Academic literature on the topic 'Aspergillus fumigatus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aspergillus fumigatus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aspergillus fumigatus"

1

Wassano, Natália S., Gustavo H. Goldman, and André Damasio. "Aspergillus fumigatus." Trends in Microbiology 28, no. 7 (July 2020): 594–95. http://dx.doi.org/10.1016/j.tim.2020.02.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okumura, Yoshiyuki, Kenji Ogawa, and Toshiaki Nikai. "Elastase and elastase inhibitor from Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger." Journal of Medical Microbiology 53, no. 5 (May 1, 2004): 351–54. http://dx.doi.org/10.1099/jmm.0.05248-0.

Full text
Abstract:
Elastolytic and elastase inhibitory activities were investigated for 13 strains of Aspergillus fumigatus, three strains of Aspergillus flavus and three strains of Aspergillus niger. Nine of the 13 strains of A. fumigatus and all strains of A. flavus demonstrated elastase activity (more than 1 unit ml−1). Six of the 13 strains of A. fumigatus and all strains of A. flavus expressed elastase inhibitory activity (more than 2 units ml−1). However, no elastase or elastase inhibitory activities were observed with A. niger. It was also found that crude elastase inhibitors from six strains of A. fumigatus and two strains of A. flavus were stable to heat treatment at 100 °C for 10 min. In addition, human leukocyte elastases were inhibited by crude elastase inhibitors from A. fumigatus and A. flavus; however, no effect was observed on the elastase derived from porcine pancreas.
APA, Harvard, Vancouver, ISO, and other styles
3

Sabino, Raquel, Paulo Gonçalves, Aryse Martins Melo, Daniela Simões, Mariana Oliveira, Mariana Francisco, Carla Viegas, et al. "Trends on Aspergillus Epidemiology—Perspectives from a National Reference Laboratory Surveillance Program." Journal of Fungi 7, no. 1 (January 6, 2021): 28. http://dx.doi.org/10.3390/jof7010028.

Full text
Abstract:
Identification of Aspergillus to species level is important since sibling species may display variable susceptibilities to multiple antifungal drugs and also because correct identification contributes to improve the knowledge of epidemiological studies. Two retrospective laboratory studies were conducted on Aspergillus surveillance at the Portuguese National Mycology Reference Laboratory. The first, covering the period 2017–2018, aimed to study the molecular epidemiology of 256 Aspergillus isolates obtained from patients with respiratory, subcutaneous, or systemic infections and from environmental samples. The second, using our entire collection of clinical and environmental A. fumigatus isolates (N = 337), collected between 2012 and 2019, aimed to determine the frequency of azole-resistant A. fumigatus isolates. Aspergillus fumigatus sensu stricto was the most frequent species in both clinical and environmental samples. Overall, and considering all Aspergillus sections identified, a high frequency of cryptic species was detected, based on beta-tubulin or calmodulin sequencing (37% in clinical and 51% in environmental isolates). Regarding all Fumigati isolates recovered from 2012–2019, the frequency of cryptic species was 5.3% (18/337), with the identification of A. felis (complex), A. lentulus, A. udagawae, A. hiratsukae, and A. oerlinghauensis. To determine the frequency of azole resistance of A. fumigatus, isolates were screened for azole resistance using azole-agars, and 53 possible resistant isolates were tested by the CLSI microdilution reference method. Nine A. fumigatus sensu stricto and six Fumigati cryptic isolates showed high minimal inhibitory concentrations to itraconazole, voriconazole, and/or posaconazole. Real-time PCR to detect cyp51A mutations and sequencing of cyp51A gene and its promoter were performed. The overall frequency of resistance to azoles in A. fumigatus sensu stricto was 3.0%. With this retrospective analysis, we were able to detect one azole-resistant G54R mutant A. fumigatus environmental isolate, collected in 2015. The TR34/L98H mutation, linked to environmental transmission route of azole resistance, was the most frequently detected mutation (N = 4; 1.4%). Our findings underline the demand for correct identification and susceptibility testing of Aspergillus isolates.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Li, Koji Yokoyama, Makoto Miyaji, and Kazuko Nishimura. "Mitochondrial Cytochrome b Gene Analysis of Aspergillus fumigatus and Related Species." Journal of Clinical Microbiology 38, no. 4 (2000): 1352–58. http://dx.doi.org/10.1128/jcm.38.4.1352-1358.2000.

Full text
Abstract:
Nucleotide sequences of 426 bp from the mitochondrial (mt) cytochrome b genes of six anamorph species and two species of Neosartorya teleomophs of Aspergillussection Fumigati were determined. These sequences were used to build nucleotide- and amino acid-based trees for phylogenetic analysis. Thirteen strains of A. fumigatus including 10 clinical isolates of A. fumigatus, 1 type culture ofA. fumigatus var. fumigatus, 1 type culture ofA. fumigatus var. ellipticus, and 1 strain ofA. fumigatus var. albus, had the same nucleotide sequences. One strain of A. fumisynnematus, two strains labeled A. neoellipticus, two strains of A. viridinutans, and one strain of A. duricaulis had distinct nucleotide and amino acid sequences. Two strains of A. brevipes were divided into two types. One produced a 1,500-bp fragment that included an intron. The nucleotide sequences of its two exons were similar to those of the A. fumigatus, and the derived amino acid sequence was the same as that for A. fumigatus. The other produced a 426-bp fragment and had the same nucleotide and amino acid sequences as A. unilateralis. Neosartorya fischeri var. fischeri and N. stramenia had nucleotide sequences that differed from that ofA. fumigatus. These species possessed their own characteristic nucleotide sequences that differed from each other. In comparisons of homologous sequences from four other pathogenic species of Aspergillus, regions specific to sectionFumigati were found. The mt cytochrome b gene analysis was valuable for the identification, classification, and phylogenetic analysis of isolates of section Fumigati.
APA, Harvard, Vancouver, ISO, and other styles
5

Gardini, W. E:, C. R. Valles, J. H. Velásquez, and Nancy Canales. "Afinidades Fisiológicas en algunos Hongos Filamentosos del Medio Ambiente." Anales de la Facultad de Medicina 48, no. 4 (April 9, 2014): 565. http://dx.doi.org/10.15381/anales.v48i4.5818.

Full text
Abstract:
Se ha aislado del medio ambiente 14 grupos de hongos filamentosos contaminantes empleando el medio de agar-tomate fresco. En ellos fe investigó las reacciones de fermentación selectiva a 18 carbohidratos, sus reacciones mutuas y la producción de desoxirribonucleasa (DNAsa). Se encontró que había preferencia por fermentar determinados carbohidratos como la sacarosa, galactosa, manosa, maltosa, rafinosa, melibiosa, por el Aspergillus fumigatus, Aspergillus nigricana, Aspergillus ochraceus, Aspergillus orizae, Alternaria, CunninghameIla, Clados porium herbarum, Fusarium roseum, Glenospora, Hormodendrum, Penicillium bicolor, Penícillíum sp. cepa ACI-9, Rhízopus y Trichophyton sp. Que las variedades de hongos dentro de un mismo género tienen diferente poder fermentativo tal como sucede con el Aspergillus fumigatus, Aspergillus nigricans, Aspergillus ochraceus y AspergilIus onzae, sobre el adonitol, arabinosa, dulcitol y melecitosa. Los 14 grupos de hongos filamentosos ambientales han producido DNAsa, empleando como medio de cultivo el agar-triptosa-ácido desoxirribonucleico y como reactivo el colorante verde de metilo. La variedad de Penicillium, cepa ACI-9, de escaso poder fermentativo sobre la mayoría de los 18 carbohidratos, presentó poder inhibitorio sobre el desorrollo del Aspergíllus nigricans, Aspergillus ochraceus, Alternaria, Blastomyces dermatitidis y en mayor grado sobre el Aspergillus fumigatus, Aspergillus orizae, CunninghamelIa, Penícillium bicclor y Rhizopus.
APA, Harvard, Vancouver, ISO, and other styles
6

Lopez-Medrano, R., M. C. Ovejero, J. A. Calera, P. Puente, and F. Leal. "Aspergillus fumigatus antigens." Microbiology 141, no. 10 (October 1, 1995): 2699–704. http://dx.doi.org/10.1099/13500872-141-10-2699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodriguez-Ares, M. T., M. V. De Rojas Silva, M. Pereiro, B. Fente Sampayo, G. Gallegos Chamas, and M. S-Salorio. "Aspergillus fumigatus scleritis." Acta Ophthalmologica Scandinavica 73, no. 5 (May 27, 2009): 467–69. http://dx.doi.org/10.1111/j.1600-0420.1995.tb00312.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferreiro, Lucía, M. Luisa Pérez del Molino, Marta Sonia González-Pérez, and Luis Valdés. "Aspergillus fumigatus Empyema." Archivos de Bronconeumología (English Edition) 53, no. 7 (July 2017): 399–400. http://dx.doi.org/10.1016/j.arbr.2016.11.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gandi, Ni Luh Gita, I. Wayan Getas, and Miftahul Jannah. "Studi Jamur Aspergillus fumigatus penyebab Aspergillosis di Pasar Cakranegara Kota Mataram dengan Media Pertumbuhan Potato Dextrose Agar (PDA)." Jurnal Analis Medika Biosains (JAMBS) 6, no. 1 (July 18, 2019): 81. http://dx.doi.org/10.32807/jambs.v6i1.128.

Full text
Abstract:
Aspergillosis merupakan penyakit opportunistik yang disebabkan oleh jamur Aspergillus fumigatus. Jamur ini tersebar secara kosmopolitan di seluruh dunia. Gejala penyakit aspergillosis ditandai dengan gangguan pernafasan, gangguan kulit, keracunan serta alergi. Penyakit ini dapat terjadi akibat masuknya spora jamur yang ada di udara melalui sistem inhalasi. Dimana jamur ini dapat ditemukan pada udara, makanan, sayuran, tanah, humus. Sehingga dapat dilakukan studi terhadap jamur Aspergillus fumigatus pada sumber-sumber ditemukannya jamur tersebut untuk pencegahan aspergillosis. Penelitian ini bertujuan untuk mengisolasi, mengidentifikasi dan menganalisis jamur Aspergillus fumigatus penyebab aspergillosis di Pasar Cakranegara Kota Mataram dengan Media Pertumbuhan Potato Dextrose Agar (PDA). Metode penelitian ini menggunakan Observasional deskriptif dengan teknik pengambilan sampel Non Random Purposive Sampling. Sampel penelitian berjumlah 15 sampel yang terdiri atas 3 jenis yaitu udara, sayuran dan makanan (jajanan pasar). Masing-masing sampel dipreparasi kemudian diisolasi dengan menggunakan media PDA dan diinkubasi selama 3x24 jam pada suhu 37ºC kemudian diidentifikasi dan dianalisis untuk ditemukan jamur Aspergillus fumigatus pada masing-masing sampel tersebut. Berdasarkan penelitian yang telah dilakukan diperoleh hasil dari 15 sampel yaitu 9 sampel positif (+) ditemukan Aspergillus fumigatus dan 6 sampel negatif (-) ditemukannya Aspergillus fumigatus. Rincian persentase pada masing-masing sampel yaitu pada sampel udara diperoleh 4 dari 5 sampel (80%) positif ditemukan Aspergillus fumigatus, pada sampel sayuran diperoleh 3 dari 5 sampel (60%) positif ditemukan Aspergillus fumigatus, dan pada sampel makanan diperoleh 2 dari 5 sampel (40%) positif ditemukan Aspergillus fumigatus. Persentase tertinggi ditemukan Aspergillus fumigatus terdapat pada sampel udara, yang merupakan kontak langsung penyebab aspergillosis. Dengan persentase total keseluruhan sampel yaitu ditemukan Aspergillus fumigatus sebanyak 60%.
APA, Harvard, Vancouver, ISO, and other styles
10

Salman, Khawlah Abdallah, Hussein Ali Hussein, Athraa Harjan Mohsen, and Israa Harjan Mohsen. "Influence of Okra Extract Supplementation on Some Haematological Parameters of Male Mice Exposed to Aflatoxin." Journal of Scientific Research in Medical and Biological Sciences 4, no. 4 (December 28, 2023): 31–38. http://dx.doi.org/10.47631/jsrmbs.v4i4.715.

Full text
Abstract:
This research was directed to determine the influence of an alcoholic extract of okra on the lessening of the destructive impact of the aflatoxin produced by Aspergillus fumigatus in white mice and its influence on some physiological blood parameters. Different food samples, (grains and fruits) such as (wheat, barley, corn, rice, citrus, strawberries, and apples) were selected for the isolation of a variety of fungi. The results showed that Aspergillus flavus 15(18.7%), Aspergillus niger12(15%), Penicillium spp 7(8.7%), Aspergillus terreus 7 (8.7%), Aspergillus fumigatus7(8.7%), Alternaria spp. 10 (12.5%), Aspergillus parasiticus 6 (7.5%) Fusarium 6 (7.5%), Penicillium chrysogenum5(6.3), Mucor spp.2(2.5%),and Rhizopus stoloinfier 3(5.5%).The identified fungi were tested for aflatoxin production, and the results revealed that Aspergillus fumigatus produced the most aflatoxin. Okra alcoholic extract was tested in vivo against the negative impact of aflatoxins using different concentrations. The findings revealed that alcoholic extracts showed reasonable influence on some blood parameters, and the results are promising.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aspergillus fumigatus"

1

Weaver, Sean. "Heterokaryon incompatibility in Aspergillus fumigatus." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/heterokaryon-incompatibility-in-aspergillus-fumigatus(c0db26be-8326-4a93-8bcb-2648069e256c).html.

Full text
Abstract:
Invasive aspergillosis (IA) is associated with high mortality rates and can be difficult and expensive to treat with current drugs. The drugs used to treat IA are also associated with undesirable, and often severe, side-effects of the patient. The main causative agent of this disease is the opportunistic pathogen Aspergillus fumigatus. This study identifies genes which play a role in a fungal-specific type of programmed cell death (PCD) in A. fumigatus, known as heterokaryon incompatibility. The development of drugs specifically targeting the products of these genes could lead to fewer side-effects than those arising from currently available anti-fungal drugs. The drug amphotericin B is currently used to treat IA and has been shown to induce an apoptotic-like phenotype in A. fumigatus; however, the sterols targeted are present in both fungal and mammalian cell membranes. HI is a fungal-specific self/non-self recognition system that results in rapid compartmentalisation and cell death of hyphal fusion sites if the two fusing fungi are not genetically compatible. The HI system could be exploited as a novel drug target against invasive fungal pathogens through targeting a component of the molecular pathway to induce cell death. In contrast to current drugs, novel drugs could target HI components to induce PCD without affecting non-desirable targets that cause side-effects. The non-self recognition systems used by Neurospora crassa, Aspergillus Nidulans and Podospora anserina are the well characterised, and they each differ significantly in their modes of action. BLAST searches found 30 homologues of HI genes from other the systems of characterised species in A. fumigatus, with 8 containing the fungal-specific het domain. The first assay to determine whether disruption of het genes could affect HI was to observe the barrage phenotype between incompatible A. fumigatus individuals. However, there was no barrage visible as the leading edge of colonies stopped growing when in close proximity to another colony. Instead, nitrate non-utilising (Nit) A. fumigatus mutant strains were generated using chlorate and pair-wise crosses of 46 environmentally and clinically isolates on nitrate-containing media resulted in the formation of 16 viable heterokaryons. All of the heterokaryons fell into exclusive compatibility groups where no intergroup crossing was possible. Homologous recombination was used to disrupt five of the identified het domain genes with gene replacement cassettes, generated through fusion-PCR, in an akuB(KU80Delta) A. fumigatus strain. The mutant strains displayed both detrimental growth on standard agar growth media and reduced ability to recognise non-self strains. Full and partial heterokaryons were formed during intergroup pair-wise compatibility crosses using the mutants and strains that the akuB(KU80Delta) parent strain was previously incompatible with. This was followed with a non-bias approach of gene disruption using the Fusarium oxysporum impala160 transposable element in a Nit A. fumigatus mutant. Inducing transposon mutagenesis through exposure to low temperature generated a mutant library of spores in which the transposon had disrupted different open reading frames at different locations across the A. fumigatus genome. The mutant spore library was also screened for the ability to form viable intergroup heterokaryons with strains belonging to different compatibility groups. PCR recovery and DNA sequencing was able to identify the locus of impala160 in three isolates able to form viable heterokaryons. The sequences revealed the transposable element had disrupted the same gene, AFUA_2G05070, in each of the three isolates. This gene encodes an uncharacterised conserved hypothetical protein which may be a critical component for non-self recognition in A. fumigatus HI, and a potential target for novel anti-fungal drugs to induce PCD.
APA, Harvard, Vancouver, ISO, and other styles
2

Robertson, Maura Diane. "Host defences against Aspergillus fumigatus." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/26892.

Full text
Abstract:
The potential of the filamentous fungus Aspergillus fumigatus to act as an opportunistic pathogen may be related to its ability to resist the host defence network. Whilst phagocytic cells are clearly important in host defences against invading microorganisms their precise role in the killing of A. fumigatus remains undefined. The purpose of this study was to examine the basic interactions between phagocytic cells, from humans and rodents, with spores of A. fumigatus. In particular the mechanisms whereby phagocytic cells bind and kill spores of A. fumigatus, when compared with the relatively non-pathogenic fungus Penicillium ochrochloron were investigated. In order to investigate why people with asthma may develop some hypersensitivity reactions to A. fumigatus, in particular, rather than to the many other fungi in the atmosphere, the possibility that there may be a defect in the handling of the fungus by such patients has been tested. A comparison of the fungal handling by phagocytes from asthmatic patients, both sensitised and unsensitised to A. fumigatus with phagocytes from non-asthmatic subjects has been made. The principal findings from this study are that spores of A. fumigatus bind to the surface of the phagocytic cell yet are relatively resistant to phagocytosis. The spores also fail to trigger the phagocytic cells into releasing the potentially microbicidal reactive oxygen intermediates. These results may be related to a further finding which is that spores of A. fumigatus release a low molecular weight substance (diffusate) which interferes with various aspects of phagocytic cell activation. Spore diffusates were shown to inhibit the phagocytosis of radiolabelled antibody-coated sheep red blood cells and to suppress the spontaneous release of reactive oxygen intermediates by Corynebacterium parvum stimulated mouse peritoneal exudate cells. In addition spores diffusates inhibited the ability of phagocytic cells to spread on glass and reduce the number of phagocytic cells migrating towards a known chemoattractant. Studies on spore killing showed that spores of A. fumigatus opsonised in autologous serum were more resistant to killing by phagocytic cells from humans and rodents than similarly opsonised spores of P. ochrochloron. However, the ability of the phagocytic cells to kill spores of A. fumigatus was substantially increased when the spores were opsonised in sera which had been heat-treated for 30 minutes at 56?C. No increased killing was found with P. ochrochloron. People with asthma sensitised to A. fumigatus showed significant differences in their handling of A. fumigatus in vitro when compared with the control group. Monocytes from these sensitised patients killed significantly fewer spores of A. fumigatus (opsonised in auto? logous sera) whilst their polymorphonuclear leucocytes killed significantly more. No such differences were found for P. ochrochloron. The work reported in this Thesis has given us a clearer understanding of why Aspergillus fumigatus is an important cause of disease in man, and how the defence mechanisms that it has evolved in its natural environment the soil, enable it to act as a saprophyte or parasite in the lungs of humans and animals. The results also suggest a mechanism whereby heat-labile serum components may be an advantage to the survival of the fungus, thus perhaps explaining why it may be a particular problem in the airways of asthmatic patients.
APA, Harvard, Vancouver, ISO, and other styles
3

Philippe, Bruno. "Aspergillose pulmonaire invasive : interactions entre Aspergillus fumigatus et macrophage alvéolaire." Paris 12, 2004. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990003948260204611&vid=upec.

Full text
Abstract:
L'aspergillose pulmonaire invasive (AI) due à Aspergillus fumigatus est une infection grave du malade immunodéprimé. Un modèle murin d'AI a montré que le macrophage alvéolaire (MA) représente la première ligne des défenses pulmonaires innées contre A. Fumigatus. Le killing est lent et fait intervenir les réactifs oxydants. Les corticostéroi͏̈des diminuent les capacités de killing en inhibant la production de réactifs oxydants par les MA. L'analyse du killing de A. Fumigatus par des MA de malades transplantés pulmonaires a montré des résultats similaires aux MA murins. La dose de corticostéroi͏̈des prise quotidiennenement > 0,25 mg/kg/j, la dose totale > 1,5 mg/kg/j et la période précoce < 6 mois après la transplantation ont été retrouvés comme facteurs diminuant le niveau de killing des conidies par les MA. Ces résultats démontrent le rôle essentiel du MA dans la résistance de l'homme à A. Fumigatus
Pulmonary invasive aspergillosis (lA) due to Aspergllus fumigatus is a severe infection in immunocompromised patients. A murine model of invasive aspergillosis showed that alveolar macrophages (AM) are the first une of pulmonary innate defence against A. Fumigatus. The killing is slow and involves reactive oxidants intermediates. Corticosteroids decrease killing capacity of the AM du to an inhibition of reactive oxidants intermediates production. Killing study of lung transplant recipients showed similar resuits as murin AM. Several factors that influence the killing were identified daily dose of corticosteroids > 0,25 g/kg/d total dose> 1,5 mg/kg/d and early period post transplantation <6 months were found to decrease significatively the killing rate. These data demonstrated unequivocally that the alveolar macrophage is the first une of defence against A. Fumigatus
APA, Harvard, Vancouver, ISO, and other styles
4

Philippe, Bruno Latgé Jean-Paul. "Aspergillose pulmonaire invasive interactions entre Aspergillus fumigatus et macrophage alvéolaire /." Créteil : Université de Paris-Val-de-Marne, 2007. http://doxa.scd.univ-paris12.fr:8080/theses-npd/th0394826.htm.

Full text
Abstract:
Thèse de doctorat : Sciences de la vie et de la santé : Paris 12 : 2004.
Version électronique uniquement consultable au sein de l'Université Paris 12 (Intranet). Titre provenant de l'écran-titre. Bibliogr. : 305 réf.
APA, Harvard, Vancouver, ISO, and other styles
5

Leleu, Christopher. "Evaluation du risque lié à l'exposition aérienne à Aspergillus fumigatus." Paris 6, 2012. http://www.theses.fr/2012PA066413.

Full text
Abstract:
Aspergillus fumigatus est un champignon filamenteux pathogène responsable de différentes formes d’infections pulmonaires allergiques sur les sujets immunocompétents et d’infections invasives chez les patients neutropéniques. L’inhalation de spores est le mode habituel de contamination suggérant un rôle majeur de l’environnement dans l’épidémiologie de l’aspergillose. Cependant, la relation entre les concentrations d’Aspergillus dans l’air et la probabilité d’infections ne sont pas connues. Dans cette étude, trois approches complémentaires ont été proposées pour analyser cette relation. In vitro, nous avons utilisé un dispositif de culture en interface air-liquide pour analyser les conséquences de l’exposition de cellules pulmonaires A549 à différentes concentrations de spores d’Aspergillus fumigatus. Aucun effet significatif sur la production de cytokines pro-inflammatoires n'a été retrouvé suite à cette exposition, même lorsque cette exposition aspergillaire était combinée avec une exposition au formaldéhyde. In vivo, la relation entre l’exposition à des spores d’Aspergillus et la survenue d’une infection a été étudiée dans un modèle murin d’aspergillose invasive en utilisant la souche de référence Af293 d’Aspergillus fumigatus. Dans une approche bayésienne la relation dose-infection entre probabilité d’infection et exposition aux spores a été estimée en utilisant le modèle exponentiel et le modèle plus flexible bêta-Poisson. Ceci a permis d’estimer la dose infectieuse 50 à 1,8-1,9. 104 spores inhalées viables. Secondairement, ce modèle a été utilisé pour mettre au point un nouveau modèle de réactivation d’aspergillose et étudier l’efficacité de l’amphotéricine B liposomale dans la prophylaxie de l’aspergillose invasive. Chez l’homme, nous avons tenté d’estimer la relation entre l’exposition environnementale aux spores fongiques et l’incidence de la colonisation ou de l’infection aspergillaire chez 44 transplantés pulmonaires étudiée de façon consécutive. A l'aide d'un modèle de régression par GEE, nous avons trouvé une relation significative entre la contamination des surfaces par Aspergillus et l’incidence de la colonisation. De plus, nous avons montré des identités génotypiques entre les isolats cliniques et environnementaux d’Aspergillus, ce qui confirme les risques d’acquisition d’Aspergillus dans le cadre hospitalier. Globalement, ces résultats apportent des données nouvelles sur la relation entre la contamination environnementale et la probabilité d’aspergillose chez les patients immunodéprimés
Aspergillus fumigatus is an opportunistic fungal pathogen responsible for various respiratory diseases in normal hosts and severe invasive infections in neutropenic patients. Spore inhalation is the usual route of Aspergillus infection, suggesting a determining role of environmental contamination in the epidemiology of aspergillosis. However the relationship between Aspergillus concentration in the air and probability of infection is not quantitatively known. In this study, three different approaches were proposed to analyse this relationship. In vitro we used an air-liquid interface module to expose pulmonary A549 cells to high concentrations of A. Fumigatus spores, but found not effect of exposure on the production of pro-inflammatory cytokines, even when exposure was combined with exposure to formaldehyde. In vivo, the relationship between spore exposure and infection was examined in a murine model of invasive aspergillosis, using the reference Af293 strain of A. Fumigatus. In a bayesian approach, the dose-response relationship between the probability of infection and spore exposure was approximated using the exponential model and the more flexible beta-Poisson model. It allowed estimating the median infective dose at 1. 8-1. 9x104 inhaled viable spores. Further, this model was used to develop a unique model of reactivating aspergillosis and then to examine the efficacy of liposomal amphotericin B on prophylaxis of aspergillosis. In human, we attempted to estimate the relationship between environmental exposure to fungal spores and the incidence of Aspergillus colonization or infection in 44 consecutive lung transplant recipients. In a GEE multivariate analysis, we found a significant relationship between surface contamination by Aspergillus and the incidence of colonization. Furthermore, we found genotypic similarities between clinical and environmental isolates of Aspergillus, which confirm the risk of acquisition of Aspergillus in the hospital setting. Altogether, this result provides new insights into the relationship between airborne exposure and probability of aspergillosis in immunocompromised hosts
APA, Harvard, Vancouver, ISO, and other styles
6

Bertout, Sébastien. "Polymophisme génétique de souche d'Aspergillus fumigatus isolées d'aspergilloses pulmonaires au cours d'une étude multicentrique." Montpellier 1, 2000. http://www.theses.fr/2000MON13512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bernard-Cardona, Muriel. "Protéines et paroi chez Aspergillus fumigatus." Phd thesis, INAPG (AgroParisTech), 2003. http://tel.archives-ouvertes.fr/tel-00005702.

Full text
Abstract:
La paroi du champignon filamenteux A. fumigalus conditionne la croissance et est responsable du maintien de l'intégrité cellulaire lors de l'infection. Les protéines de la paroi de ce champignon filamenteux n'avaient pas été étudiées jusqu'à présent alors qu'elles semblent jouer un rôle essentiel dans la structuration de la paroi de la levure modèle S. cereviciae. Une approche essentiellement biochimique a permis de caractériser les protéines associées à la paroi de A..fumigatus. La majorité des protéines pariétales chez A. fumigatus sont des protéines solubles. Une seule protéine est relarguée à partir de la paroi par un traitement f3- (1 .3) glucanase : c'est une phosphatase acide qui possède une ancre GPl et dont l'expression est réprimée en présence de phosphate inorganique. Par ailleurs, une étude des protéines GPl chez A. fumigatus par génomique comparative a montré que les protéines GPI décrites comme associées de façon covalente à la paroi chez la levure n'ont pas d'homologue chez A. fumigatus. Ainsi. l'organisation des protéines au sein de la paroi de A..fumigatus est différente de celle de la levure : les protéines pariétales ne semblent pas avoir un rôle essentiel dans l'élaboration de la paroi. Ensuite, une nouvelle famille de glycoprotéines portant un N-glycane lié à un galactofuranose en position terminale a été décrite. Cette famille comprend une phospholipase C, une phosphatase alcaline et une phytase. Enfin, une analyse morphologique de deux mutants chitine synthase et gluconosyltransférase a permis d'associer la réduction de la croissance à un hyper-branchement du mycélium et à une diminution de la taille de la cellule apicale sans que l'organisation globale des polysaccharides pariétaux et le taux de croissance spécifique soient affectés.
APA, Harvard, Vancouver, ISO, and other styles
8

Melloul, Elise. "Aspergillose aviaire : développement d’un modèle d’aspergillose chez la dinde (Meleagris gallopavo) et évaluation de l’efficacité de l’énilconazole." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1183/document.

Full text
Abstract:
Aspergillus fumigatus est un agent pathogène respiratoire majeur chez les oiseaux d’ornement comme de production. L’aspergillose qui peut être responsable de mortalités importantes et de chutes de performances est difficile à traiter. Nous avons développé un modèle d’aspergillose aiguë chez le dindonneau en inoculant différents lots d’oiseaux âgés de moins d’une semaine via une aérosolisation intratrachéale de doses croissantes de conidies (105 à 108/animal) en utilisant un MicroSprayer®. Le développement de la masse fongique a été évalué par qPCR, dosage du galactomannane (GM), culture fongique et évaluation histopathologique dans le but de comparer les résultats obtenus en fonction du nombre de conidies inoculées. Une mortalité significative a été observée dans les 4 jours suivant l’inoculation uniquement pour l’inoculum le plus concentré. Les résultats des différents marqueurs du développement du champignon (culture, qPCR et GM), sont très bien corrélés avec la dose de l’inoculum administrée. Les moyennes d’équivalents conidies/g de poumon obtenues par qPCR étaient 1,3 log10 plus importantes que les numérations obtenues par culture sur gélose. Ce nouveau modèle incluant une combinaison inédite de biomarqueurs chez la dinde a été utilisé pour évaluer l’efficacité de l’énilconazole, seule molécule utilisée en élevage avicole pour lutter contre l’aspergillose
Aspergillus fumigatus remains a major respiratory pathogen in both ornamental and poultry. Aspergillosis can be responsible for high mortality rates and induces significant economic losses, particularly in turkey production, and it is still difficult to treat. We developed a new model of acute aspergillosis in young turkeys by inoculating few-days-old turkeys via intratracheal aerosolization with increasing concentrations (105 up to 108) of conidia using a MicroSprayer® device. The fungal burden was assessed and compared by real-time PCR, galactomannan (GM) dosage, fungal colony (CFU) counting and by histopathology. Early death occurred in the first 96 h post-inoculation only at the highest inoculum dose. We observed a correlation between inoculum size and results obtained by real-time PCR, GM dosage and CFU counting. The mean fungal burden detected by qPCR was 1.3 log10 units higher than the mean values obtained by CFU measurement. Furthermore, this new model, with its unique combination of markers, has been used to evaluate the efficacy of enilconazole
APA, Harvard, Vancouver, ISO, and other styles
9

Brown, Jeremy Stuart. "Signature tagged-mutagenesis of aspergillus fumigatus." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kong, Yun-cheung, and 江潤祥. "Multilocus sequence typing of aspergillus fumigatus." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B4593972X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aspergillus fumigatus"

1

Latgé, Jean-Paul, and William J. Steinbach, eds. Aspergillus fumigatus and Aspergillosis. Washington, DC, USA: ASM Press, 2008. http://dx.doi.org/10.1128/9781555815523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1948-, Latgé Jean-Paul, and Steinbach William J, eds. Aspergillus fumigatus and aspergillosis. Washington, DC: ASM Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Brakhage Axel, Jahn Bernhard, and Schmidt Axel 1962-, eds. Aspergillus fumigatus: Biology, clinical aspects, and molecular approaches to pathogenicity. Basel: Karger, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holland, Tracey Michelle. The utilisation of a waste lignocellulosic by Aspergillus fumigatus IMI 255091. Birmingham: University of Birmingham, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanahoe, Belinda. Detection of IgG and IgE antibodies to Aspergillus fumigatus in cystic fibrosis patients. [S.l: The Author], 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mambula, Salamatu Sangaljala. The application of B-cell epitope mapping on Aspergillus fumigatus alkaline protease in the search for diagnostic and therapeutic targets. Manchester: University of Manchester, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brakhage, A., B. Jahn, and A. Schmidt, eds. Aspergillus fumigatus. S. Karger AG, 1999. http://dx.doi.org/10.1159/isbn.978-3-318-00320-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Latge, Jean-Paul, and William J. Steinbach. Aspergillus Fumigatus and Aspergillosis. Wiley & Sons, Limited, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lamoth, Frederic, Praveen R. Juvvadi, and William J. Steinbach, eds. Advances in Aspergillus fumigatus Pathobiology. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-789-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adams, Nicola. The characterisation of aspergillus fumigatus antigens. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aspergillus fumigatus"

1

d�Enfert, C., G. Weidner, P. C. Mol, and A. A. Brakhage. "Transformation Systems of Aspergillus fumigatus." In Aspergillus fumigatus, 149–66. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouchara, J. P., M. Sanchez, K. Esnault, and G. Tronchin. "Interactions between Aspergillus fumigatus and Host Matrix Proteins." In Aspergillus fumigatus, 167–81. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monod, M., K. Jaton-Ogay, and U. Reichard. "Aspergillus fumigatus-Secreted Proteases As Antigenic Molecules and Virulence Factors." In Aspergillus fumigatus, 182–92. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horiuchi, H., and M. Takagi. "Chitin Synthase Genes of Aspergillus Species." In Aspergillus fumigatus, 193–204. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brakhage, A. A., K. Langfelder, G. Wanner, A. Schmidt, and B. Jahn. "Pigment Biosynthesis and Virulence." In Aspergillus fumigatus, 205–15. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Samson, R. A. "The Genus Aspergillus with Special Regard to the Aspergillus fumigatus Group." In Aspergillus fumigatus, 5–20. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt, A., and D. I. Schmidt. "J.B. Georg W. Fresenius and the Description of the Species Aspergillus fumigatus." In Aspergillus fumigatus, 1–4. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crameri, R. "Epidemiology and Molecular Basis of the Involvement of Aspergillus fumigatus in Allergic Diseases." In Aspergillus fumigatus, 44–56. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

R�chel, R., and U. Reichard. "Pathogenesis and Clinical Presentation of Aspergillosis." In Aspergillus fumigatus, 21–43. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneemann, M., and A. Schaffner. "Host Defense Mechanism in Aspergillus fumigatus Infections." In Aspergillus fumigatus, 57–68. Basel: KARGER, 1999. http://dx.doi.org/10.1159/000060303.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aspergillus fumigatus"

1

Bhadoria, Dharam P., Mitesh Kumar, Kanika Bhadoria, Ram Kumar, Bharat Singh, Manish Kumar, Seema Singh, Koushik Dutta, Poonam Bhadoria, and Gainda L. Sharma. "Novel Allergenic Proteins Of Aspergillus Fumigatus." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Everaerts, Stephanie, Erna Van Hoeyveld, Kristina Vermeersch, Lieven Dupont, Bart Vanaudenaerde, Xavier Bossuyt, Katrien Lagrou, and Wim Janssens. "Aspergillus fumigatus sensitization in COPD and smokers." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa3610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tiew, Pei Yee, Micheal Mac Aogain, Tavleen Kaur Jaggi, Fransiskus Xaverius Ivan, Augustine Tee, Huiying Xu, Mariko Siyue Koh, et al. "Environmental Aspergillus fumigatus associates with COPD exacerbations." In ERS International Congress 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/13993003.congress-2023.pa2188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ajayan, Teena, P. Sony, Janu R. Panicker, and S. Shailesh. "Clustering DNA Sequences of Aspergillus Fumigatus Using Incremental Multiple Medoids." In 2015 Fifth International Conference on Advances in Computing & Communications (ICACC). IEEE, 2015. http://dx.doi.org/10.1109/icacc.2015.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Valentina, Leah Daly, Kirstie Lucas, and Kazuhiro Ito. "Accelerated evolution of azole resistant Aspergillus fumigatus by diesel particles." In ERS International Congress 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/13993003.congress-2023.pa2182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

REGINATTO, C., F. P. NORONHA, C. ROSSI, S. CARRA, L. MENEGHEL, M. MOURA da SILVEIRA, and E. MALVESSI. "EFEITO DO INÓCULO NA OBTENÇÃO DE PECTINASES POR Aspergillus fumigatus." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-0693-24401-178109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Engel, Tobias, Ellen Erren, Koen Vanden Driessche, Monique Reijers, Willem Melchers, Peter Merkus, and Paul Verweij. "Transmission-frequency of Aspergillus fumigatus in cystic fibrosis patients through coughing." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa1328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bals, Robert, and Christoph Beisswenger. "Aspergillus Fumigatus Conidia Induce IFN-Beta Signaling In Respiratory Epithelial Cells." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsuse, Hiroto, Susumu Fukahori, Tomoko Tsuchida, Tetsuya Kawano, Chizu Fukushima, and Shigeru Kohno. "Clearance Of Aspergillus Fumigatus Is Impaired In The Allergic Airway Inflammation." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GUIMARÃES, J. R., E. C. O. ARAÚJO, J. C. F. QUEIROZ, and G. D. COELHO. "Produção de biossurfactante por Aspergillus fumigatus utilizando o sisal como substrato." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-pt.0896.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aspergillus fumigatus"

1

NTP Technical Report on the Toxicity Studies of Aspergillus fumigatus Administered by Inhalation to B6C3F1/N Mice. NIEHS, July 2021. http://dx.doi.org/10.22427/ntp-tox-100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography