To see the other types of publications on this topic, follow the link: Association rule data mining.

Dissertations / Theses on the topic 'Association rule data mining'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Association rule data mining.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Palanisamy, Senthil Kumar. "Association rule based classification." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050306-131517/.

Full text
Abstract:
Thesis (M.S.)--Worcester Polytechnic Institute.<br>Keywords: Itemset Pruning, Association Rules, Adaptive Minimal Support, Associative Classification, Classification. Includes bibliographical references (p.70-74).
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Wai-kit. "Security in association rule mining." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Wai-kit, and 王偉傑. "Security in association rule mining." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vithal, Kadam Omkar. "Novel applications of Association Rule Mining- Data Stream Mining." AUT University, 2009. http://hdl.handle.net/10292/826.

Full text
Abstract:
From the advent of association rule mining, it has become one of the most researched areas of data exploration schemes. In recent years, implementing association rule mining methods in extracting rules from a continuous flow of voluminous data, known as Data Stream has generated immense interest due to its emerging applications such as network-traffic analysis, sensor-network data analysis. For such typical kinds of application domains, the facility to process such enormous amount of stream data in a single pass is critical.
APA, Harvard, Vancouver, ISO, and other styles
5

Icev, Aleksandar. "DARM distance-based association rule mining." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0506103-132405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pray, Keith A. "Apriori Sets And Sequences: Mining Association Rules from Time Sequence Attributes." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0506104-150831/.

Full text
Abstract:
Thesis (M.S.) -- Worcester Polytechnic Institute.<br>Keywords: mining complex data; temporal association rules; computer system performance; stock market analysis; sleep disorder data. Includes bibliographical references (p. 79-85).
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Ya Klein Cerry M. "Association rule mining in cooperative research." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6540.

Full text
Abstract:
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed January 26, 2010). Thesis advisor: Dr. Cerry M. Klein. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmed, Shakil. "Strategies for partitioning data in association rule mining." Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shrestha, Anuj. "Association Rule Mining of Biological Field Data Sets." Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28394.

Full text
Abstract:
Association rule mining is an important data mining technique, yet, its use in association analysis of biological data sets has been limited. This mining technique was applied on two biological data sets, a genome and a damselfly data set. The raw data sets were pre-processed, and then association analysis was performed with various configurations. The pre-processing task involves minimizing the number of association attributes in genome data and creating the association attributes in damselfly data. The configurations include generation of single/maximal rules and handling single/multiple tier attributes. Both data sets have a binary class label and using association analysis, attributes of importance to each of these class labels are found. The results (rules) from association analysis are then visualized using graph networks by incorporating the association attributes like support and confidence, differential color schemes and features from the pre-processed data.<br>Bioinformatics Seed Grant Program NIH/UND<br>National Science Foundation (NSF) Grant IIA-1355466
APA, Harvard, Vancouver, ISO, and other styles
10

Rantzau, Ralf. "Extended concepts for association rule discovery." [S.l. : s.n.], 1997. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8937694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rahman, Sardar Muhammad Monzurur, and mrahman99@yahoo com. "Data Mining Using Neural Networks." RMIT University. Electrical & Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080813.094814.

Full text
Abstract:
Data mining is about the search for relationships and global patterns in large databases that are increasing in size. Data mining is beneficial for anyone who has a huge amount of data, for example, customer and business data, transaction, marketing, financial, manufacturing and web data etc. The results of data mining are also referred to as knowledge in the form of rules, regularities and constraints. Rule mining is one of the popular data mining methods since rules provide concise statements of potentially important information that is easily understood by end users and also actionable patterns. At present rule mining has received a good deal of attention and enthusiasm from data mining researchers since rule mining is capable of solving many data mining problems such as classification, association, customer profiling, summarization, segmentation and many others. This thesis makes several contributions by proposing rule mining methods using genetic algorithms and neural networks. The thesis first proposes rule mining methods using a genetic algorithm. These methods are based on an integrated framework but capable of mining three major classes of rules. Moreover, the rule mining processes in these methods are controlled by tuning of two data mining measures such as support and confidence. The thesis shows how to build data mining predictive models using the resultant rules of the proposed methods. Another key contribution of the thesis is the proposal of rule mining methods using supervised neural networks. The thesis mathematically analyses the Widrow-Hoff learning algorithm of a single-layered neural network, which results in a foundation for rule mining algorithms using single-layered neural networks. Three rule mining algorithms using single-layered neural networks are proposed for the three major classes of rules on the basis of the proposed theorems. The thesis also looks at the problem of rule mining where user guidance is absent. The thesis proposes a guided rule mining system to overcome this problem. The thesis extends this work further by comparing the performance of the algorithm used in the proposed guided rule mining system with Apriori data mining algorithm. Finally, the thesis studies the Kohonen self-organization map as an unsupervised neural network for rule mining algorithms. Two approaches are adopted based on the way of self-organization maps applied in rule mining models. In the first approach, self-organization map is used for clustering, which provides class information to the rule mining process. In the second approach, automated rule mining takes the place of trained neurons as it grows in a hierarchical structure.
APA, Harvard, Vancouver, ISO, and other styles
12

Unal, Calargun Seda. "Fuzzy Association Rule Mining From Spatio-temporal Data: An Analysis Of Meteorological Data In Turkey." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609308/index.pdf.

Full text
Abstract:
Data mining is the extraction of interesting non-trivial, implicit, previously unknown and potentially useful information or patterns from data in large databases. Association rule mining is a data mining method that seeks to discover associations among transactions encoded within a database. Data mining on spatio-temporal data takes into consideration the dynamics of spatially extended systems for which large amounts of spatial data exist, given that all real world spatial data exists in some temporal context. We need fuzzy sets in mining association rules from spatio-temporal databases since fuzzy sets handle the numerical data better by softening the sharp boundaries of data which models the uncertainty embedded in the meaning of data. In this thesis, fuzzy association rule mining is performed on spatio-temporal data using data cubes and Apriori algorithm. A methodology is developed for fuzzy spatio-temporal data cube construction. Besides the performance criteria interpretability, precision, utility, novelty, direct-to-the-point and visualization are defined to be the metrics for the comparison of association rule mining techniques. Fuzzy association rule mining using spatio-temporal data cubes and Apriori algorithm performed within the scope of this thesis are compared using these metrics. Real meteorological data (precipitation and temperature) for Turkey recorded between 1970 and 2007 are analyzed using data cube and Apriori algorithm in order to generate the fuzzy association rules.
APA, Harvard, Vancouver, ISO, and other styles
13

Hahsler, Michael, Kurt Hornik, and Thomas Reutterer. "Implications of probabilistic data modeling for rule mining." Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/764/1/document.pdf.

Full text
Abstract:
Mining association rules is an important technique for discovering meaningful patterns in transaction databases. In the current literature, the properties of algorithms to mine associations are discussed in great detail. In this paper we investigate properties of transaction data sets from a probabilistic point of view. We present a simple probabilistic framework for transaction data and its implementation using the R statistical computing environment. The framework can be used to simulate transaction data when no associations are present. We use such data to explore the ability to filter noise of confidence and lift, two popular interest measures used for rule mining. Based on the framework we develop the measure hyperlift and we compare this new measure to lift using simulated data and a real-world grocery database.<br>Series: Research Report Series / Department of Statistics and Mathematics
APA, Harvard, Vancouver, ISO, and other styles
14

Lin, Weiyang. "Association rule mining for collaborative recommender systems." Link to electronic version, 2000. http://www.wpi.edu/Pubs/ETD/Available/etd-0515100-145926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bogorny, Vania. "Enhancing spatial association rule mining in geographic databases." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2006. http://hdl.handle.net/10183/7841.

Full text
Abstract:
A técnica de mineração de regras de associação surgiu com o objetivo de encontrar conhecimento novo, útil e previamente desconhecido em bancos de dados transacionais, e uma grande quantidade de algoritmos de mineração de regras de associação tem sido proposta na última década. O maior e mais bem conhecido problema destes algoritmos é a geração de grandes quantidades de conjuntos freqüentes e regras de associação. Em bancos de dados geográficos o problema de mineração de regras de associação espacial aumenta significativamente. Além da grande quantidade de regras e padrões gerados a maioria são associações do domínio geográfico, e são bem conhecidas, normalmente explicitamente representadas no esquema do banco de dados. A maioria dos algoritmos de mineração de regras de associação não garantem a eliminação de dependências geográficas conhecidas a priori. O resultado é que as mesmas associações representadas nos esquemas do banco de dados são extraídas pelos algoritmos de mineração de regras de associação e apresentadas ao usuário. O problema de mineração de regras de associação espacial pode ser dividido em três etapas principais: extração dos relacionamentos espaciais, geração dos conjuntos freqüentes e geração das regras de associação. A primeira etapa é a mais custosa tanto em tempo de processamento quanto pelo esforço requerido do usuário. A segunda e terceira etapas têm sido consideradas o maior problema na mineração de regras de associação em bancos de dados transacionais e tem sido abordadas como dois problemas diferentes: “frequent pattern mining” e “association rule mining”. Dependências geográficas bem conhecidas aparecem nas três etapas do processo. Tendo como objetivo a eliminação dessas dependências na mineração de regras de associação espacial essa tese apresenta um framework com três novos métodos para mineração de regras de associação utilizando restrições semânticas como conhecimento a priori. O primeiro método reduz os dados de entrada do algoritmo, e dependências geográficas são eliminadas parcialmente sem que haja perda de informação. O segundo método elimina combinações de pares de objetos geográficos com dependências durante a geração dos conjuntos freqüentes. O terceiro método é uma nova abordagem para gerar conjuntos freqüentes não redundantes e sem dependências, gerando conjuntos freqüentes máximos. Esse método reduz consideravelmente o número final de conjuntos freqüentes, e como conseqüência, reduz o número de regras de associação espacial.<br>The association rule mining technique emerged with the objective to find novel, useful, and previously unknown associations from transactional databases, and a large amount of association rule mining algorithms have been proposed in the last decade. Their main drawback, which is a well known problem, is the generation of large amounts of frequent patterns and association rules. In geographic databases the problem of mining spatial association rules increases significantly. Besides the large amount of generated patterns and rules, many patterns are well known geographic domain associations, normally explicitly represented in geographic database schemas. The majority of existing algorithms do not warrant the elimination of all well known geographic dependences. The result is that the same associations represented in geographic database schemas are extracted by spatial association rule mining algorithms and presented to the user. The problem of mining spatial association rules from geographic databases requires at least three main steps: compute spatial relationships, generate frequent patterns, and extract association rules. The first step is the most effort demanding and time consuming task in the rule mining process, but has received little attention in the literature. The second and third steps have been considered the main problem in transactional association rule mining and have been addressed as two different problems: frequent pattern mining and association rule mining. Well known geographic dependences which generate well known patterns may appear in the three main steps of the spatial association rule mining process. Aiming to eliminate well known dependences and generate more interesting patterns, this thesis presents a framework with three main methods for mining frequent geographic patterns using knowledge constraints. Semantic knowledge is used to avoid the generation of patterns that are previously known as non-interesting. The first method reduces the input problem, and all well known dependences that can be eliminated without loosing information are removed in data preprocessing. The second method eliminates combinations of pairs of geographic objects with dependences, during the frequent set generation. A third method presents a new approach to generate non-redundant frequent sets, the maximal generalized frequent sets without dependences. This method reduces the number of frequent patterns very significantly, and by consequence, the number of association rules.
APA, Harvard, Vancouver, ISO, and other styles
16

Wu, Jingtong. "Interpretation of association rules with multi-tier granule mining." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/71455/1/Jing_Wu_Thesis.pdf.

Full text
Abstract:
This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.
APA, Harvard, Vancouver, ISO, and other styles
17

Weitl, Harms Sherri K. "Temporal association rule methodologies for geo-spatial decision support /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3091989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Delpisheh, Elnaz, and University of Lethbridge Faculty of Arts and Science. "Two new approaches to evaluate association rules." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2010, 2010. http://hdl.handle.net/10133/2530.

Full text
Abstract:
Data mining aims to discover interesting and unknown patterns in large-volume data. Association rule mining is one of the major data mining tasks, which attempts to find inherent relationships among data items in an application domain, such as supermarket basket analysis. An essential post-process in an association rule mining task is the evaluation of association rules by measures for their interestingness. Different interestingness measures have been proposed and studied. Given an association rule mining task, measures are assessed against a set of user-specified properties. However, in practice, given the subjectivity and inconsistencies in property specifications, it is a non-trivial task to make appropriate measure selections. In this work, we propose two novel approaches to assess interestingness measures. Our first approach utilizes the analytic hierarchy process to capture quantitatively domain-dependent requirements on properties, which are later used in assessing measures. This approach not only eliminates any inconsistencies in an end user’s property specifications through consistency checking but also is invariant to the number of association rules. Our second approach dynamically evaluates association rules according to a composite and collective effect of multiple measures. It interactively snapshots the end user’s domain- dependent requirements in evaluating association rules. In essence, our approach uses neural networks along with back-propagation learning to capture the relative importance of measures in evaluating association rules. Case studies and simulations have been conducted to show the effectiveness of our two approaches.<br>viii, 85 leaves : ill. ; 29 cm
APA, Harvard, Vancouver, ISO, and other styles
19

Laxminarayan, Parameshvyas. "Exploratory analysis of human sleep data." Worcester, Mass. : Worcester Polytechnic Institute, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0119104-120134/.

Full text
Abstract:
Thesis (M.S.)--Worcester Polytechnic Institute.<br>Keywords: association rule mining; logistic regression; statistical significance of rules; window-based association rule mining; data mining; sleep data. Includes bibliographical references (leaves 166-167).
APA, Harvard, Vancouver, ISO, and other styles
20

Koukal, Bohuslav. "OLAP Recommender: Supporting Navigation in Data Cubes Using Association Rule Mining." Master's thesis, Vysoká škola ekonomická v Praze, 2017. http://www.nusl.cz/ntk/nusl-359132.

Full text
Abstract:
Manual data exploration in data cubes and searching for potentially interesting and useful information starts to be time-consuming and ineffective from certain volume of the data. In my thesis, I designed, implemented and tested a system, automating the data cube exploration and offering potentially interesting views on OLAP data to the end user. The system is based on integration of two data analytics methods - OLAP analysis data visualisation and data mining, represented by GUHA association rules mining. Another contribution of my work is a research of possibilities how to solve differences between OLAP analysis and association rule mining. Implemented solutions of the differences include data discretization, dimensions commensurability, design of automatic data mining task algorithm based on the data structure and mapping definition between mined association rules and corresponding OLAP visualisation. The system was tested with real retail sales data and with EU structural funds data. The experiments proved that complementary usage of the association rule mining together with OLAP analysis identifies relationships in the data with higher success rate than the isolated use of both techniques.
APA, Harvard, Vancouver, ISO, and other styles
21

Toprak, Serkan. "Data Mining For Rule Discovery In Relational Databases." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605356/index.pdf.

Full text
Abstract:
Data is mostly stored in relational databases today. However, most data mining algorithms are not capable of working on data stored in relational databases directly. Instead they require a preprocessing step for transforming relational data into algorithm specified form. Moreover, several data mining algorithms provide solutions for single relations only. Therefore, valuable hidden knowledge involving multiple relations remains undiscovered. In this thesis, an implementation is developed for discovering multi-relational association rules in relational databases. The implementation is based on a framework providing a representation of patterns in relational databases, refinement methods of patterns, and primitives for obtaining necessary record counts from database to calculate measures for patterns. The framework exploits meta-data of relational databases for pruning search space of patterns. The implementation extends the framework by employing Apriori algorithm for further pruning the search space and discovering relational recursive patterns. Apriori algorithm is used for finding large itemsets of tables, which are used to refine patterns. Apriori algorithm is modified by changing support calculation method for itemsets. A method for determining recursive relations is described and a solution is provided for handling recursive patterns using aliases. Additionally, continuous attributes of tables are discretized utilizing equal-depth partitioning. The implementation is tested with gene localization prediction task of KDD Cup 2001 and results are compared to those of the winner approach.
APA, Harvard, Vancouver, ISO, and other styles
22

Chudán, David. "Association rule mining as a support for OLAP." Doctoral thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-201130.

Full text
Abstract:
The aim of this work is to identify the possibilities of the complementary usage of two analytical methods of data analysis, OLAP analysis and data mining represented by GUHA association rule mining. The usage of these two methods in the context of proposed scenarios on one dataset presumes a synergistic effect, surpassing the knowledge acquired by these two methods independently. This is the main contribution of the work. Another contribution is the original use of GUHA association rules where the mining is performed on aggregated data. In their abilities, GUHA association rules outperform classic association rules referred to the literature. The experiments on real data demonstrate the finding of unusual trends in data that would be very difficult to acquire using standard methods of OLAP analysis, the time consuming manual browsing of an OLAP cube. On the other hand, the actual use of association rules loses a general overview of data. It is possible to declare that these two methods complement each other very well. The part of the solution is also usage of LMCL scripting language that automates selected parts of the data mining process. The proposed recommender system would shield the user from association rules, thereby enabling common analysts ignorant of the association rules to use their possibilities. The thesis combines quantitative and qualitative research. Quantitative research is represented by experiments on a real dataset, proposal of a recommender system and implementation of the selected parts of the association rules mining process by LISp-Miner Control Language. Qualitative research is represented by structured interviews with selected experts from the fields of data mining and business intelligence who confirm the meaningfulness of the proposed methods.
APA, Harvard, Vancouver, ISO, and other styles
23

Padhye, Manoday D. "Use of data mining for investigation of crime patterns." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4836.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.<br>Title from document title page. Document formatted into pages; contains viii, 108 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 80-81).
APA, Harvard, Vancouver, ISO, and other styles
24

Mahamaneerat, Wannapa Kay Shyu Chi-Ren. "Domain-concept mining an efficient on-demand data mining approach /." Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/7195.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on February 24, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Chi-Ren Shyu. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
25

Abar, Orhan. "Rule Mining and Sequential Pattern Based Predictive Modeling with EMR Data." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/85.

Full text
Abstract:
Electronic medical record (EMR) data is collected on a daily basis at hospitals and other healthcare facilities to track patients’ health situations including conditions, treatments (medications, procedures), diagnostics (labs) and associated healthcare operations. Besides being useful for individual patient care and hospital operations (e.g., billing, triaging), EMRs can also be exploited for secondary data analyses to glean discriminative patterns that hold across patient cohorts for different phenotypes. These patterns in turn can yield high level insights into disease progression with interventional potential. In this dissertation, using a large scale realistic EMR dataset of over one million patients visiting University of Kentucky healthcare facilities, we explore data mining and machine learning methods for association rule (AR) mining and predictive modeling with mood and anxiety disorders as use-cases. Our first work involves analysis of existing quantitative measures of rule interestingness to assess how they align with a practicing psychiatrist’s sense of novelty/surprise corresponding to ARs identified from EMRs. Our second effort involves mining causal ARs with depression and anxiety disorders as target conditions through matching methods accounting for computationally identified confounding attributes. Our final effort involves efficient implementation (via GPUs) and application of contrast pattern mining to predictive modeling for mental conditions using various representational methods and recurrent neural networks. Overall, we demonstrate the effectiveness of rule mining methods in secondary analyses of EMR data for identifying causal associations and building predictive models for diseases.
APA, Harvard, Vancouver, ISO, and other styles
26

Isik, Narin. "Fuzzy Spatial Data Cube Construction And Its Use In Association Rule Mining." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606056/index.pdf.

Full text
Abstract:
The popularity of spatial databases increases since the amount of the spatial data that need to be handled has increased by the use of digital maps, images from satellites, video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to examine and extract interesting knowledge<br>hence, applications that assist decision-making about spatial data like weather forecasting, traffic supervision, mobile communication, etc. have been introduced. In this thesis, more natural and precise knowledge from spatial data is generated by construction of fuzzy spatial data cube and extraction of fuzzy association rules from it in order to improve decision-making about spatial data. This involves an extensive research about spatial knowledge discovery and how fuzzy logic can be used to develop it. It is stated that incorporating fuzzy logic to spatial data cube construction necessitates a new method for aggregation of fuzzy spatial data. We illustrate how this method also enhances the meaning of fuzzy spatial generalization rules and fuzzy association rules with a case-study about weather pattern searching. This study contributes to spatial knowledge discovery by generating more understandable and interesting knowledge from spatial data by extending spatial generalization with fuzzy memberships, extending the spatial aggregation in spatial data cube construction by utilizing weighted measures, and generating fuzzy association rules from the constructed fuzzy spatial data cube.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhou, Zequn. "Maintaining incremental data mining association rules." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62311.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thun, Julia, and Rebin Kadouri. "Automating debugging through data mining." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203244.

Full text
Abstract:
Contemporary technological systems generate massive quantities of log messages. These messages can be stored, searched and visualized efficiently using log management and analysis tools. The analysis of log messages offer insights into system behavior such as performance, server status and execution faults in web applications. iStone AB wants to explore the possibility to automate their debugging process. Since iStone does most parts of their debugging manually, it takes time to find errors within the system. The aim was therefore to find different solutions to reduce the time it takes to debug. An analysis of log messages within access – and console logs were made, so that the most appropriate data mining techniques for iStone’s system would be chosen. Data mining algorithms and log management and analysis tools were compared. The result of the comparisons showed that the ELK Stack as well as a mixture between Eclat and a hybrid algorithm (Eclat and Apriori) were the most appropriate choices. To demonstrate their feasibility, the ELK Stack and Eclat were implemented. The produced results show that data mining and the use of a platform for log analysis can facilitate and reduce the time it takes to debug.<br>Dagens system genererar stora mängder av loggmeddelanden. Dessa meddelanden kan effektivt lagras, sökas och visualiseras genom att använda sig av logghanteringsverktyg. Analys av loggmeddelanden ger insikt i systemets beteende såsom prestanda, serverstatus och exekveringsfel som kan uppkomma i webbapplikationer. iStone AB vill undersöka möjligheten att automatisera felsökning. Eftersom iStone till mestadels utför deras felsökning manuellt så tar det tid att hitta fel inom systemet. Syftet var att därför att finna olika lösningar som reducerar tiden det tar att felsöka. En analys av loggmeddelanden inom access – och konsolloggar utfördes för att välja de mest lämpade data mining tekniker för iStone’s system. Data mining algoritmer och logghanteringsverktyg jämfördes. Resultatet av jämförelserna visade att ELK Stacken samt en blandning av Eclat och en hybrid algoritm (Eclat och Apriori) var de lämpligaste valen. För att visa att så är fallet så implementerades ELK Stacken och Eclat. De framställda resultaten visar att data mining och användning av en plattform för logganalys kan underlätta och minska den tid det tar för att felsöka.
APA, Harvard, Vancouver, ISO, and other styles
29

Kilinc, Yasemin. "Mining Association Rules For Quality Related Data In An Electronics Company." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610459/index.pdf.

Full text
Abstract:
Quality has become a central concern as it has been observed that reducing defects will lower the cost of production. Hence, companies generate and store vast amounts of quality related data. Analysis of this data is critical in order to understand the quality problems and their causes, and to take preventive actions. In this thesis, we propose a methodology for this analysis based on one of the data mining techniques, association rules. The methodology is applied for quality related data of an electronics company. Apriori algorithm used in this application generates an excessively large number of rules most of which are redundant. Therefore we implement a three phase elimination process on the generated rules to come up with a reasonably small set of interesting rules. The approach is applied for two different data sets of the company, one for production defects and one for raw material non-conformities. We then validate the resultant rules using a test data set for each problem type and analyze the final set of rules.
APA, Harvard, Vancouver, ISO, and other styles
30

Abedjan, Ziawasch. "Improving RDF data with data mining." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7133/.

Full text
Abstract:
Linked Open Data (LOD) comprises very many and often large public data sets and knowledge bases. Those datasets are mostly presented in the RDF triple structure of subject, predicate, and object, where each triple represents a statement or fact. Unfortunately, the heterogeneity of available open data requires significant integration steps before it can be used in applications. Meta information, such as ontological definitions and exact range definitions of predicates, are desirable and ideally provided by an ontology. However in the context of LOD, ontologies are often incomplete or simply not available. Thus, it is useful to automatically generate meta information, such as ontological dependencies, range definitions, and topical classifications. Association rule mining, which was originally applied for sales analysis on transactional databases, is a promising and novel technique to explore such data. We designed an adaptation of this technique for min-ing Rdf data and introduce the concept of “mining configurations”, which allows us to mine RDF data sets in various ways. Different configurations enable us to identify schema and value dependencies that in combination result in interesting use cases. To this end, we present rule-based approaches for auto-completion, data enrichment, ontology improvement, and query relaxation. Auto-completion remedies the problem of inconsistent ontology usage, providing an editing user with a sorted list of commonly used predicates. A combination of different configurations step extends this approach to create completely new facts for a knowledge base. We present two approaches for fact generation, a user-based approach where a user selects the entity to be amended with new facts and a data-driven approach where an algorithm discovers entities that have to be amended with missing facts. As knowledge bases constantly grow and evolve, another approach to improve the usage of RDF data is to improve existing ontologies. Here, we present an association rule based approach to reconcile ontology and data. Interlacing different mining configurations, we infer an algorithm to discover synonymously used predicates. Those predicates can be used to expand query results and to support users during query formulation. We provide a wide range of experiments on real world datasets for each use case. The experiments and evaluations show the added value of association rule mining for the integration and usability of RDF data and confirm the appropriateness of our mining configuration methodology.<br>Linked Open Data (LOD) umfasst viele und oft sehr große öffentlichen Datensätze und Wissensbanken, die hauptsächlich in der RDF Triplestruktur bestehend aus Subjekt, Prädikat und Objekt vorkommen. Dabei repräsentiert jedes Triple einen Fakt. Unglücklicherweise erfordert die Heterogenität der verfügbaren öffentlichen Daten signifikante Integrationsschritte bevor die Daten in Anwendungen genutzt werden können. Meta-Daten wie ontologische Strukturen und Bereichsdefinitionen von Prädikaten sind zwar wünschenswert und idealerweise durch eine Wissensbank verfügbar. Jedoch sind Wissensbanken im Kontext von LOD oft unvollständig oder einfach nicht verfügbar. Deshalb ist es nützlich automatisch Meta-Informationen, wie ontologische Abhängigkeiten, Bereichs-und Domänendefinitionen und thematische Assoziationen von Ressourcen generieren zu können. Eine neue und vielversprechende Technik um solche Daten zu untersuchen basiert auf das entdecken von Assoziationsregeln, welche ursprünglich für Verkaufsanalysen in transaktionalen Datenbanken angewendet wurde. Wir haben eine Adaptierung dieser Technik auf RDF Daten entworfen und stellen das Konzept der Mining Konfigurationen vor, welches uns befähigt in RDF Daten auf unterschiedlichen Weisen Muster zu erkennen. Verschiedene Konfigurationen erlauben uns Schema- und Wertbeziehungen zu erkennen, die für interessante Anwendungen genutzt werden können. In dem Sinne, stellen wir assoziationsbasierte Verfahren für eine Prädikatvorschlagsverfahren, Datenvervollständigung, Ontologieverbesserung und Anfrageerleichterung vor. Das Vorschlagen von Prädikaten behandelt das Problem der inkonsistenten Verwendung von Ontologien, indem einem Benutzer, der einen neuen Fakt einem Rdf-Datensatz hinzufügen will, eine sortierte Liste von passenden Prädikaten vorgeschlagen wird. Eine Kombinierung von verschiedenen Konfigurationen erweitert dieses Verfahren sodass automatisch komplett neue Fakten für eine Wissensbank generiert werden. Hierbei stellen wir zwei Verfahren vor, einen nutzergesteuertenVerfahren, bei dem ein Nutzer die Entität aussucht die erweitert werden soll und einen datengesteuerten Ansatz, bei dem ein Algorithmus selbst die Entitäten aussucht, die mit fehlenden Fakten erweitert werden. Da Wissensbanken stetig wachsen und sich verändern, ist ein anderer Ansatz um die Verwendung von RDF Daten zu erleichtern die Verbesserung von Ontologien. Hierbei präsentieren wir ein Assoziationsregeln-basiertes Verfahren, der Daten und zugrundeliegende Ontologien zusammenführt. Durch die Verflechtung von unterschiedlichen Konfigurationen leiten wir einen neuen Algorithmus her, der gleichbedeutende Prädikate entdeckt. Diese Prädikate können benutzt werden um Ergebnisse einer Anfrage zu erweitern oder einen Nutzer während einer Anfrage zu unterstützen. Für jeden unserer vorgestellten Anwendungen präsentieren wir eine große Auswahl an Experimenten auf Realweltdatensätzen. Die Experimente und Evaluierungen zeigen den Mehrwert von Assoziationsregeln-Generierung für die Integration und Nutzbarkeit von RDF Daten und bestätigen die Angemessenheit unserer konfigurationsbasierten Methodologie um solche Regeln herzuleiten.
APA, Harvard, Vancouver, ISO, and other styles
31

Marinica, Claudia. "Association Rule Interactive Post-processing using Rule Schemas and Ontologies - ARIPSO." Phd thesis, Université de Nantes, 2010. http://tel.archives-ouvertes.fr/tel-00912580.

Full text
Abstract:
This thesis is concerned with the merging of two active research domains: Knowledge Discovery in Databases (KDD), more precisely the Association Rule Mining technique, and Knowledge Engineering (KE) with a main interest in knowledge representation languages developed around the Semantic Web. In Data Mining, the usefulness of association rule technique is strongly limited by the huge amount and the low quality of delivered rules. Experiments show that rules become almost impossible to use when their number exceeds 100. At the same time, nuggets are often represented by those rare (low support) unexpected association rules which are surprising to the user. Unfortunately, the lower the support is, the larger the volume of rules becomes. Thus, it is crucial to help the decision maker with an efficient technique to reduce the number of rules. To overcome this drawback, several methods have been proposed in the literature such as itemset concise representations, redundancy reduction, filtering, ranking and post-processing. Even though rule interestingness strongly depends on user knowledge and goals, most of the existing methods are generally based on data structure. For instance, if the user looks for unexpected rules, all the already known rules should be pruned. Or, if the user wants to focus on specific family of rules, only this subset of rules should be selected. In this context, we address two main issues: the integration of user knowledge in the discovery process and the interactivity with the user. The first issue requires defining an adapted formalism to express user knowledge with accuracy and flexibility such as ontologies in the Semantic Web. Second, the interactivity with the user allows a more iterative mining process where the user can successively test different hypotheses or preferences and focus on interesting rules. The main contributions of this work can be summarized as follows: (i) A model to represent user knowledge. First, we propose a new rule-like formalism, called Rule Schema, which allows the user to define his/her expectations regarding the rules through ontology concepts. Second, ontologies allow the user to express his/her domain knowledge by means of a high semantic model. Last, the user can choose among a set of Operators for interactive processing the one to be applied over each Rule Schema (i.e. pruning, conforming, unexpectedness, . . . ). (ii) A new post-processing approach, called ARIPSO (Association Rule Interactive Post-processing using rule Schemas and Ontologies), which helps the user to reduce the volume of the discovered rules and to improve their quality. It consists in an interactive process integrating user knowledge and expectations by means of the proposed model. At each step of ARIPSO, the interactive loop allows the user to change the provided information and to reiterate the post-processing phase which produces new results. (iii) The implementation in post-processing of the proposed approach. The developed tool is complete and operational, and it implements all the functionalities described in the approach. Also, it makes the connection between different elements like the set of rules and rule schemas stored in PMML/XML files, and the ontologies stored in OWL files and inferred by the Pellet reasoner. (iv) An adapted implementation without post-processing, called ARLIUS (Association Rule Local mining Interactive Using rule Schemas), consisting in an interactive local mining process guided by the user. It allows the user to focus on interesting rules without the necessity to extract all of them, and without minimum support limit. In this way, the user may explore the rule space incrementally, a small amount at each step, starting from his/her own expectations and discovering their related rules. (v) The experimental study analyzing the approach efficiency and the discovered rule quality. For this purpose, we used a real-life and large questionnaire database concerning customer satisfaction. For ARIPSO, the experimentation was carried out in complete cooperation with the domain expert. For different scenarios, from an input set of nearly 400 thousand association rules, ARIPSO filtered between 3 and 200 rules validated by the expert. Clearly, ARIPSO allows the user to significantly and efficiently reduce the input rule set. For ARLIUS, we experimented different scenarios over the same questionnaire database and we obtained reduced sets of rules (less than 100) with very low support.
APA, Harvard, Vancouver, ISO, and other styles
32

Aljandal, Waleed A. "Itemset size-sensitive interestingness measures for association rule mining and link prediction." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

王漣 and Lian Wang. "A study on quantitative association rules." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31223588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Lian. "A study on quantitative association rules /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2118561X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ivanovskiy, Tim V. "Mining Medical Data in a Clinical Environment." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3908.

Full text
Abstract:
The availability of new treatments for a disease depends on the success of clinical trials. In order for a clinical trial to be successful and approved, medical researchers must first recruit patients with a specific set of conditions in order to test the effectiveness of the proposed treatment. In the past, the accrual process was tedious and time-consuming. Since accruals rely heavily on the ability of physicians and their staff to be familiar with the protocol eligibility criteria, candidates tend to be missed. This can result and has resulted in unsuccessful trials.A recent project at the University of South Florida aimed to assist research physicians at H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, with a screening process by utilizing a web-based expert system, Moffitt Expedited Accrual Network System (MEANS). This system allows physicians to determine the eligibility of a patient for several clinical trials simultaneously.We have implemented this web-based expert system at the H. Lee Moffitt Cancer Center & Research Gastroenterology (GI) Clinic. Based on our findings and staff feedback, the system has undergone many optimizations. We used data mining techniques to analyze the medical data of current gastrointestinal patients. The use of the Apriori algorithm allowed us to discover new rules (implications) in the patient data. All of the discovered implications were checked for medical validity by a physician, and those that were determined to be valid were entered into the expert system. Additional analysis of the data allowed us to streamline the system and decrease the number of mouse clicks required for screening. We also used a probability-based method to reorder the questions, which decreased the amount of data entry required to determine a patient's ineligibility.
APA, Harvard, Vancouver, ISO, and other styles
36

Koh, Yun Sing, and n/a. "Generating sporadic association rules." University of Otago. Department of Computer Science, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070711.115758.

Full text
Abstract:
Association rule mining is an essential part of data mining, which tries to discover associations, relationships, or correlations among sets of items. As it was initially proposed for market basket analysis, most of the previous research focuses on generating frequent patterns. This thesis focuses on finding infrequent patterns, which we call sporadic rules. They represent rare itemsets that are scattered sporadically throughout the database but with high confidence of occurring together. As sporadic rules have low support the minabssup (minimum absolute support) measure was proposed to filter out any rules with low support whose occurrence is indistinguishable from that of coincidence. There are two classes of sporadic rules: perfectly sporadic and imperfectly sporadic rules. Apriori-Inverse was then proposed for perfectly sporadic rule generation. It uses a maximum support threshold and user-defined minimum confidence threshold. This method is designed to find itemsets which consist only of items falling below a maximum support threshold. However imperfectly sporadic rules may contain items with a frequency of occurrence over the maximum support threshold. To look for these rules, variations of Apriori-Inverse, namely Fixed Threshold, Adaptive Threshold, and Hill Climbing, were proposed. However these extensions are heuristic. Thus the MIISR algorithm was proposed to find imperfectly sporadic rules using item constraints, which capture rules with a single-item consequent below the maximum support threshold. A comprehensive evaluation of sporadic rules and current interestingness measures was carried out. Our investigation suggests that current interestingness measures are not suitable for detecting sporadic rules.
APA, Harvard, Vancouver, ISO, and other styles
37

Schweickart, Ian R. W. "Investigating Post-Earnings-Announcement Drift Using Principal Component Analysis and Association Rule Mining." Scholarship @ Claremont, 2017. https://scholarship.claremont.edu/hmc_theses/94.

Full text
Abstract:
Post-Earnings-Announcement Drift (PEAD) is commonly accepted in the fields of accounting and finance as evidence for stock market inefficiency. Less accepted are the numerous explanations for this anomaly. This project aims to investigate the cause for PEAD by harnessing the power of machine learning algorithms such as Principle Component Analysis (PCA) and a rule-based learning technique, applied to large stock market data sets. Based on the notion that the market is consumer driven, repeated occurrences of irrational behavior exhibited by traders in response to news events such as earnings reports are uncovered. The project produces findings in support of the PEAD anomaly using non-accounting nor financial methods. In particular, this project finds evidence for delayed price response exhibited in trader behavior, a common manifestation of the PEAD phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
38

Sooriyaarachchi, Wickramaratna Kasun Jayamal. "DS-ARM: An Association Rule Based Predictor that Can Learn from Imperfect Data." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/159.

Full text
Abstract:
Over the past decades, many industries have heavily spent on computerizing their work environments with the intention to simplify and expedite access to information and its processing. Typical of real-world data are various types of imperfections, uncertainties, ambiguities, that have complicated attempts at automated knowledge discovery. Indeed, it soon became obvious that adequate methods to deal with these problems were critically needed. Simple methods such as "interpolating" or just ignoring data imperfections being found often to lead to inferences of dubious practical value, the search for appropriate modification of knowledge-induction techniques began. Sometimes, rather non-standard approaches turned out to be necessary. For instance, the probabilistic approaches by earlier works are not sufficiently capable of handling the wider range of data imperfections that appear in many new applications (e.g., medical data). Dempster-Shafer theory provides a much stronger framework, and this is why it has been chosen as the fundamental paradigm exploited in this dissertation. The task of association rule mining is to detect frequently co-occurring groups of items in transactional databases. The majority of the papers in this field concentrate on how to expedite the search. Less attention has been devoted to how to employ the identified frequent itemsets for prediction purposes; worse still, methods to tailor association-mining techniques so that they can handle data imperfections are virtually nonexistent. This dissertation proposes a technique referred to by the acronym DS-ARM (Dempster-Shafer based Association Rule Mining) where the DS-theoretic framework is used to enhance a more traditional association-mining mechanism. Of particular interest is here a method to employ the knowledge of partial contents of a "shopping cart" for the prediction of what else the customer is likely to add to it. This formalized problem has many applications in the analysis of medical databases. A recently-proposed data structure, an itemset tree (IT-tree), is used to extract association rules in a computationally efficient manner, thus addressing the scalability problem that has disqualified more traditional techniques from real-world applications. The proposed algorithm is based on the Dempster-Shafer theory of evidence combination. Extensive experiments explore the algorithm's behavior; some of them use synthetically generated data, others relied on data obtained from a machine-learning repository, yet others use a movie ratings dataset or a HIV/AIDS patient dataset.
APA, Harvard, Vancouver, ISO, and other styles
39

Mohan, Sujaa Rani Park E. K. "Association rule based data mining approaches for Web Cache Maintenance and adaptive Intrusion Detection systems." Diss., UMK access, 2005.

Find full text
Abstract:
Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2005.<br>"A thesis in computer science." Typescript. Advisor: E.K. Park. Vita. Title from "catalog record" of the print edition Description based on contents viewed March 12, 2007. Includes bibliographical references (leaves 159-162). Online version of the print edition.
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Weiqi. "An application of classification association rule mining techniques in mesenchymal stem cell differentiation experimental data." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Reutterer, Thomas, Kurt Hornik, Nicolas March, and Kathrin Gruber. "A data mining framework for targeted category promotions." Springer, 2016. http://dx.doi.org/10.1007/s11573-016-0823-7.

Full text
Abstract:
This research presents a new approach to derive recommendations for segment-specific, targeted marketing campaigns on the product category level. The proposed methodological framework serves as a decision support tool for customer relationship managers or direct marketers to select attractive product categories for their target marketing efforts, such as segment-specific rewards in loyalty programs, cross-merchandising activities, targeted direct mailings, customized supplements in catalogues, or customized promotions. The proposed methodology requires cus- tomers' multi-category purchase histories as input data and proceeds in a stepwise manner. It combines various data compression techniques and integrates an opti- mization approach which suggests candidate product categories for segment-specific targeted marketing such that cross-category spillover effects for non-promoted categories are maximized. To demonstrate the empirical performance of our pro- posed procedure, we examine the transactions from a real-world loyalty program of a major grocery retailer. A simple scenario-based analysis using promotion responsiveness reported in previous empirical studies and prior experience by domain experts suggests that targeted promotions might boost profitability between 15 % and 128 % relative to an undifferentiated standard campaign.
APA, Harvard, Vancouver, ISO, and other styles
42

魯建江 and Kin-kong Loo. "Efficient mining of association rules using conjectural information." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Loo, Kin-kong. "Efficient mining of association rules using conjectural information." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22505544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Savulionienė, Loreta. "Association rules search in large data bases." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140519_102242-45613.

Full text
Abstract:
The impact of information technology is an integral part of modern life. Any activity is related to information and data accumulation and storage, therefore, quick analysis of information is necessary. Today, the traditional data processing and data reports are no longer sufficient. The need of generating new information and knowledge from given data is understandable; therefore, new facts and knowledge, which allow us to forecast customer behaviour or financial transactions, diagnose diseases, etc., can be generated applying data mining techniques. The doctoral dissertation analyses modern data mining algorithms for estimating frequent sub-sequences and association rules. The dissertation proposes a new stochastic algorithm for mining frequent sub-sequences, its modifications SDPA1 and SDPA2 and stochastic algorithm for discovery of association rules, and presents the evaluation of the algorithm errors. These algorithms are approximate, but allow us to combine two important tests, i.e. time and accuracy. The algorithms have been tested using real and simulated databases.<br>Informacinių technologijų įtaka neatsiejama nuo šiuolaikinio gyvenimo. Bet kokia veiklos sritis yra susijusi su informacijos, duomenų kaupimu, saugojimu. Šiandien nebepakanka tradicinio duomenų apdorojimo bei įvairių ataskaitų formavimo. Duomenų tyrybos technologijų taikymas leidžia iš turimų duomenų išgauti naujus faktus ar žinias, kurios leidžia prognozuoti veiklą, pavyzdžiui, pirkėjų elgesį ar finansines tendencijas, diagnozuoti ligas ir pan. Disertacijoje nagrinėjami duomenų tyrybos algoritmai dažniems posekiams ir susietumo taisyklėms nustatyti. Disertacijoje sukurtas naujas stochastinis dažnų posekių paieškos algoritmas, jo modifikacijos SDPA1, SDPA2 ir stochastinis susietumo taisyklių nustatymo algoritmas bei pateiktas šių algoritmų paklaidų įvertinimas. Šie algoritmai yra apytiksliai, tačiau leidžia suderinti du svarbius kriterijus  laiką ir tikslumą. Šie algoritmai buvo testuojami naudojant realias bei imitacines duomenų bazes.
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Qing. "Mining exceptions and quantitative association rules in OLAP data cube." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0024/MQ51312.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Bin. "Association hierarchy mining and its application for network traffic characterisation." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78616/1/Bin_Liu_Thesis.pdf.

Full text
Abstract:
This thesis presents an association rule mining approach, association hierarchy mining (AHM). Different to the traditional two-step bottom-up rule mining, AHM adopts one-step top-down rule mining strategy to improve the efficiency and effectiveness of mining association rules from datasets. The thesis also presents a novel approach to evaluate the quality of knowledge discovered by AHM, which focuses on evaluating information difference between the discovered knowledge and the original datasets. Experiments performed on the real application, characterizing network traffic behaviour, have shown that AHM achieves encouraging performance.
APA, Harvard, Vancouver, ISO, and other styles
47

Abu, Mansour Hussein Y. "Rule pruning and prediction methods for associative classification approach in data mining." Thesis, University of Huddersfield, 2012. http://eprints.hud.ac.uk/id/eprint/17476/.

Full text
Abstract:
Recent studies in data mining revealed that Associative Classification (AC) data mining approach builds competitive classification classifiers with reference to accuracy when compared to classic classification approaches including decision tree and rule based. Nevertheless, AC algorithms suffer from a number of known defects as the generation of large number of rules which makes it hard for end-user to maintain and understand its outcome and the possible over-fitting issue caused by the confidence-based rule evaluation used by AC. This thesis attempts to deal with above problems by presenting five new pruning methods, prediction method and employs them in an AC algorithm that significantly reduces the number of generated rules without having large impact on the prediction rate of the classifiers. Particularly, the new pruning methods that discard redundant and insignificant rules during building the classifier are employed. These pruning procedures remove any rule that either has no training case coverage or covers a training case without the requirement of class similarity between the rule class and that of the training case. This enables large coverage for each rule and reduces overfitting as well as construct accurate and moderated size classifiers. Beside, a novel class assignment method based on multiple rules is proposed which employs group of rule to make the prediction decision. The integration of both the pruning and prediction procedures has been used to enhanced a known AC algorithm called Multiple-class Classification based on Association Rules (MCAR) and resulted in competent model in regard to accuracy and classifier size called " Multiple-class Classification based on Association Rules 2(MCAR2)". Experimental results against different datasets from the UCI data repository showed that the predictive power of the resulting classifiers in MCAR2 slightly increase and the resulting classifier size gets reduced comparing with other AC algorithms such as Multiple-class Classification based on Association Rules (MCAR).
APA, Harvard, Vancouver, ISO, and other styles
48

李守敦 and Sau-dan Lee. "Maintenance of association rules in large databases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31215531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lee, Sau-dan. "Maintenance of association rules in large databases /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19003250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hahsler, Michael, and Kurt Hornik. "New Probabilistic Interest Measures for Association Rules." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/1286/1/document.pdf.

Full text
Abstract:
Mining association rules is an important technique for discovering meaningful patterns in transaction databases. Many different measures of interestingness have been proposed for association rules. However, these measures fail to take the probabilistic properties of the mined data into account. In this paper, we start with presenting a simple probabilistic framework for transaction data which can be used to simulate transaction data when no associations are present. We use such data and a real-world database from a grocery outlet to explore the behavior of confidence and lift, two popular interest measures used for rule mining. The results show that confidence is systematically influenced by the frequency of the items in the left hand side of rules and that lift performs poorly to filter random noise in transaction data. Based on the probabilistic framework we develop two new interest measures, hyper-lift and hyper-confidence, which can be used to filter or order mined association rules. The new measures show significant better performance than lift for applications where spurious rules are problematic.<br>Series: Research Report Series / Department of Statistics and Mathematics
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography