Academic literature on the topic 'Aspen Plus Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aspen Plus Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aspen Plus Simulation"
Tamzysi, Cholila, Muflih Arisa Adnan, Fadilla Noor Rahma, and Arif Hidayat. "Exergy Analysis of Microalgae Thermochemical Conversion using Aspen Plus Simulation." Reaktor 20, no. 4 (December 31, 2020): 166–73. http://dx.doi.org/10.14710/reaktor.20.4.166-173.
Full textMikhin, A. A., and V. V. Sergeev. "Simulation of condensation unit in ASPEN PLUS." Power engineering: research, equipment, technology 21, no. 6 (April 21, 2020): 84–92. http://dx.doi.org/10.30724/1998-9903-2019-21-6-84-92.
Full textLv, Han, Wei Ting Jiang, and Qun Zhi Zhu. "Organic Rankine Cycle Simulation Based on Aspen Plus." Advanced Materials Research 1070-1072 (December 2014): 1808–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1808.
Full textHauck, Maximilian, Stephan Herrmann, and Hartmut Spliethoff. "Simulation of a reversible SOFC with Aspen Plus." International Journal of Hydrogen Energy 42, no. 15 (April 2017): 10329–40. http://dx.doi.org/10.1016/j.ijhydene.2017.01.189.
Full textAl Amoodi, Nahla, Pravin Kannan, Ahmed Al Shoaibi, and C. Srinivasakannan. "ASPEN PLUS SIMULATION OF POLYETHYLENE GASIFICATION UNDER EQUILIBRIUM CONDITIONS." Chemical Engineering Communications 200, no. 7 (July 2013): 977–92. http://dx.doi.org/10.1080/00986445.2012.715108.
Full textSotudeh-Gharebaagh, R., R. Legros, J. Chaouki, and J. Paris. "Simulation of circulating fluidized bed reactors using ASPEN PLUS." Fuel 77, no. 4 (March 1998): 327–37. http://dx.doi.org/10.1016/s0016-2361(97)00211-1.
Full textHao, X., M. E. Djatmiko, Y. Y. Xu, Y. I. Wang, J. Chang, and Y. W. Li. "Simulation Analysis of a GTL Process Using Aspen Plus." Chemical Engineering & Technology 31, no. 2 (February 2008): 188–96. http://dx.doi.org/10.1002/ceat.200700336.
Full textDarabi, Mohsen, Mohammad Mohammadiun, Hamid Mohammadiun, Saeed Mortazavi, and Mostafa Montazeri. "Simulation and optimization integrated gasification combined cycle by used aspen hysys and aspen plus." International Journal of Scientific World 3, no. 1 (May 7, 2015): 178. http://dx.doi.org/10.14419/ijsw.v3i1.4583.
Full textLestinsky, Pavel, and Aloy Palit. "Wood Pyrolysis Using Aspen Plus Simulation and Industrially Applicable Model." GeoScience Engineering 62, no. 1 (March 1, 2016): 11–16. http://dx.doi.org/10.1515/gse-2016-0003.
Full textSajjad, Mojibul, and Mohammad G. Rasul. "Simulation and Optimization of Solar Desalination Plant Using Aspen Plus Simulation Software." Procedia Engineering 105 (2015): 739–50. http://dx.doi.org/10.1016/j.proeng.2015.05.065.
Full textDissertations / Theses on the topic "Aspen Plus Simulation"
Mapamba, Liberty Sheunesu. "Simulation of the copper–chlorine thermochemical cycle / Mapamba, L.S." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7052.
Full textThesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
Schmidt, David Daniel. "Simulating aerosol formation and effects in NOx absorption in oxy-fired boiler gas processing units using Aspen Plus." Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/15304.
Full textDepartment of Chemical Engineering
Larry Erickson
Oxy-fired boilers are receiving increasing focus as a potential response to reduced boiler emissions limits and greenhouse gas legislation. Among the challenges in cleaning boiler gas for sequestration is attaining the necessary purity of the CO[subscript]2. A key component in the oxy-fired cleaning path is high purity SO[subscript]x and NO[subscript]x removal, often through absorption using the lead-chamber or similar process. Aerosol formation has been found to be a source of product contamination in many flue gas absorption processes. A number of authors presented simulation methods to determine the formation of aerosols in gas absorption. But these methods are numerically challenging and not suitable for day-to-day analysis of live processes in the field. The goal of this study is to devise a simple and practical method to predict the potential for and effect of aerosol formation in gas absorption using information from Aspen Plus, a commonly used process simulation tool. The NO[subscript]x absorber in an oxy-fired boiler CO[subscript]2 purification system is used as a basis for this investigation. A comprehensive review of available data suitable for simulating NO[subscript]x absorption in an oxy-fired boiler slipstream is presented. Reaction rates for eight reactions in both liquid and vapor phases are covered. These are entered into an Aspen Plus simulation using a RadFrac block for both rate-based and equilibrium reactions. A detailed description of the simulation format is given. The resulting simulation was compared to a previously published simulation and process data with good agreement. An overall description of the aerosol formation mechanism is presented, along with an estimate of expected aerosol nuclei reaching the NO[subscript]x absorption process. A method to estimate aerosol quantities produced based on inlet gas nuclei concentration and available condensable water vapor is presented. To estimate aerosol composition and emissions, an exit gas slipstream is used to equilibrate with a pure water aerosol using an Aspen Plus Equilibrium Reactor block. Changing the composition of the initial aerosol feed liquid suggests that the location of aerosol formation may influence the final composition and emissions.
Batista, Fabio Rodolfo Miguel 1978. "Simulação computacional aplicada à melhoria do processo de purificação de bioetanol = Computational simulation applied to the improvement of the bioethanol purification process." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254191.
Full textTexto em português e inglês
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-21T10:31:20Z (GMT). No. of bitstreams: 1 Batista_FabioRodolfoMiguel_D.pdf: 2503364 bytes, checksum: 981f60d79f8a7a65e7ab2c5b944ab1d7 (MD5) Previous issue date: 2012
Resumo: A diminuição gradativa das reservas de combustíveis fósseis e a crescente preocupação com os efeitos do aquecimento global vêm impulsionando cada vez mais as pesquisas por fontes de energia limpa. Dentre essas energias, o etanol de cana-de-açúcar, utilizado no Brasil desde a criação do Programa Nacional do Álcool (PROALCOOL) em 1975, vem se consolidando cada vez mais e sofrendo modificações contínuas no seu processo produtivo. Essas modificações se devem,entre outros aspectos, ao surgimento do conceito de biorrefinaria, que visa um aproveitamento integral da biomassa da cana para produção de energia, e ao rápido e contínuo crescimento da indústria alcoolquímica brasileira, utilizando o etanol como matéria prima para a produção de diversos outros produtos,aumentando a demanda por etanol de melhor qualidade e impulsionando pesquisas no melhoramento do processo produtivo atual. Tendo em conta esse atual cenário, essa tese tem por objetivo estudar o processo de destilação alcoólica industrial, por simulação computacional, analisando a influência dos diversos contaminantes do fermentado de cana no funcionamento das colunas de destilação, investigando a possibilidade do desenvolvimento de uma nova planta industrial para a produção de álcool carburante e álcool neutro, um tipo especial de álcool de alto valor agregado com baixo teor de contaminantes utilizado na indústria de química fina e de bebidas. Para o cumprimento desse objetivo, esta tese está dividida em 6 capítulos: o Capítulo 1 apresenta uma revisão bibliográfica da produção científica associada à produção de álcool combustível, apontando as principais lacunas inerentes a esse tema; o Capítulo 2 discute a produção industrial de cachaça por sistema contínuo apresentando um cuidadoso estudo do equilíbrio de fase dos principais componentes do fermentado de cana de açúcar e analisando a influência dos mesmos no processo produtivo; o Capítulo 3 e o Capítulo 4 apresentam o estudo do processo de produção de álcool hidratado combustível discutindo a influência dos componentes do vinho no funcionamento das colunas, técnicas de otimização de processo aplicadas a um processo industrial real e técnicas de controle de processo aplicadas ao controle de acetaldeído e da graduação alcoólica no bioetanol; o Capítulo 5 apresenta uma nova planta industrial para produção de álcool neutro e álcool hidratado discutindo detalhadamente as vantagens e desvantagens do novo processo frente a plantas industriais tradicionais brasileira e francesa; por fim, o Capítulo 6 apresenta as conclusões gerais do trabalho sugerindo temas para investigações futuras. A análise dos resultados obtidos permitiu conluir que, ainda que consolidado, o processo produtivo de etanol através de cana-de-açúcar apresenta lacunas importantes, principalmente quando se deseja produzir etanol de qualidade superior. Nesse sentido, uma nova planta industrial foi proposta com o objetivo de produzir etanol neutro e hidratado em uma única instalação com redução nos custos de instalação (menor numero de colunas) e de consumo de vapor
Abstract: The gradual reduction of fossil fuel reserves and growing concerns about the effects of global warming have encouraged more research on clean energy sources. Among these energies, ethanol from sugar cane, used in Brazil since the creation of the National Alcohol Program (PROALCOOL) in 1975, has undergone continuous changes in their production process. These changes were due to the emergence of the concept of biorefineries, aiming at a full utilization of sugarcane biomass for energy production, and the continuous and quick growth of the Brazilian alcohol-chemical industry, using the ethanol as raw material for the production of several other products, increasing the demand for ethanol with better quality and boosting the research to improving the current production process.Taking into account this present scenario, this thesis aims to study an industrial process for ethanol production, by computational simulation, analyzing the influence of the contaminants of the fermented sugar cane in the operation of distillation columns, investigating the possibility of developing a new plant for the industrial production of fuel alcohol and neutral alcohol, a particular type of hydrated alcohol of high economic value and low content of contaminants used in the manufacture of fine chemicals and beverages. To fulfill this objective, this thesis is divided into six chapters: Chapter 1 presents a literature review of scientific literature related to the production of fuel alcohol, pointing out the main shortcomings inherent in this theme; Chapter 2 discusses an industrial process for cachaça production by continuous distillation featuring a careful study of the phase equilibrium of the main components of the fermented sugar cane and analyzing their influence in the production process; Chapter 3 and Chapter 4 presents the study of an industrial plant for hydrated fuel ethanol production discussing the influence of the main components of the wine in the columns operation, techniques of process optimization applied to a real industrial process and techniques of control process applied to the control of acetaldehyde and alcoholic graduation in bioethanol; Chapter 5 presents a new plant for neutral and hydrated alcohol productions, discussing in detail the advantages and disadvantages of the new process compared to traditional Brazilian and French industrial plants; finally, the Chapter 6 presents the overall findings of the study and suggesting topics for future investigations. Taking into account the results of this thesis, was possible to concluded that, although consolidated, the ethanol production process using sugar cane as raw material presents important gaps especially when related with high quality ethanol. Some of these shortcomings were solved by proposing a new industrial configuration in order to produce neutral and hydrated ethanol in a single installation with lower installation costs (less number of columns) and steam consumption
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Ardila, Yurany Camacho 1985. "Gaseificação da biomassa para a produção de gás de síntese e posterior fermentação para bioetanol : modelagem e simulação do processo." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266052.
Full textTese (doutorado) ¿ Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-26T13:48:19Z (GMT). No. of bitstreams: 1 Ardila_YuranyCamacho_D.pdf: 7705979 bytes, checksum: 19a2840a168991456944a44d857667ee (MD5) Previous issue date: 2015
Resumo: A produção de biocombustíveis a partir da biomassa apresenta-se como uma alternativa para suprir as limitadas reservas de petróleo. A biomassa, atualmente, está sendo usada para diferentes processos termoquímicos, entre os quais a gaseificação é o de maior destaque. A gaseificação produz gás de síntese que é uma mistura, principalmente, de CO, H2 e CO2. Este gás serve para produzir energia, diferentes produtos químicos e biocombustíveis, como por exemplo, o bioetanol. A partir do gás de síntese, a produção de bioetanol pode ser realizada usando catalisadores químicos ou biocatalisadores, sendo este último processo conhecido como fermentação do gás de síntese. Para o processo integrado de gaseificação da biomassa e posterior fermentação para produção de bioetanol, as informações na literatura são escassas, o que dificulta avaliar a viabilidade desta nova tecnologia, em termos de condições operacionais. O uso de modelos matemáticos e sua simulação computacional podem auxiliar neste estudo. A literatura dispõe de vários estudos envolvendo simulações computacionais aplicadas à gaseificação de diferentes biomassas. Porém, poucos abordam a caracterização real do processo e as propriedades da biomassa utilizada, considerando apenas as propriedades para o carvão mineral, o que acaba gerando divergência nos resultados. Além disso, a maioria fundamenta suas simulações em modelos simples com base na caracterização elementar-imediata, que acaba limitando o desenvolvimento de plantas virtuais, que são baseadas na análise composicional da biomassa quando focadas na produção de bioetanol como etapa final ou como integração do processo. Assim, este trabalho tem como objetivos estudar o processo completo de gaseificação e realizar um estudo preliminar da fermentação do gás de síntese, mediante simulações computacionais, para definir as melhores condições e variáveis que afetam o processo global quando o bagaço de cana-de-açúcar é utilizado como matéria-prima. As simulações foram desenvolvidas utilizando o simulador comercial Aspen Plus¿ e os resultados validados com dados experimentais da literatura e dados obtidos nos Laboratórios LDPS/LOPCA/BIOEN/FEQ/UNICAMP. Para a completa simulação do processo, várias etapas foram estudadas e divididas para melhor entendimento. Foram desenvolvidos modelos matemáticos para predizer propriedades necessárias para o desenvolvimento de processos termoquímicos. Simulações baseadas nas análises elementar-imediata e composicional da biomassa foram realizadas para definir a decomposição inicial da biomassa, demonstrando os diferentes rendimentos e produtos que são gerados e que são a base da etapa inicial da gaseificação. Simulações completas da gaseificação foram desenvolvidas para estudar a gaseificação em diferentes tipos de reatores. A influência das condições de operação na gaseificação como temperatura, razão de equivalência (ER), injeção de vapor e temperatura do pré-aquecedor do ar no desempenho do gaseificador foram avaliadas. Com as condições operacionais da gaseificação definidas foi proposta uma simulação para representar a fermentação do gás de síntese. A partir dos resultados obtidos foi constatado que a composição do gás de síntese é alterada pelo aumento do ER e pela injeção de vapor no processo, e diferentes concentrações de bioetanol são obtidas quando a pressão de entrada do gás de síntese é alterada
Abstract: The production of biofuels from biomass is presented as an alternative to save the limited oil reserves. Currently, biomass is being used for different thermochemical processes, including gasification which is the most prominent. Gasification produces synthesis gas which is a mixture mainly of CO, H2 and CO2. This gas is used to produce energy, several chemicals and biofuels, such as ethanol. The ethanol from synthesis gas may be produced using chemical catalysts or biocatalysts, this latter process is known as fermentation of syngas. The information in the literature is scarce for the integrated gasification of biomass and subsequent fermentation to produce ethanol, making it difficult to see the feasibility of this new technology, in terms of operating conditions. The use of mathematical models and their computer simulation can help this study. Typically, numerous studies involving computer simulations, applied to different biomass gasification, are found in the literature. However, few of them approach the real characterization of process and properties for used biomass, considering only the properties for coal, which ends up generating divergence in the results. Moreover, most of the simulations are grounded on simple models based on proximate-ultimate characteristics, which end up limiting the development of virtual plants, which are based on biomass compositional analysis when focused on the production of ethanol as the final step or as integration process. Thus, the aims of this work are to study the complete gasification process and to carry out a preliminary study of synthesis gas fermentation, through computer simulations, in order to define the best conditions and variables that affect this global process when sugarcane bagasse is used as raw material. The simulations were developed using Aspen Plus ¿ simulator and the results validated with experimental data from literature and data obtained in the laboratories LDPS / LOPCA / BIOEN / FEQ / UNICAMP. For the full simulation of the process, several steps were studied and divided for a better understanding. Mathematical models were developed to predict properties required for the development of thermochemical processes. Simulations based on biomass analysis as proximate-ultimate and compositional were done to define the initial decomposition of biomass, demonstrating the different yields and products that are generated and which are the basis of the initial stage of the gasification. Complete simulations of gasification were carried out to study different types of gasification reactors. The influence of operating conditions at gasification performance was investigated; variables such as temperature, equivalence ratio (ER), steam injection and preheater temperature were evaluated. With the set conditions of gasification was proposed a simulation to represent the fermentation of syngas. It was demonstrated that the synthesis gas composition is changed when increased the ER and steam injection; and different ethanol concentrations are obtained when the input pressure of the synthesis gas is changed
Doutorado
Desenvolvimento de Processos Químicos
Doutora em Engenharia Quimica
Smestad, Haley Hayden. "Modeling of an Ethanol - Water- LiBr Ternary System for the Simulation of Bioethanol Purification using Pass-Through Distillation." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/452.
Full textBerdouzi, Fatine. "Simulation dynamique de dérives de procédés chimiques : application à l'analyse quantitative des risques." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19822/1/Berdouzi_19822.pdf.
Full textSaha, Pretom. "Carbon Dioxide Gasification of Hydrothermally Treated Manure-Derived Hydrochar." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1554290140503171.
Full textJurado, Pontes Nelia. "Experimental and modelling studies of coal/biomass oxy-fuel combustion in a pilot-scale PF combustor." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9310.
Full textCustodio, Aline Ferrão. "Proposição de um processo intensificado e via tecnologia verde para a obtenção de acetato de etila." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266267.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-09T09:35:16Z (GMT). No. of bitstreams: 1 Custodio_AlineFerrao_D.pdf: 2173448 bytes, checksum: 27b046c8dc2de1781ef672eb1c4ab063 (MD5) Previous issue date: 2007
Resumo: Este trabalho de tese propôs um processo para a produção de acetato de etila através da reação de esterificação do ácido acético com o etanol, utilizando conceitos de intensificação de processos e de Engenharia Verde (Zero Avoidable Pollution com renweable feedstock). A contribuição principal desta pesquisa é a proposta de uma planta conceitual com alta pureza de todas as correntes do processo, o que diminui desperdícios, de modo que o produto indesejado ou os reagentes não convertidos não estejam presentes nas correntes de saída do sistema. No processo proposto, todos os reagentes são de origem renovável. O acetato de etila é um solvente orgânico importante utilizado na produção de vernizes, de tintas, de resinas sintéticas e de agentes adesivos, sendo produzido normalmente, através da reação reversível do ácido acético com o etanol, com ácido sulfúrico com catalisador. O processo deste sistema de obtenção é bastante complexo porque o produto (acetato de etila) não é o componente mais volátil nem o menos volátil no sistema, de modo que a etapa de separação não é fácil de definir. O projeto conceitual proposto inclui um reator de tanque contínuo (CSTR) acoplado a um retificador, um decantador e duas colunas de purificação, para a água e o acetato de etila. O software comercial ASPEN PLUS® foi utilizado para a realização dos estudos do processo proposto através de simulação computacional em estado estacionário, e o simulador ASPEN DYNAMICS® foi utilizado para a simulação dinâmica
Abstract: This work proposes a process for ethyl acetate production via esterification of acetic acid with ethanol using concepts of process intensification and zero avoidable pollution. The main contribution of this work is the high-purity of all process streams, including the wastes ones, so that undesired product or unconverted reactants are not present in any throughput streams. Ethyl acetate is an important organic solvent widely used in the production of varnishes, ink, synthetic resins, and adhesive agents and it is normally produced via reversible reaction of acetic acid with ethanol, with sulfuric acid as catalyst. The process design of such system is complex because the ethyl acetate product is neither the lightest nor the heaviest component in the system, so that the separation stage is not an easy task. The proposed process design includes a continuous-stirred tank reactor (CSTR) coupled with a rectifier, a decanter and two purification columns for water and ethyl acetate. The commercial ASPEN PLUS® software was used to steady state simulation and ASPEN DYNAMICS® was used to dynamic simulation
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
Maia, Júlio Pereira 1978. "Simulação dinâmica, otimização e análise de estratégias de controle da torre de vácuo da unidade de destilação de processos de refino de petróleo." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266612.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-23T11:34:50Z (GMT). No. of bitstreams: 1 Maia_JulioPereira_D.pdf: 8705466 bytes, checksum: e604d7a471ca19eb99492912d431174b (MD5) Previous issue date: 2013
Resumo: Esta tese apresenta um estudo de estratégias de esquemas de controle em unidades de destilação a vácuo de refinarias de petróleo, com o uso de dados e informações de uma refinaria brasileira, de modo a se desenvolver uma simulação representativa do processo, onde uma diferença global máxima de 5% entre os resultados de simulação e os dados de saída reais foi obtida. A simulação foi executada com alto nível de detalhamento, com cálculos de queda de pressão, dimensionamento de sistemas de bombeamento e uso de internos de coluna comerciais. Uma análise paramétrica foi executada para a verificação das variáveis mais influentes do processo. A simulação em estado estacionário resultante foi então convertida para o regime dinâmico, onde um esquema de controle equivalente ao esquema de controle da planta real foi implementado. Este esquema de controle foi submetido a um conjunto de perturbações usuais ao processo real, produzindo respostas dinâmicas do processo para cada perturbação aplicada. Pela análise das dinâmicas destas respostas e das respostas do sistema em malha aberta, um esquema de controle alternativo foi proposto e verificado da mesma maneira que o esquema de controle equivalente. Malhas de controle específicas para quantificar a qualidade dos produtos, tendo por base o índice ASTM D86 foram inseridas. A comparação entre os dois esquemas de controle por meio das respostas dinâmicas na qualidade dos produtos, considerando como parâmetro o ISE (Integral Squared Error) das malhas de cada esquema para comparação, apresentou uma redução média do erro em 70% na qualidade dos produtos principais
Abstract: A petroleum vacuum distillation unit study on control scheme strategies is developed in this work. Real plant data and information is gathered from a Brazilian Refinery to develop a representative simulation of the process, which had achieved a maximum 5% overall difference from the plant results. The simulation was set to be highly detailed, including pressure drop calculations, pumping system and the use of commercial column internals (packing and plates) in it. A parametric analysis was carried in order to verify the most influent variables in the process, with respect to temperature profiles, product flows and product qualities. The resultant steady state simulation was then converted into dynamic regime, when a control scheme equivalent to the real plant control scheme was implemented. This control scheme was then subjected to a set of common perturbations that occur in the real process, producing the dynamic response of the process to each perturbation applied. By analyzing the dynamics of these responses and the open loop responses, an alternative control scheme is proposed and verified in the same manner the later one was. A specific control loop was proposed to account a petroleum product quality index, such as ASTM D86 95% recovery. The comparison of the control schemes by means of the dynamic responses considering the correlated ISE (integral squared error) of each scheme has shown an average error reduction of 70% in the main products quality
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
Books on the topic "Aspen Plus Simulation"
Schefflan, Ralph. Teach yourself the basics of Aspen plus. Hoboken, N.J: Wiley, 2010.
Find full textChemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Wiley-Interscience, 2019.
Find full textHaydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2018.
Find full textHaydary, Juma. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. American Institute of Chemical Engineers, 2019.
Find full textSchefflan, Ralph. Teach Yourself the Basics of Aspen Plus. American Institute of Chemical Engineers, 2016.
Find full textSchefflan, Ralph. Teach Yourself the Basics of Aspen Plus. American Institute of Chemical Engineers, 2011.
Find full textSchefflan, Ralph. Teach Yourself the Basics of Aspen Plus. American Institute of Chemical Engineers, 2016.
Find full textSchefflan, Ralph. Teach Yourself the Basics of Aspen Plus. American Institute of Chemical Engineers, 2011.
Find full textBook chapters on the topic "Aspen Plus Simulation"
Fu, Zhongbin, Yaning Zhang, Hui Liu, Bo Zhang, and Bingxi Li. "Simulation Analysis of Biomass Gasification in an Autothermal Gasifier Using Aspen Plus." In Cleaner Combustion and Sustainable World, 479–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_66.
Full textDabkeya, Rakesh Kumar, and Mahendra Lalwani. "Mustard and Cotton Waste-Based Biomass Gasifier Simulation by Using Aspen Plus." In Algorithms for Intelligent Systems, 591–606. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5077-5_53.
Full textChen, Qiu. "The Application of Process Simulation Software of Aspen Plus Chemical Engineering in the Design of Distillation Column." In Advances in Intelligent Systems and Computing, 618–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43309-3_88.
Full textHussain, Maham, Lemma Dendena Tufa, Suzana Yusup, Haslinda Zabiri, and Syed A. Taqvi. "Aspen Plus® Simulation Studies of Steam Gasification in Fluidized Bed Reactor for Hydrogen Production Using Palm Kernel Shell." In Communications in Computer and Information Science, 628–41. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6463-0_54.
Full textSegovia-Hernández, Juan Gabriel, and Fernando Israel Gómez-Castro. "The Simulator Aspen Plus®." In Stochastic Process Optimization using Aspen Plus®, 55–59. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315155739-4.
Full textLi, Bao-Hong, Nan Zhang, and Robin Smith. "Process Simulation of a 420MW Gas-fired Power Plant using Aspen Plus." In 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 209–14. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-444-63578-5.50030-x.
Full textPascu, A., A. Badea, C. Dinca, and L. Stoica. "Simulation of polymeric membrane in Aspen Plus for CO2 post-combustion capture." In Engineering Optimization 2014, 303–7. CRC Press, 2014. http://dx.doi.org/10.1201/b17488-55.
Full textSingh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Petrochemical Catalyst Materials, Processes, and Emerging Technologies, 164–76. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9975-5.ch007.
Full textSingh, Ravinder, and Helen Huiru Lou. "Safety and Efficiency Enhancement in LNG Terminals." In Natural Resources Management, 1584–96. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0803-8.ch075.
Full textYamanee-Nolin, Mikael, Anton Löfgren, Niklas Andersson, Bernt Nilsson, Mark Max-Hansen, and Oleg Pajalic. "Single-shooting optimization of an industrial process through co-simulation of a modularized Aspen Plus Dynamics model." In Computer Aided Chemical Engineering, 721–26. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818634-3.50121-1.
Full textConference papers on the topic "Aspen Plus Simulation"
Øi, Lars Erik, and Irene Yuste Tirados. "Heat Pump Efficiencies Simulated with Aspen HYSYS and Aspen Plus." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15119141.
Full textHaji, Shaker, Omar Al Deeb, and Ashraf Hassan. "Optimizing a methanol reactor in Aspen Plus." In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 2019. http://dx.doi.org/10.1109/icmsao.2019.8880381.
Full textNduse, Russ, and Tunde M. Oladiran. "Simulation of a Co-digester Plant using Aspen Plus." In Environment and Water Resource Management / 837: Health Informatics / 838: Modelling and Simulation / 839: Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2016. http://dx.doi.org/10.2316/p.2016.839-008.
Full textTrop, Peter, Jurij Krope, Danijela Dobersek, and Darko Goricanec. "Simulation of Desulphurization of Synthesis Gas with Aspen Plus." In Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.768-065.
Full textHaugen, Hildegunn H., Britt M. Halvorsen, and Marianne S. Eikeland. "Simulation of Gasification of Livestock Manure with Aspen Plus." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15119271.
Full textTan, Wenyi, and Qin Zhong. "Simulation of Hydrogen Production in Biomass Gasifier by ASPEN PLUS." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449270.
Full textEikeland, Marianne S., Rajan K. Thapa, and Britt M. Halvorsen. "Aspen Plus Simulation of Biomass Gasification with Known Reaction Kinetic." In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15119149.
Full textCheng, Ming, Matthew Hodges, Kenny Kwan, Hsuan-Tsung Hsieh, Yitung Chen, George Vandegrift, Jackie Copple, and James Laidler. "An Object-Oriented Systems Engineering Model Design for Integrating Spent Fuel Treatment Facility and Chemical Separation Processes." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15885.
Full textKou, Nannan, Fu Zhao, and Li Zhang. "Aspen Plus Process Simulation of Flexible Feedstock Thermo-Chemical Ethanol Production." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84090.
Full textDalong Jiang, Xiaohua Huo, Changqing Dong, Junjiao Zhang, and Yongping Yang. "Sludge auto-thermal drying and incineration generation simulation with ASPEN PLUS." In 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009. IEEE, 2009. http://dx.doi.org/10.1109/supergen.2009.5348040.
Full textReports on the topic "Aspen Plus Simulation"
White, Charles W. ASPEN Plus Simulation of CO2 Recovery Process. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/810497.
Full text