the mole fraction, the mass fraction and the volume fraction of hydrogen obtained from the simulation carried out when carbon monoxide and steam were passed into the process plant at room temperature (25 °C) and boiling temperature of water (100 °C), respectively under atmospheric pressure was approximately 1.
APA, Harvard, Vancouver, ISO, and other styles
8

Darabi, Mohsen, Mohammad Mohammadiun, Hamid Mohammadiun, Saeed Mortazavi, and Mostafa Montazeri. "Simulation and optimization integrated gasification combined cycle by used aspen hysys and aspen plus." International Journal of Scientific World 3, no. 1 (May 7, 2015): 178. http://dx.doi.org/10.14419/ijsw.v3i1.4583.

Full text
Abstract:
<p>Electricity is an indispensable amenity in present society. Among all those energy resources, coal is readily available all over the world and has risen only moderately in price compared with other fuel sources. As a result, coal-fired power plant remains to be a fundamental element of the world's energy supply. IGCC, abbreviation of Integrated Gasification Combined Cycle, is one of the primary designs for the power-generation market from coal-gasification. This work presents a in the proposed process, diluted hydrogen is combusted in a gas turbine. Heat integration is central to the design. Thus far, the SGR process and the HGD unit are not commercially available. To establish a benchmark. Some thermodynamic inefficiencies were found to shift from the gas turbine to the steam cycle and redox system, while the net efficiency remained almost the same. A process simulation was undertaken, using Aspen Plus and the engineering equation solver (EES).The The model has been developed using Aspen Hysys® and Aspen Plus®. Parts of it have been developed in Matlab, which is mainly used for artificial neural network (ANN) training and parameters estimation. Predicted results of clean gas composition and generated power present a good agreement with industrial data. This study is aimed at obtaining a support tool for optimal solutions assessment of different gasification plant configurations, under different input data sets.</p>
APA, Harvard, Vancouver, ISO, and other styles
9

Variny, Miroslav, Dominika Jediná, and Patrik Furda. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13, 6361." Energies 14, no. 20 (October 9, 2021): 6443. http://dx.doi.org/10.3390/en14206443.

Full text
Abstract:
Oxygen production from air belongs to energy-intense processes and, as a result, possibilities for its decrease are a frequent topic of optimization studies, often performed with simulation software such as Aspen Plus or Aspen HYSYS. To obtain veritable results and sound solutions, a suitable calculation method hand in hand with justified assumptions and simplifications should form the base of any such studies. Thus, an analysis of the study by Hamayun et al., Energies 2020, 13, 6361, has been performed, and several weak spots of the study, including oversimplified assumptions, improper selection of a thermodynamic package for simulation and omission of certain technological aspects relevant for energy consumption optimization studies, were identified. For each of the weak spots, a recommendation based on good praxis and relevant scientific literature is provided, and general recommendations are formulated with the hope that this comment will aid all researchers utilizing Aspen Plus and Aspen HYSYS software in their work.
APA, Harvard, Vancouver, ISO, and other styles
10

Semenov, Ivan, and Aleksandr Shelkovnikov. "MODELING OF THE PROCESS OF ISOPARAFFIN SULFURIC ALKYLATION." Modern Technologies and Scientific and Technological Progress 1, no. 1 (May 17, 2021): 72–73. http://dx.doi.org/10.36629/2686-9896-2021-1-1-72-73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aspen Hysys"

1

CUNHA, Vânia Maria Borges. "Modelagem e simulação de processos de separação a altas pressões: aplicações com Aspen hysys." Universidade Federal do Pará, 2014. http://repositorio.ufpa.br/jspui/handle/2011/7696.

Full text
Abstract:
Submitted by Cássio da Cruz Nogueira (cassionogueirakk@gmail.com) on 2017-02-13T14:55:17Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5)
Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-15T15:00:28Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5)
Made available in DSpace on 2017-02-15T15:00:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5) Previous issue date: 2014
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho, foi elaborada uma base de dados de parâmetros de interação binária de diferentes regras de mistura, para as equações de estado de Soave-Redlich-Kwong (SRK) e Peng-Robinson (PR), a partir de dados experimentais de sistemas binários e multicomponentes de hidrocarbonetos, N2, CO2, água, β-caroteno, etanol, acetona e metanol, com objetivo de aplicar em simulações com o Aspen Hysys aos processos de fracionamento do gás natural em um processo de turbo-expansão simplificado; de fracionamento de óleo, gás e água, em separador trifásico, de extração com CO2 supercrítico de acetona de uma solução aquosa e de β-caroteno de uma solução aquosa, em coluna de multiestágios em contracorrente. De modo geral, não ocorreram diferenças significativas na predição do equilibro de fases dos sistemas binários estudados, para ambas as equações, com as regras de mistura quadrática, Mathias-Klotz-Prausnitz (MKP) com dois e três parâmetros. Cabe destacar que a regra de mistura MKP com 3 parâmetros de interação binária apresentou os menores erros absolutos para os sistemas binários de hidrocarbonetos e CO2/ hidrocarbonetos. Para os ajustes de dados de equilíbrio dos sistemas multicomponentes de hidrocarbonetos, a equação de SRK combinada com a regra de mistura quadrática com 2 parâmetros de interação binária, foi a que apresentou os menores erros médios para os sistemas ternários e para o sistema com 5 componentes em ambas as fases. No estudo de caso do separador trifásico a equação de SRK com a regra de mistura RK-Aspen foi a que apresentou a maior separação da fase aquosa de todas as simulações (285,68 kg/h) contra 256,88 kg/h para a equação SRK, 249,81 kg/h para a equação PR e 152,90 kg/h para a equação PRSV, confirmando a grande influência do uso da matriz de parâmetros de interação binária determinada neste trabalho, com destaque para os parâmetros que representam as interações entre os hidrocarbonetos com a água. Os resultados das simulações com a planta simplificada de turbo-expansão estão de acordo com a análise descrita na literatura, apresentando as seguintes taxas de recuperação de etano: 84,045% para PRSV, 84,042% para SRK, 84,039% para TST e PR e 83,98% para RKAspen. O produto final da simulação publicada na literatura para o fracionamento de uma solução aquosa de acetona utilizando o processo de extração com CO2 supercrítico consistiu na corrente de saída do fundo da coluna de destilação a 65 atm (6586 kPa), com uma composição de 67,67 % de CO2 (74,3 kg/h), 31,11% de acetona (34,15 kg/h) e 1,21% (1,33 kg/h) de água em base mássica. Na simulação com o Aspen Hysys a corrente de saída da coluna de destilação foi submetida a um conjunto de separadores flash para a separação do CO2 atingindo a recuperação de 27 kg/h de acetona em três correntes (11,14 e 15) com menos de 5 kg/h residuais de CO2 e 0,8 kg/h de água. O fracionamento da solução aquosa de β- caroteno foi simulado com o Aspen Hysys, com uma coluna de múltiplos estágios em contracorrente e um separador flash vertical para a separação do CO2. As simulações convergiram com, no mínimo, cinco estágios. Foi obtida uma corrente de fundo (produto) do separador flash com 97,83% de β-caroteno contra 89,95% em massa, para a simulação de um extrator de um único estágio publicada na literatura.
The purpose of this work was to elaborate a database of binary interaction parameters of different mixing rules, for the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations of state, using experimental data of binary and multicomponent systems of hydrocarbons, N2, CO2, water, β-carotene, ethanol, acetone and methanol, in order to apply in simulations with the Aspen Hysys fractionation processes, of natural gas into a simplified turbo-expansion process; fractionation of oil, gas and water, in three-phase separator, supercritical CO2 extraction of acetone from an aqueous solution and β-carotene from an aqueous solution in multistage countercurrent column. In general, there were no significant differences, to both equations, in the phase equilibrium prediction of the binary systems studied, between the quadratic and Mathias-Klotz-Prausnitz (MKP) mixing rules with two and three parameters. It is worth mentioning that the MKP mixing rule with 3 binary interaction parameters presented the smallest absolute errors for hydrocarbon binary systems and CO2/hydrocarbons systems. For the settings of hydrocarbons phase equilibrium multicomponent systems data, the SRK equation combined with quadratic mixture rule with 2 binary interaction parameters, was presented the lowest average errors for ternary systems and for system with 5 components in both phases. In the case study of three-phase separator the SRK equation with the mixing rule RK-Aspen was the one that presented the greater separation of the aqueous phase of all simulations (285.68 kg/h) against 256.88 kg/h to the SRK equation, 249.81 kg/h for the PR equation and 152.90 kg/h to PRSV equation, confirming the great influence of the use the binary interaction parameters matrix determined in this work, with emphasis on the parameters that represent the interactions between the hydrocarbons with water. The results of the simulations with the simplified plant turboexpansion are according to the analysis described in the literature showing the following recovery rates of ethane: 84.045% to PRSV, 84.042% for SRK, 84.039% for TST and PR and 83.98% for RK-Aspen. The final product of the simulation published in the literature for the fractionation of an aqueous solution of acetone by using supercritical CO2 extraction process consisted in the output current from the bottom of the distillation column at 65 atm (6586 kPa), with a composition of 67.67% CO2 (74.3 kg/h), 31.11% of acetone (34.15 kg/h) and 1.21% (1.33 kg/h) of water in mass base. In the simulation with Aspen Hysys the output current of the distillation column was subjected to a set of flash separators for separation of CO2 reaching the recovery of 27 kg/h of acetone in three currents (11.14 and 15) with less than 5 kg/h CO2 waste and 0.8 kg/h of water. The fractionation of aqueous solution of β- carotene was simulated with the Aspen Hysys, with a multistage countercurrent column and a vertical flash separator for separation of CO2. The simulations have converged with a minimum of five stages. It was retrieved from an underflow (product) flash separator with 97.83% of β-carotene against 89.95% by mass for the simulation of an extractor of a single stage published in the literature.
APA, Harvard, Vancouver, ISO, and other styles
2

Pinho, Costa Souza Thibério. "Simulação de uma planta piloto de Biodisel com estudo da viabilidade econômica preliminar usando o ASPEN/HYSYS." Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/6345.

Full text
Abstract:
Made available in DSpace on 2014-06-12T18:04:23Z (GMT). No. of bitstreams: 2 arquivo213_1.pdf: 4056030 bytes, checksum: c7d78e098b753c3c2b6ce96fc5f9588a (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011
Universidade Federal de Pernambuco
Nos últimos anos o biodiesel se tornou uma alternativa para a demanda crescente de combustível. O próximo passo é conseguir produzir um biodiesel economicamente competitivo com o diesel fóssil em um processo em nível industrial. Este trabalho visa estudar do ponto de vista computacional, uma planta piloto de biodiesel, simulando o processo desde a reação de transesterificação de óleos vegetais, chegando até a purificação do biodiesel, utilizando o APEN/HYSYS. Além disso, foi feito o estudo da viabilidade econômica preliminar da mesma, fazendo-se uso do custo anualizado total unitário CATU. Os resultados das simulações foram comparados com os resultados obtidos numa planta piloto montada em Pernambuco/Brasil. Em seguida, foi comparada a viabilidade econômica da planta piloto, com uma planta operando com uma coluna de destilação reativa para produção do referido combustível. Os resultados mostraram que a destilação reativa é um processo mais econômico para a produção do biodiesel do que em um processo em batelada
APA, Harvard, Vancouver, ISO, and other styles
3

FERNANDES, Thalita Cristine Ribeiro Lucas. "Estudo da cinética das reações de hidrodesnitrogenação." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1975.

Full text
Abstract:
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-16T12:44:41Z No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5)
Made available in DSpace on 2018-10-16T12:44:41Z (GMT). No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) Previous issue date: 2017-09-27
CNPq
A hidrodesnitrogenação catalítica é um processo utilizado para remover impurezas de nitrogênio em produtos derivados de petróleo e ocorre mediante o tratamento da carga com hidrogênio a temperatura e pressão elevadas em um reator do tipo tricled-bed. Para otimizar as operações nestes reatores, é necessário que se tenha informações sobre a cinética das várias reações de hidrodesnitrogenação. Entretanto, as equações das taxas das reações não estão disponíveis na literatura. Assim, o objetivo deste trabalho consiste em obter as equações das taxas das reações e os parâmetros cinéticos para a rede reacional dos compostos nitrogenados utilizando o modelo rigoroso de hidrodesnitrogenação do Aspen Hysys como base numérica para as simulações. Experimentos numéricos foram realizados em um reator diferencial no software Aspen Hysys para obter dados de concentração de reagentes e produtos a diferentes alimentações. Diferentes métodos foram utilizados, um método de regressão linear multivariável para obtenção dos coeficientes de regressão, um método de metamodelagem interpoladora estocástica, o Kriging e a otimização do metamodelo Kriging utilizando o método dos mínimos quadrados. Para testar as metodologias propostas, todas as etapas foram aplicadas para um sistema de duas reações simples, uma reversível e outra irreversível, em um reator PFR. Os resultados referentes ao método de regressão linear mostraram que a metodologia pode ser utilizada para estimar parâmetros cinéticos desde que se conheça a equação da taxa correspondente. A comparação entre os dois métodos do tipo Kriging propostos (convencional e otimizado) foi feita a partir de técnicas de análise estatísticas, como o coeficiente de determinação R² e análise de variância (ANOVA). O kriging otimizado mostrou uma melhor aderência aos dados quando comparado com o kriging convencional.
Catalytic hydrodenitrogenation is one process used to remove nitrogen impurities from refinery streams, and it occurs by reacting a given charge with hydrogen at high temperature and pressure in a trickled-bed reactor. In order to optimize the operation of such reactors one needs information about the kinetics of the various hydrodenitrogenation reactions. However, reaction rate expressions are not available in the open literature. Therefore, this work aims at obtaining the reaction rate expressions and parameters for the reaction network of nitrogen compounds using the rigorous hydrodenitrogenation model in Aspen Hysys as the numerical basis for simulations. A differential reactor to simulate the process for different feed streams generated data to estimate of concentration of reagent and products at different feed loads. Three different methods were used, a multivariable linear regression model to obtain the regression coefficients, a stochastic interpolator metamodeling, Kriging and an optimized Kriging with least square method. In a first step, two simple reactions rates were used to test the methodologies in a reactor PFR in Hysys, a reversible and an irreversible. The results showed that linear regression might be use to estimate parameters satisfactory only if you know the reaction rate expression. By using statistical analysis as determination coefficient R² and analyze of variance, ANOVA, it was possible to compare both Krigings (conventional and optimized). Optimized Kriging showed a better adherence to the data when compared to conventional kriging.
APA, Harvard, Vancouver, ISO, and other styles
4

Fazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.

Full text
Abstract:
The cryogenic carbon capture™ (CCC) process provides energy- and cost-efficient carbon capture and can be configured to provide an energy storage system using an open-loop natural gas (NG) refrigeration system, which is called energy storing cryogenic carbon capture (CCC-ES™). This investigation focuses on the transient operation and especially on the dynamic response of this energy storage system and explores its efficiency, effectiveness, design, and operation. This investigation included four tasks.The first task explores the steady-state design of four different natural gas liquefaction processes simulated by Aspen HYSYS. These processes differ from traditional LNG process in that the CCC process vaporizes the LNG and the cold vapors return through the LNG heat exchangers, exchanging sensible heat with the incoming flows. The comparisons include costs and energy performance with individually optimized processes, each operating at three operating conditions: energy storage, energy recovery, and balanced operation. The second task examines steady-state and transient models and optimization of natural gas liquefaction using Aspen HYSYS. Steady-state exergy and heat exchanger efficiency analyses characterize the performance of several potential systems. Transient analyses of the optimal steady-state model produced most of the results discussed here. The third task explores transient Aspen HYSYS modeling and optimization of two natural gas liquefaction processes and identifies the rate-limiting process components during load variations. Novel flowrate variations included in this investigation drive transient responses of all units, especially compressors and heat exchangers. Model-predictive controls (MPC) effectively manages such heat exchangers and compares favorably with results using traditional controls. The last task shows how an unprocessed natural gas (NG) pretreatment system can remove more than 90% of the CO2 from NG with CCC technology using Aspen Plus simulations and experimental data. This task shows how CCC-based technology can treat NG streams to prepare them for LNG use. Data from an experimental bench-scale apparatus verify simulation results. Simulated results on carbon (CO2) capture qualitatively and quantitatively agree with experimental results as a function of feedstock properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Lopes, Herbert Senzano. "Simula??o da destila??o molecular de filme descendente para o petr?leo." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br/handle/123456789/19939.

Full text
Abstract:
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-03-02T22:55:04Z No. of bitstreams: 1 HerbertSenzanoLopes_DISSERT.pdf: 1964831 bytes, checksum: a1f3b710808bf3ed42490612f2700bca (MD5)
Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-03-04T00:31:31Z (GMT) No. of bitstreams: 1 HerbertSenzanoLopes_DISSERT.pdf: 1964831 bytes, checksum: a1f3b710808bf3ed42490612f2700bca (MD5)
Made available in DSpace on 2016-03-04T00:31:31Z (GMT). No. of bitstreams: 1 HerbertSenzanoLopes_DISSERT.pdf: 1964831 bytes, checksum: a1f3b710808bf3ed42490612f2700bca (MD5) Previous issue date: 2014-12-23
A parte pesada do petr?leo pode ser utilizada para in?meras finalidades, uma delas ? a obten??o de ?leos lubrificantes. Com base nesse contexto, muitos pesquisadores v?m estudando alternativas de separa??o desses constituintes de petr?leo bruto, entre elas pode ser citada a destila??o molecular, uma t?cnica de evapora??o for?ada diferente dos outros processos convencionais presentes na literatura. Este processo pode ser classificado como um caso especial de destila??o a alto v?cuo com press?es que chegam a atingir faixas extremamente baixas da ordem de 0,1 Pascal. As superf?cies de evapora??o e de condensa??o devem apresentar uma dist?ncia entre si da ordem de grandeza do percurso livre m?dio das mol?culas evaporadas, isto ?, as mol?culas evaporadas facilmente atingir?o o condensador, pois as mesmas encontrar?o um percurso sem obst?culos, o que ? desej?vel. Logo, a principal contribui??o deste trabalho consiste na simula??o do processo de destila??o molecular de filme descendente do petr?leo. O petr?leo bruto foi caracterizado utilizando o UniSim? Design R430 e o Aspen HYSYS? V8.5. Com os resultados desta caracteriza??o foram efetuados, em planilhas de c?lculo no Microsoft? Excel?, os c?lculos das propriedades f?sico-qu?micas dos res?duos de uma amostra de petr?leo, i.e., termodin?micas e de transporte. De posse dessas propriedades estimadas e das condi??es de contorno sugeridas pela literatura, foram resolvidas as equa??es dos perfis de temperatura e concentra??o atrav?s do m?todo de diferen?as finitas impl?cito utilizando a linguagem de programa??o Visual Basic? (VBA) for Excel?. O resultado do perfil de temperatura apresentou-se coerente com os reproduzidos pela literatura, havendo em seus valores iniciais uma leve distor??o em consequ?ncia da natureza do ?leo estudado ser mais leve que o da literatura. Os resultados dos perfis de concentra??o mostraram-se eficientes permitindo perceber que as concentra??es dos mais vol?teis diminuem e as dos menos vol?teis aumentam em fun??o do comprimento do evaporador. De acordo com os fen?menos de transporte presentes no processo, o perfil de velocidade tende a aumentar at? um ponto m?ximo e em seguida diminui e a espessura do filme diminui, ambos em fun??o do comprimento do evaporador. Conclui-se que o c?digo de simula??o em linguagem Visual Basic? (VBA) ? um produto final do trabalho que permite aplica??o para a destila??o molecular do petr?leo e de outras misturas similares.
The heavy part of the oil can be used for numerous purposes, e.g. to obtain lubricating oils. In this context, many researchers have been studying alternatives such separation of crude oil components, among which may be mentioned molecular distillation. Molecular distillation is a forced evaporation technique different from other conventional processes in the literature. This process can be classified as a special distillation case under high vacuum with pressures that reach extremely low ranges of the order of 0.1 Pascal. The evaporation and condensation surfaces must have a distance from each other of the magnitude order of mean free path of the evaporated molecules, that is, molecules evaporated easily reach the condenser, because they find a route without obstacles, what is desirable. Thus, the main contribution of this work is the simulation of the falling-film molecular distillation for crude oil mixtures. The crude oil was characterized using UniSim? Design and R430 Aspen HYSYS? V8.5. The results of this characterization were performed in spreadsheets of Microsoft? Excel?, calculations of the physicochemical properties of the waste of an oil sample, i.e., thermodynamic and transport. Based on this estimated properties and boundary conditions suggested by the literature, equations of temperature and concentration profiles were resolved through the implicit finite difference method using the programming language Visual Basic? (VBA) for Excel?. The result of the temperature profile showed consistent with the reproduced by literature, having in their initial values a slight distortion as a result of the nature of the studied oil is lighter than the literature, since the results of the concentration profiles were effective allowing realize that the concentration of the more volatile decreases and of the less volatile increases due to the length of the evaporator. According to the transport phenomena present in the process, the velocity profile tends to increase to a peak and then decreases, and the film thickness decreases, both as a function of the evaporator length. It is concluded that the simulation code in Visual Basic? language (VBA) is a final product of the work that allows application to molecular distillation of petroleum and other similar mixtures.
APA, Harvard, Vancouver, ISO, and other styles
6

Vivarelli, Simone. "Analisi della sezione di blowdown di un impianto di produzione di catalizzatori di Ziegler-Natta." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
Il presente lavoro di tesi è stato svolto presso il Centro Ricerche Giulio Natta appartenente allo stabilimento chimico di Basell Poliolefine Italia S.r.l., gruppo LyondellBasell, situato all’interno del Polo Chimico di Ferrara. Tale attività ha riguardato lo studio di aspetti di sicurezza relativi ad uno specifico reparto in cui ha luogo la produzione di catalizzatori Ziegler-Natta. In particolare è stata posta l’attenzione sulla sezione di blowdown, deputata al trattamento delle correnti di materia che si possono generare in situazioni di emergenza. L’obiettivo principale del lavoro di tesi consiste nella valutazione dell’adeguatezza della sezione di blowdown attualmente presente presso l’impianto, con particolare riferimento alle apparecchiature installate con lo scopo di abbattere le eventuali sostanze pericolose provenienti dai dispositivi di sicurezza. In aggiunta a ciò, è parte integrante dell’obiettivo della tesi la valutazione degli eventuali effetti dannosi derivanti della dispersione in atmosfera di tali sostanze, anche per mezzo di strumenti offerti dalla fluidodinamica computazionale. Una prima parte del lavoro svolto ha riguardato la raccolta delle informazioni concernenti le apparecchiature attualmente esistenti in reparto, le condizioni operative e le sostanze coinvolte. Successivamente sono stati definiti i principali eventi incidentali che possono portare all’attivazione dei dispositivi di sicurezza. Al fine di simulare la risposta del sistema nei confronti delle situazioni di emergenza, è stata svolta una modellazione delle apparecchiature che compongono la sezione di blowdown, orientata ove possibile nei confronti dei principali software di process engineering. Infine è stata modellata la dispersione dal camino delle correnti non abbattute, in un primo momento tramite l’utilizzo di software tradizionali mentre in un secondo momento ricorrendo a metodi di fluidodinamica computazionale per una valutazione più accurata di tale fenomeno.
APA, Harvard, Vancouver, ISO, and other styles
7

Younes, George. "Integration of offshore renewable energy sources for the production of chemical energy vectors: The case of Hydrogen." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Energy is the fuel that drives our economies. Energy demand is on the rise, and so the challenge of meeting the needs for safer, more efficient, and environmentally friendly solutions. With the aim of staying below the 2℃ scenario and agreeing with the 2015 Paris agreement and the European Union 2050 Green Deal, further action is required to ensure a smooth energy transition. In the offshore context the challenge persists, as renewable energy is weather and climate dependent, but represents a great opportunity for energy transition. For these reasons, along with the latest oil crisis due to Covid-19 in 2020, the term hydrogen economy and methanol economy are once again on the rise. In this work, not only hydrogen is discussed, but additional potential energy vectors are presented as well, with particular attention to the possible offshore exploitation. The integration of energy sources paves the way for the Power to Gas (P2G) concept namely hydrogen, not only as a potential fuel but also a feedstock, as well as synthetic natural gas (SNG) and Synthesis gas (Syngas). This integration also leads to the Power to Liquid (P2L) concept compromising mainly the synthesis of methanol, dimethyl ether (DME), Fischer Tropsch liquids, and ammonia energy vectors. Hence, the different routes leading to the production of each and every mentioned energy vector is presented, explained, and discussed within the offshore context; followed by a Technology Readiness Level assessment (TRL) for each process. Considering that hydrogen can be both the potential ‘fuel of the future’ and a feedstock for the production of almost all the mentioned energy vectors, it constitutes the main topic of this paper. Hydrogen production alternatives are discussed and a simulation of water electrolysis is done for both alkaline electrolysis and Proton Exchange Membrane (PEM) electrolysis using a commercial software leading to the deduction of the overall system efficiency for each of the simulated processes.
APA, Harvard, Vancouver, ISO, and other styles
8

Riotto, Antonio. "Analisi termodinamica di cicli di potenza complessi a CO2 supercritica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22430/.

Full text
Abstract:
La finalità di questo lavoro di tesi è la valutazione quantitativa delle prestazioni dei cicli Brayton a CO2 supercritica. Per dare fondamento alle motivazioni che spingono ad un tale studio, il punto di partenza è stato analizzare la statistica riguardante le potenzialità del calore di scarto. Un passo ulteriore è stato non solo quantificare l’energia recuperabile, ma anche avere tabulati con le temperature alle quali tali energie sono disponibili in un panorama industriale che coinvolge diversi settori produttivi. Per ogni settore produttivo è stato possibile anche associare, ad un suo j-esimo processo, una fascia di temperatura alla quale il fluido viene scartato, come liquido o come gas. Successivamente, è stato necessario mettere in luce le proprietà della CO2 . Esso si mostra infatti compatibile con un utilizzo all’interno di un ciclo Brayton, e può anche presentare dei vantaggi rispetto ai fluidi dei cicli tradizionali: la sua densità è grande a tal punto da ottenere impianti con potenze in uscita elevate e ingombri particolarmente ridotti. Si è passati poi ad una rassegna di tre layout, uno semplice e due più complessi, studiati da più autori, con conclusioni complementari. Il capitolo successivo, quello della simulazione dei cicli di potenza in ambiente Aspen Hysys, è stato suddiviso in due parti. Nella prima parte sono presenti istruzioni più di carattere operativo per l’utilizzo del software. Nella seconda parte vengono invece mostrati i risultati delle simulazioni, con l’obiettivo di massimizzare il rendimento totale di recupero termico ηtot . Tale obiettivo è stato conseguito al variare di alcuni parametri, come temperatura di ingresso dei fumi nello scambiatore principale (Tfumi), temperatura di ingresso in turbina ( TIT ), pressione massima di ciclo (pmax), e potenza netta erogata dall’impianto ( Pnet ).
APA, Harvard, Vancouver, ISO, and other styles
9

El, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.

Full text
Abstract:
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
APA, Harvard, Vancouver, ISO, and other styles
10

Rezakazemi, M., Nejat Rahmanian, Hassan Jamil, and S. Shirazian. "Process simulation and evaluation of ethane recovery process using Aspen-HYSYS." 2018. http://hdl.handle.net/10454/18405.

Full text
Abstract:
Yes
In this work, the process of ethane recovery plant was simulated for the purpose of Front End Engineering Design. The main objective is to carry out a series of simulation using Aspen HYSYS to compare recovery of ethane from Joule Thomson (JT) Valve, Turbo-Expander and Twister Technology. Twister technology offers high efficiency, more ethane recovery and lower temperature than JT valve and turbo-expander process. It lies somewhere between isenthalpic and isentropic process due to its mechanical configuration. Three processes were compared in terms of recovery of ethane. To conduct the simulations, a real gas plant composition and design data were utilized to perform the study for comparison among chosen technologies which are available for ethane recovery. The same parameters were used for the comparisons. Effect of operating conditions including pressure, temperature, and flow rate as well as carbon dioxide on the recovery of ethane was examined.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aspen Hysys"

1

Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Wiley-Interscience, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bugaeva, Lyudmila, Tatiana Boyko, and Yuriy Beznosyk. System analysis of chemical-technological complexes. KPI named after Igor Sikorsky, 2017. http://dx.doi.org/10.30888/textbook.sach-tc.2017.

Full text
Abstract:
The textbook describes the methods and tools of system analysis that can be used to study complex chemical-technological systems and solve problems associated with sustainable production processes. Many examples of solving the problems of analysis of chemical-technological systems with the use of modern software tools Aspen Plus, Hysys and Chemcad are provided. The textbook is intended primarily for masters of the specialty "151 – Automation and Computer-Integrated Technologies" under studying the discipline "System Analysis". The competences obtained by students in the process of studying this discipline are used by them in the fulfilment of the master's thesis. In addition, the book can be useful for post-graduate students, scientists and engineers – all who are faced with the need to research complex chemical and technological systems to ensure their eco-efficiency.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aspen Hysys"

1

Lemessa, Addis, Melkamu Birlie, Metadel Kassahun, and Yared Mengistu. "Process Revamping of H2SO4 Plant to Double Contact Double Absorption (DCDA) Using ASPEN HYSYS to Reduce SO2 Emission: Case of Awash Melkassa Sulfuric Acid Factory." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 59–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93709-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chemmangattuvalappil, Nishanth, and Siewhui Chong. "Basics of Process Simulation With Aspen HYSYS." In Chemical Engineering Process Simulation, 233–52. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803782-9.00011-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sousa, Ana M., Henrique A. Matos, and Maria J. Pereira. "Modelling Paraffin Wax Deposition Using Aspen HYSYS and MATLAB." In Computer Aided Chemical Engineering, 973–78. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818634-3.50163-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Singh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Petrochemical Catalyst Materials, Processes, and Emerging Technologies, 164–76. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9975-5.ch007.

Full text
Abstract:
Liquefaction of natural gas helps in transporting it over long distances by sea vessels. It is then regasified and transported through pipelines to the consumer. Due to large energy density of Liquefied Natural Gas (LNG), and associated flammability issues, the LNG terminal involves high risk. Consequently, safety is an important factor in the operation of LNG terminals. Although a substantial amount of time money and effort has been put in this area, there is always some possibility of improving the process so that less risk is involved. Rapid advancement in process simulation software like Aspen Plus and Aspen HYSYS, has led to the convenience of experimenting the various control methodologies on the computer offline from the actual plant operation, before they are implemented in real time. In this chapter, main hazards associated with LNG terminal operation will be highlighted. Further, recent advancements in research for safety enhancement and efficiency enhancement in the liquefaction and regasification processes will also be included.
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Natural Resources Management, 1584–96. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0803-8.ch075.

Full text
Abstract:
Liquefaction of natural gas helps in transporting it over long distances by sea vessels. It is then regasified and transported through pipelines to the consumer. Due to large energy density of Liquefied Natural Gas (LNG), and associated flammability issues, the LNG terminal involves high risk. Consequently, safety is an important factor in the operation of LNG terminals. Although a substantial amount of time money and effort has been put in this area, there is always some possibility of improving the process so that less risk is involved. Rapid advancement in process simulation software like Aspen Plus and Aspen HYSYS, has led to the convenience of experimenting the various control methodologies on the computer offline from the actual plant operation, before they are implemented in real time. In this chapter, main hazards associated with LNG terminal operation will be highlighted. Further, recent advancements in research for safety enhancement and efficiency enhancement in the liquefaction and regasification processes will also be included.
APA, Harvard, Vancouver, ISO, and other styles
6

M. Fadayini, Oluwafemi, Adekunle A. Obisanya, Gloria O. Ajiboye, Clement Madu, Tajudeen O. Ipaye, Taiwo O. Rabiu, Shola J. Ajayi, and Joseph T. Akintola. "Simulation and Optimization of an Integrated Process Flow Sheet for Cement Production." In Cement Industry - Optimization, Characterization and Sustainable Application. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95269.

Full text
Abstract:
In this study the process flow diagram for the cement production was simulated using Aspen HYSYS 8.8 software to achieve high energy optimization and optimum cement flow rate by varying the flow rate of calcium oxide and silica in the clinker feed. Central composite Design (C.C.D) of Response Surface Methodology was used to design the ten experiments for the simulation using Design Expert 10.0.3. Energy efficiency optimization is also carried out using Aspen Energy Analyser. The optimum cement flow rate is found from the contour plot and 3D surface plot to be 47.239 tonnes/day at CaO flow rate of 152.346 tonnes/day and the SiO2 flow rate of 56.8241 tonnes/day. The R2 value of 0.9356 determined from the statistical analysis shows a good significance of the model. The overall utilities in terms of energy are found to be optimised by 81.4% from 6.511 x 107 kcal/h actual value of 1.211 x 107 kcal/h with 297.4 tonnes/day the carbon emission savings.
APA, Harvard, Vancouver, ISO, and other styles
7

Santos, Pedro, and Tom Van Gerven. "Aspen Hysys – Unity Interconnection. An Approach for Rigorous Computer- Based Chemical Engineering Training." In Computer Aided Chemical Engineering, 2053–58. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-823377-1.50343-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Azad, A. K., M. G. Rasul, M. M. K. Khan, Sukanta Kumar Mondal, and Rubayat Islam. "Modeling and Simulation of Heat and Mass Flow by ASPEN HYSYS for Petroleum Refining Process in Field Application." In Thermofluid Modeling for Energy Efficiency Applications, 227–57. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-802397-6.00010-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aspen Hysys"

1

Øi, Lars Erik, and Irene Yuste Tirados. "Heat Pump Efficiencies Simulated with Aspen HYSYS and Aspen Plus." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15119141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dinca, Cristian, Nela Slavu, Adrian Badea, Nela Slavu, and Adrian Badea. "CO2 adsorption process simulation in ASPEN Hysys." In 2017 International Conference on Energy and Environment (CIEM). IEEE, 2017. http://dx.doi.org/10.1109/ciem.2017.8120808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naji, Fatimah, Adnan Ateeq, and Mohammed Al-Mayyahi. "Characterization of Iraqi crude oil using Aspen Hysys." In Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 7-9 September 2021, Sakarya, Turkey. EAI, 2022. http://dx.doi.org/10.4108/eai.7-9-2021.2314846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Øi, Lars Erik, Andrea Haukås, Solomon Aromada, and Nils Eldrup. "Automated Cost Optimization of CO2 Capture Using Aspen HYSYS." In The First SIMS EUROSIM Conference on Modelling and Simulation, SIMS EUROSIM 2021, and 62nd International Conference of Scandinavian Simulation Society, SIMS 2021, September 21-23, Virtual Conference, Finland. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp21185293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Øi, Lars Erik, and Jon Hovland. "Simulation of Condensation in Compressed Raw Biogas Using Aspen HYSYS." In The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway. Linköping University Electronic Press, 2018. http://dx.doi.org/10.3384/ecp1815331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rhenals Julio, Jesús David, Carlos Manuel Romero Luna, and Diogo Nunes. "Simulation of air-steam gasification of glycerol using aspen HYSYS." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-2065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nema, P., Himanshu Patel, and A. Sahu. "Steady state analysis of compressor and oil removal system with Aspen HYSYS." In The International Conference on Communication and Computing Systems (ICCCS-2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315364094-164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Øi, Lars Erik, Nils Eldrup, Solomon Aromada, Andrea Haukås, Joakim HelvigIda Hæstad, and Anne Marie Lande. "Process Simulation, Cost Estimation and Optimization of CO2 Capture using Aspen HYSYS." In SIMS Conference on Simulation and Modelling SIMS 2020, September 22-24, Virtual Conference, Finland. Linköping University Electronic Press, 2021. http://dx.doi.org/10.3384/ecp20176326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Islam, Md, F. Banat, A. Baba, and S. Abuyahya. "Design and Development of a Small Multistage Flash Desalination System Using Aspen HYSYS." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4975.

Full text
Abstract:
Abstract Fresh water demands are increasing day by day because of growing population, industrialization, and increased living standards. Desalination technology has become a significant solution of fresh drinking water for many parts of the world. Lack of fresh water resources in dry environments has encouraged the establishment of desalination processes and developed technology to compensate for water scarcity. The MSF (multistage flash) desalination technique has received wide spread acceptance due to low temperature heat source (waste heat/inexpensive energy), simple construction high process reliability and simple maintenance. MSF typically has the highest water production cost among available desalination technologies, which can be reduced with using solar energy/co-generation. Since Abu Dhabi is in the solar belt region and is blessed with huge solar energy, MSF desalination can be powered by solar power in addition to industrial waste/fossil fuel energy, which will significantly reduce the cost as well as carbon, footprint. In this research, multistage flash desalination is modelled using ASPEN HYSYS package V8. We have designed each components of the system, mostly heating source, vacuum/flash chambers, heat exchangers and developed the whole system. Some parametric study, i.e. feed rate, top brine temperature, heat input, pressure, productivity etc. of multistage flash desalination system has been conducted in this research. Two case studies have been conducted and found a relation between feed flow rate and water production rate as well as chamber pressure with vapor formation. This design will help to build the pilot plant, do experimental test and validate the model.
APA, Harvard, Vancouver, ISO, and other styles
10

TAKAKURA, A. K., E. C. COSTA, N. T. MACHADO, M. E. ARAÚHO, and L. E. P. BORGES. "SIMULAÇÃO DO CRAQUEAMENTO TÉRMICO DE ÓLEO DE CANOLA, EMPREGANDO O SIMULADOR ASPEN HYSYS®." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-0947-22208-189044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography