Academic literature on the topic 'ASSOCIATION RULE HIDING'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ASSOCIATION RULE HIDING.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ASSOCIATION RULE HIDING"

1

Khurana, Garvit. "Association Rule Hiding using Hash Tree." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (2019): 787–89. http://dx.doi.org/10.31142/ijtsrd23037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verykios, V. S., A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni. "Association rule hiding." IEEE Transactions on Knowledge and Data Engineering 16, no. 4 (2004): 434–47. http://dx.doi.org/10.1109/tkde.2004.1269668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Verykios, Vassilios S. "Association rule hiding methods." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3, no. 1 (2013): 28–36. http://dx.doi.org/10.1002/widm.1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Hui. "Hiding Sensitive Association Rules by Sanitizing." Advanced Materials Research 694-697 (May 2013): 2317–21. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.2317.

Full text
Abstract:
The goal of knowledge discovery is to extract hidden or useful unknown knowledge from databases, while the objective of knowledge hiding is to prevent certain confidential data or knowledge from being extracted through data mining techniques. Hiding sensitive association rules is focused. The side-effects of the existing data mining technology are investigated. The problem of sensitive association rule hiding is described formally. The representative sanitizing strategies for sensitive association rule hiding are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Quoc Le, Hai, Somjit Arch-int, and Ngamnij Arch-int. "Association Rule Hiding Based on Intersection Lattice." Mathematical Problems in Engineering 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/210405.

Full text
Abstract:
Association rule hiding has been playing a vital role in sensitive knowledge preservation when sharing data between enterprises. The aim of association rule hiding is to remove sensitive association rules from the released database such that side effects are reduced as low as possible. This research proposes an efficient algorithm for hiding a specified set of sensitive association rules based on intersection lattice of frequent itemsets. In this research, we begin by analyzing the theory of the intersection lattice of frequent itemsets and the applicability of this theory into association rule hiding problem. We then formulate two heuristics in order to (a) specify the victim items based on the characteristics of the intersection lattice of frequent itemsets and (b) identify transactions for data sanitization based on the weight of transactions. Next, we propose a new algorithm for hiding a specific set of sensitive association rules with minimum side effects and low complexity. Finally, experiments were carried out to clarify the efficiency of the proposed approach. Our results showed that the proposed algorithm, AARHIL, achieved minimum side effects and CPU-Time when compared to current similar state of the art approaches in the context of hiding a specified set of sensitive association rules.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hui. "Strategies for Sensitive Association Rule Hiding." Applied Mechanics and Materials 336-338 (July 2013): 2203–6. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.2203.

Full text
Abstract:
Data mining technologies are used widely while the side effects it incurred are concerned so seriously. Privacy preserving data mining is so important for data and knowledge security during data mining applications. Association rule extracted from data mining is one kind of the most popular knowledge. It is challenging to hide sensitive association rules extracted by data mining process and make less affection on non-sensitive rules and the original database. In this work, we focus on specific association rule automatic hiding. Novel strategies are proposed which are based on increasing the support of the left hand and decreasing the support of the right hand. Quality measurements for sensitive association rules hiding are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Mohan, S. Vijayarani, and Tamilarasi Angamuthu. "Association Rule Hiding in Privacy Preserving Data Mining." International Journal of Information Security and Privacy 12, no. 3 (2018): 141–63. http://dx.doi.org/10.4018/ijisp.2018070108.

Full text
Abstract:
This article describes how privacy preserving data mining has become one of the most important and interesting research directions in data mining. With the help of data mining techniques, people can extract hidden information and discover patterns and relationships between the data items. In most of the situations, the extracted knowledge contains sensitive information about individuals and organizations. Moreover, this sensitive information can be misused for various purposes which violate the individual's privacy. Association rules frequently predetermine significant target marketing information about a business. Significant association rules provide knowledge to the data miner as they effectively summarize the data, while uncovering any hidden relations among items that hold in the data. Association rule hiding techniques are used for protecting the knowledge extracted by the sensitive association rules during the process of association rule mining. Association rule hiding refers to the process of modifying the original database in such a way that certain sensitive association rules disappear without seriously affecting the data and the non-sensitive rules. In this article, two new hiding techniques are proposed namely hiding technique based on genetic algorithm (HGA) and dummy items creation (DIC) technique. Hiding technique based on genetic algorithm is used for hiding sensitive association rules and the dummy items creation technique hides the sensitive rules as well as it creates dummy items for the modified sensitive items. Experimental results show the performance of the proposed techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Shyue-Liang, Bhavesh Parikh, and Ayat Jafari. "Hiding informative association rule sets." Expert Systems with Applications 33, no. 2 (2007): 316–23. http://dx.doi.org/10.1016/j.eswa.2006.05.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Öztürk, Ahmet Cumhur, and Belgin Ergenç. "Dynamic Itemset Hiding Algorithm for Multiple Sensitive Support Thresholds." International Journal of Data Warehousing and Mining 14, no. 2 (2018): 37–59. http://dx.doi.org/10.4018/ijdwm.2018040103.

Full text
Abstract:
This article describes how association rule mining is used for extracting relations between items in transactional databases and is beneficial for decision-making. However, association rule mining can pose a threat to the privacy of the knowledge when the data is shared without hiding the confidential association rules of the data owner. One of the ways hiding an association rule from the database is to conceal the itemsets (co-occurring items) from which the sensitive association rules are generated. These sensitive itemsets are sanitized by the itemset hiding processes. Most of the existing solutions consider single support thresholds and assume that the databases are static, which is not true in real life. In this article, the authors propose a novel itemset hiding algorithm designed for the dynamic database environment and consider multiple itemset support thresholds. Performance comparisons of the algorithm is done with two dynamic algorithms on six different databases. Findings show that their dynamic algorithm is more efficient in terms of execution time and information loss and guarantees to hide all sensitive itemsets.
APA, Harvard, Vancouver, ISO, and other styles
10

B., Suma, and Shobha G. "Association rule hiding using integer linear programming." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 4 (2021): 3451. http://dx.doi.org/10.11591/ijece.v11i4.pp3451-3458.

Full text
Abstract:
<span>Privacy preserving data mining has become the focus of attention of government statistical agencies and database security research community who are concerned with preventing privacy disclosure during data mining. Repositories of large datasets include sensitive rules that need to be concealed from unauthorized access. Hence, association rule hiding emerged as one of the powerful techniques for hiding sensitive knowledge that exists in data before it is published. In this paper, we present a constraint-based optimization approach for hiding a set of sensitive association rules, using a well-structured integer linear program formulation. The proposed approach reduces the database sanitization problem to an instance of the integer linear programming problem. The solution of the integer linear program determines the transactions that need to be sanitized in order to conceal the sensitive rules while minimizing the impact of sanitization on the non-sensitive rules. We also present a heuristic sanitization algorithm that performs hiding by reducing the support or the confidence of the sensitive rules. The results of the experimental evaluation of the proposed approach on real-life datasets indicate the promising performance of the approach in terms of side effects on the original database.</span>
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography