Journal articles on the topic 'Assisted ball milling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Assisted ball milling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Campbell, S. J., W. A. Kaczmarek, E. Wu, and K. D. Jayasuriya. "Surfactant assisted ball-milling of barium ferrite." IEEE Transactions on Magnetics 30, no. 2 (1994): 742–45. http://dx.doi.org/10.1109/20.312394.
Full textPHOOHINKONG, WEERACHON, SORAPONG PAVASUPREE, KANOKTHIP BOONYARATTANAKALIN, WANICHAYA MEKPRASART, and WISANU PECHARAPA. "ACTIVE-ILMENITE SURFACE STRUCTURE INFLUENCE ON ACID-ASSISTED BALL MILLING." Surface Review and Letters 25, Supp01 (2018): 1840006. http://dx.doi.org/10.1142/s0218625x18400061.
Full textMohid, Zazuli, N. M. Warap, R. Ibrahim, and E. A. Rhim. "Laser Assisted Micro-Groove Ball Milling of Ti6Al4V." Applied Mechanics and Materials 660 (October 2014): 55–59. http://dx.doi.org/10.4028/www.scientific.net/amm.660.55.
Full textTSUNEKAWA, Kiyoka, Yuji HOTTA, Kimiyasu SATO, and Koji WATARI. "Hydrothermal Synthesis of BaTiO3 Assisted with Ball Milling." Journal of the Ceramic Society of Japan 114, no. 1331 (2006): 651–53. http://dx.doi.org/10.2109/jcersj.114.651.
Full textChakka, V. M., B. Altuncevahir, Z. Q. Jin, Y. Li, and J. P. Liu. "Magnetic nanoparticles produced by surfactant-assisted ball milling." Journal of Applied Physics 99, no. 8 (2006): 08E912. http://dx.doi.org/10.1063/1.2170593.
Full textDuran, Cihangir, Kimiyasu Sato, Yuji Hotta, Hasan Göçmez, and Koji Watari. "Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders." Ceramics International 41, no. 4 (2015): 5588–93. http://dx.doi.org/10.1016/j.ceramint.2014.12.138.
Full textKaczmarek, W. A., and B. W. Ninham. "Surfactant-assisted ball milling of BaFe12O19 ferrite dispersion." Materials Chemistry and Physics 40, no. 1 (1995): 21–29. http://dx.doi.org/10.1016/0254-0584(94)01450-u.
Full textMOHID, Z., N. M. WARAP, and E. A. RAHIM. "0209 Chip Formation and Surface Characteristics in Laser Assisted Micro Ball Milling of Ti6Al4V." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _0209–1_—_0209–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._0209-1_.
Full textLazarevic, Zorica, B. D. Stojanovic, M. J. Romcevic, and N. Z. Romcevic. "Mechanochemical activation assisted synthesis of bismuth Layered-Perovskite Bi4Ti4O12." Science of Sintering 41, no. 1 (2009): 19–26. http://dx.doi.org/10.2298/sos0901019l.
Full textWang, Siyuan, Ding Chen, Yaotong Chen, and Kaiji Zhu. "Dispersion stability and tribological properties of additives introduced by ultrasonic and microwave assisted ball milling in oil." RSC Advances 10, no. 42 (2020): 25177–85. http://dx.doi.org/10.1039/d0ra03414b.
Full textda Luz, M. S., A. Ferreira, A. de Campos, L. E. Corrêa, and A. J. S. Machado. "Synthesis of HgPb2 assisted by high energy ball milling." Materials Research Innovations 19, no. 2 (2014): 129–32. http://dx.doi.org/10.1179/1433075x14y.0000000228.
Full textVelasco, V., A. Hernando, and P. Crespo. "FePt magnetic particles prepared by surfactant-assisted ball milling." Journal of Magnetism and Magnetic Materials 343 (October 2013): 228–33. http://dx.doi.org/10.1016/j.jmmm.2013.05.017.
Full textValeeva, A. A., H. Schroettner, and A. A. Rempel. "NbO disintegration by surfactant-assisted high-energy ball milling." Inorganic Materials 50, no. 4 (2014): 398–403. http://dx.doi.org/10.1134/s0020168514040177.
Full textAkdogan, N. G., G. C. Hadjipanayis, and D. J. Sellmyer. "Anisotropic PrCo$_{5}$ Nanoparticles by Surfactant-Assisted Ball Milling." IEEE Transactions on Magnetics 45, no. 10 (2009): 4417–19. http://dx.doi.org/10.1109/tmag.2009.2022643.
Full textZhang, Yingzhe, Yudao Chen, Juan Li, Wei Li, Ding Chen, and Qingdong Qin. "Formation of Cu2O Solid Solution via High-Frequency Electromagnetic Field-Assisted Ball Milling: The Reaction Mechanism." Materials 13, no. 3 (2020): 618. http://dx.doi.org/10.3390/ma13030618.
Full textKazmierczak, Tomasz, Witold Kaczorowski, and Piotr Niedzielski. "CVD carbon powders modified by ball milling." Materials Science-Poland 33, no. 3 (2015): 521–28. http://dx.doi.org/10.1515/msp-2015-0072.
Full textTravessa, Dilermando Nagle, and Marcela Lieblich. "Dispersion of Carbon Nanotubes in AA6061 Aluminium Alloy Powder by the High Energy Ball Milling Process." Materials Science Forum 802 (December 2014): 90–95. http://dx.doi.org/10.4028/www.scientific.net/msf.802.90.
Full textPark, Sora, and Jeung Gon Kim. "Mechanochemical synthesis of poly(trimethylene carbonate)s: an example of rate acceleration." Beilstein Journal of Organic Chemistry 15 (April 23, 2019): 963–70. http://dx.doi.org/10.3762/bjoc.15.93.
Full textLiu, Xuezhang, Hangyu Long, Shenghua Hu, and Kui Wen. "Photocatalytic TiO2 Nanoparticles Activated by Dielectric Barrier Discharge Plasma Assisted Ball Milling." Journal of Nanoscience and Nanotechnology 20, no. 3 (2020): 1773–79. http://dx.doi.org/10.1166/jnn.2020.17155.
Full textZhou, Zan, and Ding Chen. "The decolorization and mineralization of orange II by microwave-assisted ball milling." Water Science and Technology 75, no. 12 (2017): 2784–90. http://dx.doi.org/10.2166/wst.2017.157.
Full textRahim, E. A., N. M. Warap, Zazuli Mohid, and R. Ibrahim. "Investigation on Laser Assisted Micro Ball Milling of Inconel 718." Applied Mechanics and Materials 660 (October 2014): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amm.660.79.
Full textWang, Xue Lu, Wen Qi Fang, Shuang Yang, Pengfei Liu, Huijun Zhao, and Hua Gui Yang. "Structure disorder of graphitic carbon nitride induced by liquid-assisted grinding for enhanced photocatalytic conversion." RSC Adv. 4, no. 21 (2014): 10676–79. http://dx.doi.org/10.1039/c3ra47824f.
Full textPatiño-Carachure, C., E. García-De León, C. Angeles-Chávez, R. Esparza, and G. Rosas-Trejo. "Hydrogen embrittlement assisted by ball-milling to obtain AlCuFe nanoparticles." Journal of Non-Crystalline Solids 355, no. 34-36 (2009): 1713–18. http://dx.doi.org/10.1016/j.jnoncrysol.2009.06.019.
Full textChen, Y. "Ball milling assisted low temperature formation of iron-TiC composite." Scripta Materialia 36, no. 9 (1997): 989–93. http://dx.doi.org/10.1016/s1359-6462(96)00504-0.
Full textAkdogan, Nilay G., George C. Hadjipanayis, and David J. Sellmyer. "Anisotropic Sm-(Co,Fe) nanoparticles by surfactant-assisted ball milling." Journal of Applied Physics 105, no. 7 (2009): 07A710. http://dx.doi.org/10.1063/1.3067851.
Full textCui, B. Z., A. M. Gabay, W. F. Li, M. Marinescu, J. F. Liu, and G. C. Hadjipanayis. "Anisotropic SmCo5 nanoflakes by surfactant-assisted high energy ball milling." Journal of Applied Physics 107, no. 9 (2010): 09A721. http://dx.doi.org/10.1063/1.3339775.
Full textAkdogan, Nilay G., Wanfeng Li, and George C. Hadjipanayis. "Anisotropic Nd2Fe14B nanoparticles and nanoflakes by surfactant-assisted ball milling." Journal of Applied Physics 109, no. 7 (2011): 07A759. http://dx.doi.org/10.1063/1.3567049.
Full textSánchez-De Jesús, F., C. A. Cortés, R. Valenzuela, S. Ammar, and A. M. Bolarín-Miró. "Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling." Ceramics International 38, no. 6 (2012): 5257–63. http://dx.doi.org/10.1016/j.ceramint.2012.03.036.
Full textZheng, Liyun, Baozhi Cui, Lixin Zhao, Wanfeng Li, and George C. Hadjipanayis. "Sm2Co17 nanoparticles synthesized by surfactant-assisted high energy ball milling." Journal of Alloys and Compounds 539 (October 2012): 69–73. http://dx.doi.org/10.1016/j.jallcom.2012.06.011.
Full textChen, Zhen-hua, Yu-peng Sun, Zhi-tao Kang, and Ding Chen. "Preparation of ZnxCo1−xFe2O4 nanoparticles by microwave-assisted ball milling." Ceramics International 40, no. 9 (2014): 14687–92. http://dx.doi.org/10.1016/j.ceramint.2014.06.058.
Full textBafrooei, H. Barzegar, and T. Ebadzadeh. "MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling." Ceramics International 39, no. 8 (2013): 8933–40. http://dx.doi.org/10.1016/j.ceramint.2013.04.089.
Full textZheng, Liyun, Wanfeng Li, Baozhi Cui, and George C. Hadjipanayis. "Tb0.3Dy0.7Fe1.92 nanoflakes prepared by surfactant-assisted high energy ball milling." Journal of Alloys and Compounds 509, no. 19 (2011): 5773–76. http://dx.doi.org/10.1016/j.jallcom.2011.02.092.
Full textSimeonidis, K., C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, and O. Kalogirou. "Evolution of Nd2Fe14B nanoparticles magnetism during surfactant-assisted ball-milling." Intermetallics 19, no. 4 (2011): 589–95. http://dx.doi.org/10.1016/j.intermet.2010.12.012.
Full textBangi, Uzma K. H., Hyung-Ho Park, Wooje Han, Vipul M. Prakshale, and Lalasaheb P. Deshmukh. "Ultrasonically assisted synthesis of lead oxide nanoflowers using ball milling." International Nano Letters 7, no. 2 (2017): 149–55. http://dx.doi.org/10.1007/s40089-017-0209-z.
Full textChauhan, Pankaj, and Swapandeep Singh Chimni. "Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach." Beilstein Journal of Organic Chemistry 8 (December 6, 2012): 2132–41. http://dx.doi.org/10.3762/bjoc.8.240.
Full textZhang, Yingzhe, Junfeng Liu, Ding Chen, et al. "Preparation of FeOOH/Cu with High Catalytic Activity for Degradation of Organic Dyes." Materials 12, no. 3 (2019): 338. http://dx.doi.org/10.3390/ma12030338.
Full textYan, J. F., W. G. Qiu, L. Y. Song, et al. "Ligand-assisted mechanochemical synthesis of ceria-based catalysts for the selective catalytic reduction of NO by NH3." Chemical Communications 53, no. 7 (2017): 1321–24. http://dx.doi.org/10.1039/c6cc09229b.
Full textWei, Fu-hua, Ding Chen, Zhao Liang, Shuai-qi Zhao, and Yun Luo. "Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(vi) in wastewater." Dalton Transactions 46, no. 47 (2017): 16525–31. http://dx.doi.org/10.1039/c7dt03776g.
Full textHuang, Mingbao, Caihong Chen, Songping Wu, and Xiaodong Tian. "Remarkable high-temperature Li-storage performance of few-layer graphene-anchored Fe3O4 nanocomposites as an anode." Journal of Materials Chemistry A 5, no. 44 (2017): 23035–42. http://dx.doi.org/10.1039/c7ta07364j.
Full textZhang, Yongzhi, Yan Meng, Li Chen, Yong Guo, and Dan Xiao. "High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method." Journal of Materials Chemistry A 4, no. 44 (2016): 17491–502. http://dx.doi.org/10.1039/c6ta08485k.
Full textWei, Fu-hua, Ding Chen, Zhao Liang, Shuai-qi Zhao, and Yun Luo. "Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions." RSC Adv. 7, no. 73 (2017): 46520–28. http://dx.doi.org/10.1039/c7ra09243a.
Full textMao, Min, Shuzhen Chen, Ping He, Hailin Zhang, and Hongtao Liu. "Facile and economical mass production of graphene dispersions and flakes." J. Mater. Chem. A 2, no. 12 (2014): 4132–35. http://dx.doi.org/10.1039/c3ta14632d.
Full textPal, Santosh K., Ludwig Schultz, and Oliver Gutfleisch. "Effect of milling parameters on SmCo5 nanoflakes prepared by surfactant-assisted high energy ball milling." Journal of Applied Physics 113, no. 1 (2013): 013913. http://dx.doi.org/10.1063/1.4773323.
Full textDong, X. X., C. Y. Huang, Q. Jin, et al. "Enhancing the rate performance of spherical LiFeBO3/C via Cr doping." RSC Advances 7, no. 54 (2017): 33745–50. http://dx.doi.org/10.1039/c7ra03028b.
Full textXu, Lin-hong, Hao-bo Na, and Guang-chao Han. "Machinablity improvement with ultrasonic vibration–assisted micro-milling." Advances in Mechanical Engineering 10, no. 12 (2018): 168781401881253. http://dx.doi.org/10.1177/1687814018812531.
Full textUllah, Mahbub, Md Ali, and Sharifah Hamid. "Structure-controlled Nanomaterial Synthesis using Surfactant-assisted Ball Milling- A Review." Current Nanoscience 10, no. 3 (2014): 344–54. http://dx.doi.org/10.2174/15734137113096660114.
Full textHotta, Yuji, Kiyoka Tsunekawa, Toshihiro Isobe, Kimiysu Sato, and Koji Watari. "Synthesis of BaTiO3 powders by a ball milling-assisted hydrothermal reaction." Materials Science and Engineering: A 475, no. 1-2 (2008): 12–16. http://dx.doi.org/10.1016/j.msea.2006.11.163.
Full textKanari, K., C. Sarafidis, M. Gjoka, D. Niarchos, and O. Kalogirou. "Processing of magnetically anisotropic MnBi particles by surfactant assisted ball milling." Journal of Magnetism and Magnetic Materials 426 (March 2017): 691–97. http://dx.doi.org/10.1016/j.jmmm.2016.10.141.
Full textLehmann, Christian W., and Nöthling Nils. "Formation of chiral and racemic multi-component crystalsviasolvent assisted ball milling." Acta Crystallographica Section A Foundations and Advances 71, a1 (2015): s457. http://dx.doi.org/10.1107/s2053273315093286.
Full textWang, Fang, Hao Wei, Lidong Liu, et al. "PrCo5 nanoflakes prepared by surfactant-assisted ball milling at low temperature." Journal of Applied Physics 117, no. 17 (2015): 17D142. http://dx.doi.org/10.1063/1.4918342.
Full text