Academic literature on the topic 'Association rule mining. Data mining. Classification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Association rule mining. Data mining. Classification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Association rule mining. Data mining. Classification"

1

Agrawal, Shivangee, and Nivedita Bairagi. "A Survey for Association Rule Mining in Data Mining." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 8 (2017): 245. http://dx.doi.org/10.23956/ijarcsse.v7i8.58.

Full text
Abstract:
Data mining, also identified as knowledge discovery in databases has well-known its place as an important and significant research area. The objective of data mining (DM) is to take out higher-level unknown detail from a great quantity of raw data. DM has been used in a variety of data domains. DM can be considered as an algorithmic method that takes data as input and yields patterns, such as classification rules, itemsets, association rules, or summaries, as output. The ’classical’ associations rule issue manages the age of association rules by support portraying a base level of confidence and support that the roduced rules should meet. The most standard and classical algorithm used for ARM is Apriori algorithm. It is used for delivering frequent itemsets for the database. The essential thought behind this algorithm is that numerous passes are made the database. The total usage of association rule strategies strengthens the knowledge management process and enables showcasing faculty to know their customers well to give better quality organizations. In this paper, the detailed description has been performed on the Genetic algorithm and FP-Growth with the applications of the Association Rule Mining.
APA, Harvard, Vancouver, ISO, and other styles
2

Thabtah, Fadi, Suhel Hammoud, and Hussein Abdel-Jaber. "Parallel Associative Classification Data Mining Frameworks Based MapReduce." Parallel Processing Letters 25, no. 02 (2015): 1550002. http://dx.doi.org/10.1142/s0129626415500024.

Full text
Abstract:
Associative classification (AC) is a research topic that integrates association rules with classification in data mining to build classifiers. After dissemination of the Classification-based Association Rule algorithm (CBA), the majority of its successors have been developed to improve either CBA's prediction accuracy or the search for frequent ruleitems in the rule discovery step. Both of these steps require high demands in processing time and memory especially in cases of large training data sets or a low minimum support threshold value. In this paper, we overcome the problem of mining large training data sets by proposing a new learning method that repeatedly transforms data between line and item spaces to quickly discover frequent ruleitems, generate rules, subsequently rank and prune rules. This new learning method has been implemented in a parallel Map-Reduce (MR) algorithm called MRMCAR which can be considered the first parallel AC algorithm in the literature. The new learning method can be utilised in the different steps within any AC or association rule mining algorithms which scales well if contrasted with current horizontal or vertical methods. Two versions of the learning method (Weka, Hadoop) have been implemented and a number of experiments against different data sets have been conducted. The ground bases of the comparisons are classification accuracy and time required by the algorithm for data initialization, frequent ruleitems discovery, rule generation and rule pruning. The results reveal that MRMCAR is superior to both current AC mining algorithms and rule based classification algorithms in improving the classification performance with respect to accuracy.
APA, Harvard, Vancouver, ISO, and other styles
3

Agarwal, Reshu, and Mandeep Mittal. "Inventory Classification Using Multi-Level Association Rule Mining." International Journal of Decision Support System Technology 11, no. 2 (2019): 1–12. http://dx.doi.org/10.4018/ijdsst.2019040101.

Full text
Abstract:
Popular data mining methods support knowledge discovery from patterns that hold in relations. For many applications, it is difficult to find strong associations among data items at low or primitive levels of abstraction. Mining association rules at multiple levels may lead to more informative and refined knowledge from data. Multi-level association rule mining is a variation of association rule mining for finding relationships between items at each level by applying different thresholds at different levels. In this study, an inventory classification policy is provided. At each level, the loss profit of frequent items is determined. The obtained loss profit is used to rank frequent items at each level with respect to their category, content and brand. This helps inventory manager to determine the most profitable item with respect to their category, content and brand. An example is illustrated to validate the results. Further, to comprehend the impact of above approach in the real scenario, experiments are conducted on the exiting dataset.
APA, Harvard, Vancouver, ISO, and other styles
4

Mattiev, Jamolbek, and Branko Kavsek. "Coverage-Based Classification Using Association Rule Mining." Applied Sciences 10, no. 20 (2020): 7013. http://dx.doi.org/10.3390/app10207013.

Full text
Abstract:
Building accurate and compact classifiers in real-world applications is one of the crucial tasks in data mining nowadays. In this paper, we propose a new method that can reduce the number of class association rules produced by classical class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose a new associative classifier that selects “strong” class association rules based on overall coverage of the learning set. The advantage of the proposed classifier is that it generates significantly smaller rules on bigger datasets compared to traditional classifiers while maintaining the classification accuracy. We also discuss how the overall coverage of such classifiers affects their classification accuracy. Performed experiments measuring classification accuracy, number of classification rules and other relevance measures such as precision, recall and f-measure on 12 real-life datasets from the UCI ML repository (Dua, D.; Graff, C. UCI Machine Learning Repository. Irvine, CA: University of California, 2019) show that our method was comparable to 8 other well-known rule-based classification algorithms. It achieved the second-highest average accuracy (84.9%) and the best result in terms of average number of rules among all classification methods. Although not achieving the best results in terms of classification accuracy, our method proved to be producing compact and understandable classifiers by exhaustively searching the entire example space.
APA, Harvard, Vancouver, ISO, and other styles
5

BEAUSOLEIL, RICARDO P. "ASSOCIATIVE CLASSIFICATION WITH MULTIOBJECTIVE TABU SEARCH." Revista de Matemática: Teoría y Aplicaciones 27, no. 2 (2020): 353–74. http://dx.doi.org/10.15517/rmta.v27i2.42438.

Full text
Abstract:
This paper presents an application of Tabu Search algorithm to association rule mining. We focus our attention specifically on classification rule mining, often called associative classification, where the consequent part of each rule is a class label. Our approach is based on seek a rule set handled as an individual. A Tabu search algorithm is used to search for Pareto-optimal rule sets with respect to some evaluation criteria such as accuracy and complexity. We apply a called Apriori algorithm for an association rules mining and then a multiobjective tabu search to a selection rules. We report experimental results where the effect of our multiobjective selection rules is examined for some well-known benchmark data sets from the UCI machine learning repository.
APA, Harvard, Vancouver, ISO, and other styles
6

Jain, Deepti, and Divakar Singh. "A Review on associative classification for Diabetic Datasets A Simulation Approach." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 7, no. 1 (2013): 533–38. http://dx.doi.org/10.24297/ijct.v7i1.3483.

Full text
Abstract:
Association rules are used to discover all the interesting relationship in a potentially large database. Association rule mining is used to discover a small set of rules over the database to form more accurate evaluation. They capture all possible rules that explain the presence of some attributes in relation to the presence of other attributes. This review paper aims to study and observe a flexible way, of, mining frequent patterns by extending the idea of the Associative Classification method. For better performance, the Neural Network Association Classification system is also analyzed here to be one of the approaches for building accurate and efficient classifiers. In this review paper, the Neural Network Association Classification system is studied and compared in order to find best possible accurate results. Association rule mining and classification rule mining can be integrated to form a framework called as Associative Classification and these rules are referred as Class Association Rules. This review research paper also analyzes how data mining techniques are used for predicting different types of diseases. This paper reviewed the research papers which mainly concentrated on predicting Diabetes.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Cailing, and Wenjun Li. "Automatic Classification Algorithm for Multisearch Data Association Rules in Wireless Networks." Wireless Communications and Mobile Computing 2021 (March 17, 2021): 1–9. http://dx.doi.org/10.1155/2021/5591387.

Full text
Abstract:
In order to realize efficient data processing in wireless network, this paper designs an automatic classification algorithm of multisearch data association rules in a wireless network. According to the algorithm, starting from the mining of multisearch data association rules, from the discretization of continuous attributes of multisearch data, generation of fuzzy classification rules, and the design of association rule classifier and other aspects, automatic classification is completed by using the mining results. Experimental results show that this algorithm has the advantages of small classification error, good real-time performance, high coverage rate, and high feasibility.
APA, Harvard, Vancouver, ISO, and other styles
8

H.Patil, Pritam, Suvarna Thube, Bhakti Ratnaparkhi, and K. Rajeswari. "Analysis of Different Data Mining Tools using Classification, Clustering and Association Rule Mining." International Journal of Computer Applications 93, no. 8 (2014): 35–39. http://dx.doi.org/10.5120/16238-5766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thabtah, Fadi. "Rule Preference Effect in Associative Classification Mining." Journal of Information & Knowledge Management 05, no. 01 (2006): 13–20. http://dx.doi.org/10.1142/s0219649206001281.

Full text
Abstract:
Classification based on association rule mining, also known as associative classification, is a promising approach in data mining that builds accurate classifiers. In this paper, a rule ranking process within the associative classification approach is investigated. Specifically, two common rule ranking methods in associative classification are compared with reference to their impact on accuracy. We also propose a new rule ranking procedure that adds more tie breaking conditions to the existing methods in order to reduce rule random selection. In particular, our method looks at the class distribution frequency associated with the tied rules and favours those that are associated with the majority class. We compare the impact of the proposed rule ranking method and two other methods presented in associative classification against 14 highly dense classification data sets. Our results indicate the effectiveness of the proposed rule ranking method on the quality of the resulting classifiers for the majority of the benchmark problems, which we consider. This provides evidence that adding more appropriate constraints to break ties between rules positively affects the predictive power of the resulting associative classifiers.
APA, Harvard, Vancouver, ISO, and other styles
10

THABTAH, FADI. "A review of associative classification mining." Knowledge Engineering Review 22, no. 1 (2007): 37–65. http://dx.doi.org/10.1017/s0269888907001026.

Full text
Abstract:
AbstractAssociative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Association rule mining. Data mining. Classification"

1

Palanisamy, Senthil Kumar. "Association rule based classification." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050306-131517/.

Full text
Abstract:
Thesis (M.S.)--Worcester Polytechnic Institute.<br>Keywords: Itemset Pruning, Association Rules, Adaptive Minimal Support, Associative Classification, Classification. Includes bibliographical references (p.70-74).
APA, Harvard, Vancouver, ISO, and other styles
2

Rahman, Sardar Muhammad Monzurur, and mrahman99@yahoo com. "Data Mining Using Neural Networks." RMIT University. Electrical & Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080813.094814.

Full text
Abstract:
Data mining is about the search for relationships and global patterns in large databases that are increasing in size. Data mining is beneficial for anyone who has a huge amount of data, for example, customer and business data, transaction, marketing, financial, manufacturing and web data etc. The results of data mining are also referred to as knowledge in the form of rules, regularities and constraints. Rule mining is one of the popular data mining methods since rules provide concise statements of potentially important information that is easily understood by end users and also actionable patterns. At present rule mining has received a good deal of attention and enthusiasm from data mining researchers since rule mining is capable of solving many data mining problems such as classification, association, customer profiling, summarization, segmentation and many others. This thesis makes several contributions by proposing rule mining methods using genetic algorithms and neural networks. The thesis first proposes rule mining methods using a genetic algorithm. These methods are based on an integrated framework but capable of mining three major classes of rules. Moreover, the rule mining processes in these methods are controlled by tuning of two data mining measures such as support and confidence. The thesis shows how to build data mining predictive models using the resultant rules of the proposed methods. Another key contribution of the thesis is the proposal of rule mining methods using supervised neural networks. The thesis mathematically analyses the Widrow-Hoff learning algorithm of a single-layered neural network, which results in a foundation for rule mining algorithms using single-layered neural networks. Three rule mining algorithms using single-layered neural networks are proposed for the three major classes of rules on the basis of the proposed theorems. The thesis also looks at the problem of rule mining where user guidance is absent. The thesis proposes a guided rule mining system to overcome this problem. The thesis extends this work further by comparing the performance of the algorithm used in the proposed guided rule mining system with Apriori data mining algorithm. Finally, the thesis studies the Kohonen self-organization map as an unsupervised neural network for rule mining algorithms. Two approaches are adopted based on the way of self-organization maps applied in rule mining models. In the first approach, self-organization map is used for clustering, which provides class information to the rule mining process. In the second approach, automated rule mining takes the place of trained neurons as it grows in a hierarchical structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Thun, Julia, and Rebin Kadouri. "Automating debugging through data mining." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203244.

Full text
Abstract:
Contemporary technological systems generate massive quantities of log messages. These messages can be stored, searched and visualized efficiently using log management and analysis tools. The analysis of log messages offer insights into system behavior such as performance, server status and execution faults in web applications. iStone AB wants to explore the possibility to automate their debugging process. Since iStone does most parts of their debugging manually, it takes time to find errors within the system. The aim was therefore to find different solutions to reduce the time it takes to debug. An analysis of log messages within access – and console logs were made, so that the most appropriate data mining techniques for iStone’s system would be chosen. Data mining algorithms and log management and analysis tools were compared. The result of the comparisons showed that the ELK Stack as well as a mixture between Eclat and a hybrid algorithm (Eclat and Apriori) were the most appropriate choices. To demonstrate their feasibility, the ELK Stack and Eclat were implemented. The produced results show that data mining and the use of a platform for log analysis can facilitate and reduce the time it takes to debug.<br>Dagens system genererar stora mängder av loggmeddelanden. Dessa meddelanden kan effektivt lagras, sökas och visualiseras genom att använda sig av logghanteringsverktyg. Analys av loggmeddelanden ger insikt i systemets beteende såsom prestanda, serverstatus och exekveringsfel som kan uppkomma i webbapplikationer. iStone AB vill undersöka möjligheten att automatisera felsökning. Eftersom iStone till mestadels utför deras felsökning manuellt så tar det tid att hitta fel inom systemet. Syftet var att därför att finna olika lösningar som reducerar tiden det tar att felsöka. En analys av loggmeddelanden inom access – och konsolloggar utfördes för att välja de mest lämpade data mining tekniker för iStone’s system. Data mining algoritmer och logghanteringsverktyg jämfördes. Resultatet av jämförelserna visade att ELK Stacken samt en blandning av Eclat och en hybrid algoritm (Eclat och Apriori) var de lämpligaste valen. För att visa att så är fallet så implementerades ELK Stacken och Eclat. De framställda resultaten visar att data mining och användning av en plattform för logganalys kan underlätta och minska den tid det tar för att felsöka.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Weiqi. "An application of classification association rule mining techniques in mesenchymal stem cell differentiation experimental data." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abu, Mansour Hussein Y. "Rule pruning and prediction methods for associative classification approach in data mining." Thesis, University of Huddersfield, 2012. http://eprints.hud.ac.uk/id/eprint/17476/.

Full text
Abstract:
Recent studies in data mining revealed that Associative Classification (AC) data mining approach builds competitive classification classifiers with reference to accuracy when compared to classic classification approaches including decision tree and rule based. Nevertheless, AC algorithms suffer from a number of known defects as the generation of large number of rules which makes it hard for end-user to maintain and understand its outcome and the possible over-fitting issue caused by the confidence-based rule evaluation used by AC. This thesis attempts to deal with above problems by presenting five new pruning methods, prediction method and employs them in an AC algorithm that significantly reduces the number of generated rules without having large impact on the prediction rate of the classifiers. Particularly, the new pruning methods that discard redundant and insignificant rules during building the classifier are employed. These pruning procedures remove any rule that either has no training case coverage or covers a training case without the requirement of class similarity between the rule class and that of the training case. This enables large coverage for each rule and reduces overfitting as well as construct accurate and moderated size classifiers. Beside, a novel class assignment method based on multiple rules is proposed which employs group of rule to make the prediction decision. The integration of both the pruning and prediction procedures has been used to enhanced a known AC algorithm called Multiple-class Classification based on Association Rules (MCAR) and resulted in competent model in regard to accuracy and classifier size called " Multiple-class Classification based on Association Rules 2(MCAR2)". Experimental results against different datasets from the UCI data repository showed that the predictive power of the resulting classifiers in MCAR2 slightly increase and the resulting classifier size gets reduced comparing with other AC algorithms such as Multiple-class Classification based on Association Rules (MCAR).
APA, Harvard, Vancouver, ISO, and other styles
6

Nagi, Mohamad. "Integrating Network Analysis and Data Mining Techniques into Effective Framework for Web Mining and Recommendation. A Framework for Web Mining and Recommendation." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14200.

Full text
Abstract:
The main motivation for the study described in this dissertation is to benefit from the development in technology and the huge amount of available data which can be easily captured, stored and maintained electronically. We concentrate on Web usage (i.e., log) mining and Web structure mining. Analysing Web log data will reveal valuable feedback reflecting how effective the current structure of a web site is and to help the owner of a web site in understanding the behaviour of the web site visitors. We developed a framework that integrates statistical analysis, frequent pattern mining, clustering, classification and network construction and analysis. We concentrated on the statistical data related to the visitors and how they surf and pass through the various pages of a given web site to land at some target pages. Further, the frequent pattern mining technique was used to study the relationship between the various pages constituting a given web site. Clustering is used to study the similarity of users and pages. Classification suggests a target class for a given new entity by comparing the characteristics of the new entity to those of the known classes. Network construction and analysis is also employed to identify and investigate the links between the various pages constituting a Web site by constructing a network based on the frequency of access to the Web pages such that pages get linked in the network if they are identified in the result of the frequent pattern mining process as frequently accessed together. The knowledge discovered by analysing a web site and its related data should be considered valuable for online shoppers and commercial web site owners. Benefitting from the outcome of the study, a recommendation system was developed to suggest pages to visitors based on their profiles as compared to similar profiles of other visitors. The conducted experiments using popular datasets demonstrate the applicability and effectiveness of the proposed framework for Web mining and recommendation. As a by product of the proposed method, we demonstrate how it is effective in another domain for feature reduction by concentrating on gene expression data analysis as an application with some interesting results reported in Chapter 5.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdelhamid, Neda. "Deriving classifiers with single and multi-label rules using new Associative Classification methods." Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/10120.

Full text
Abstract:
Associative Classification (AC) in data mining is a rule based approach that uses association rule techniques to construct accurate classification systems (classifiers). The majority of existing AC algorithms extract one class per rule and ignore other class labels even when they have large data representation. Thus, extending current AC algorithms to find and extract multi-label rules is promising research direction since new hidden knowledge is revealed for decision makers. Furthermore, the exponential growth of rules in AC has been investigated in this thesis aiming to minimise the number of candidate rules, and therefore reducing the classifier size so end-user can easily exploit and maintain it. Moreover, an investigation to both rule ranking and test data classification steps have been conducted in order to improve the performance of AC algorithms in regards to predictive accuracy. Overall, this thesis investigates different problems related to AC not limited to the ones listed above, and the results are new AC algorithms that devise single and multi-label rules from different applications data sets, together with comprehensive experimental results. To be exact, the first algorithm proposed named Multi-class Associative Classifier (MAC): This algorithm derives classifiers where each rule is connected with a single class from a training data set. MAC enhanced the rule discovery, rule ranking, rule filtering and classification of test data in AC. The second algorithm proposed is called Multi-label Classifier based Associative Classification (MCAC) that adds on MAC a novel rule discovery method which discovers multi-label rules from single label data without learning from parts of the training data set. These rules denote vital information ignored by most current AC algorithms which benefit both the end-user and the classifier's predictive accuracy. Lastly, the vital problem related to web threats called 'website phishing detection' was deeply investigated where a technical solution based on AC has been introduced in Chapter 6. Particularly, we were able to detect new type of knowledge and enhance the detection rate with respect to error rate using our proposed algorithms and against a large collected phishing data set. Thorough experimental tests utilising large numbers of University of California Irvine (UCI) data sets and a variety of real application data collections related to website classification and trainer timetabling problems reveal that MAC and MCAC generates better quality classifiers if compared with other AC and rule based algorithms with respect to various evaluation measures, i.e. error rate, Label-Weight, Any-Label, number of rules, etc. This is mainly due to the different improvements related to rule discovery, rule filtering, rule sorting, classification step, and more importantly the new type of knowledge associated with the proposed algorithms. Most chapters in this thesis have been disseminated or under review in journals and refereed conference proceedings.
APA, Harvard, Vancouver, ISO, and other styles
8

Shatnawi, Safwan. "A data mining approach to ontology learning for automatic content-related question-answering in MOOCs." Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/2122.

Full text
Abstract:
The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers.
APA, Harvard, Vancouver, ISO, and other styles
9

He, Yuanchen. "Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/cs_diss/12.

Full text
Abstract:
Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Sowan, Bilal I. "Enhancing Fuzzy Associative Rule Mining Approaches for Improving Prediction Accuracy. Integration of Fuzzy Clustering, Apriori and Multiple Support Approaches to Develop an Associative Classification Rule Base." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5387.

Full text
Abstract:
Building an accurate and reliable model for prediction for different application domains, is one of the most significant challenges in knowledge discovery and data mining. This thesis focuses on building and enhancing a generic predictive model for estimating a future value by extracting association rules (knowledge) from a quantitative database. This model is applied to several data sets obtained from different benchmark problems, and the results are evaluated through extensive experimental tests. The thesis presents an incremental development process for the prediction model with three stages. Firstly, a Knowledge Discovery (KD) model is proposed by integrating Fuzzy C-Means (FCM) with Apriori approach to extract Fuzzy Association Rules (FARs) from a database for building a Knowledge Base (KB) to predict a future value. The KD model has been tested with two road-traffic data sets. Secondly, the initial model has been further developed by including a diversification method in order to improve a reliable FARs to find out the best and representative rules. The resulting Diverse Fuzzy Rule Base (DFRB) maintains high quality and diverse FARs offering a more reliable and generic model. The model uses FCM to transform quantitative data into fuzzy ones, while a Multiple Support Apriori (MSapriori) algorithm is adapted to extract the FARs from fuzzy data. The correlation values for these FARs are calculated, and an efficient orientation for filtering FARs is performed as a post-processing method. The FARs diversity is maintained through the clustering of FARs, based on the concept of the sharing function technique used in multi-objectives optimization. The best and the most diverse FARs are obtained as the DFRB to utilise within the Fuzzy Inference System (FIS) for prediction. The third stage of development proposes a hybrid prediction model called Fuzzy Associative Classification Rule Mining (FACRM) model. This model integrates the ii improved Gustafson-Kessel (G-K) algorithm, the proposed Fuzzy Associative Classification Rules (FACR) algorithm and the proposed diversification method. The improved G-K algorithm transforms quantitative data into fuzzy data, while the FACR generate significant rules (Fuzzy Classification Association Rules (FCARs)) by employing the improved multiple support threshold, associative classification and vertical scanning format approaches. These FCARs are then filtered by calculating the correlation value and the distance between them. The advantage of the proposed FACRM model is to build a generalized prediction model, able to deal with different application domains. The validation of the FACRM model is conducted using different benchmark data sets from the University of California, Irvine (UCI) of machine learning and KEEL (Knowledge Extraction based on Evolutionary Learning) repositories, and the results of the proposed FACRM are also compared with other existing prediction models. The experimental results show that the error rate and generalization performance of the proposed model is better in the majority of data sets with respect to the commonly used models. A new method for feature selection entitled Weighting Feature Selection (WFS) is also proposed. The WFS method aims to improve the performance of FACRM model. The prediction performance is improved by minimizing the prediction error and reducing the number of generated rules. The prediction results of FACRM by employing WFS have been compared with that of FACRM and Stepwise Regression (SR) models for different data sets. The performance analysis and comparative study show that the proposed prediction model provides an effective approach that can be used within a decision support system.<br>Applied Science University (ASU) of Jordan
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Association rule mining. Data mining. Classification"

1

Gkoulalas-Divanis, Aris, and Vassilios S. Verykios. Association Rule Hiding for Data Mining. Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6569-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gkoulalas-Divanis, Aris. Association rule hiding for data mining. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dass, Rajanish. Classification using association rules. Indian Institute of Management, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Association Rule Mining: Models and Algorithms (Lecture Notes in Computer Science). Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining. River Publishers, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jain, Lakhmi C., and Dawn E. Holmes. Data Mining : Foundations and Intelligent Paradigms : Volume 1: Clustering, Association and Classification. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1978-, Koh Yun Sing, and Rountree Nathan 1974-, eds. Rare association rule mining and knowledge discovery: Technologies for infrequent and critical event detection. Information Science Reference, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Improving Association Rule based Data Mining Algorithms with Agents Technology in Distributed Environment. Association of Scientists, Developers and Faculties, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Inhibitory Rules In Data Analysis A Rough Set Approach. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Association rule mining. Data mining. Classification"

1

Wilhelm, Adalbert F. X., Arne Jacobs, and Thorsten Hermes. "Association Rule Mining of Multimedia Content." In Data Analysis and Classification. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03739-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Jiawei, Anthony K. H. Tung, and Jing He. "SPARC: Spatial Association Rule-Based Classification." In Data Mining for Scientific and Engineering Applications. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1733-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yanbo J., Qin Xin, and Frans Coenen. "Mining Efficiently Significant Classification Association Rules." In Data Mining: Foundations and Practice. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78488-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qiu, Jiangtao, Changjie Tang, Tao Zeng, et al. "A Novel Text Classification Approach Based on Enhanced Association Rule." In Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73871-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coenen, Frans, Paul Leng, and Lu Zhang. "Threshold Tuning for Improved Classification Association Rule Mining." In Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11430919_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Natwichai, Juggapong, Maria E. Orlowska, and Xingzhi Sun. "Hiding Sensitive Associative Classification Rule by Data Reduction." In Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73871-8_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Born, Stefan, and Lars Schmidt-Thieme. "Optimal Discretization of Quantitative Attributes for Association Rules." In Classification, Clustering, and Data Mining Applications. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17103-1_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Xiao-Yun, Yi Chen, Rong-Lu Li, and Yun-Fa Hu. "An Improvement of Text Association Classification Using Rules Weights." In Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527503_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Bing, Yiming Ma, and Ching-Kian Wong. "Classification Using Association Rules: Weaknesses and Enhancements." In Data Mining for Scientific and Engineering Applications. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1733-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kianmehr, Keivan, and Reda Alhajj. "Effective Classification by Integrating Support Vector Machine and Association Rule Mining." In Intelligent Data Engineering and Automated Learning – IDEAL 2006. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11875581_110.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Association rule mining. Data mining. Classification"

1

Sermswatsri, P., and C. Srisa-an. "A neural-networks associative classification method for association rule mining." In DATA MINING AND MIS 2006. WIT Press, 2006. http://dx.doi.org/10.2495/data060101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yanbo J., Qin Xin, and Frans Coenen. "A Novel Rule Weighting Approach in Classification Association Rule Mining." In 2007 Seventh IEEE International Conference on Data Mining - Workshops (ICDM Workshops). IEEE, 2007. http://dx.doi.org/10.1109/icdmw.2007.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rojanavasu, Pornthep. "Educational Data Analytics using Association Rule Mining and Classification." In 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON). IEEE, 2019. http://dx.doi.org/10.1109/ecti-ncon.2019.8692274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yin, Xiaoxin, and Jiawei Han. "CPAR: Classification based on Predictive Association Rules." In Proceedings of the 2003 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2003. http://dx.doi.org/10.1137/1.9781611972733.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tan, Qing. "Construction of Multidimensional Data Knowledge Base by Improved Classification Association Rule Mining Algorithm." In 2016 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016). Atlantis Press, 2017. http://dx.doi.org/10.2991/emcm-16.2017.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moon, Seung Ki, Soundar R. T. Kumara, and Timothy W. Simpson. "Data Mining and Fuzzy Clustering to Support Product Family Design." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99287.

Full text
Abstract:
In mass customization, data mining can be used to extract valid, previously unknown, and easily interpretable information from large product databases in order to improve and optimize engineering design and manufacturing process decisions. A product family is a group of related products based on a product platform, facilitating mass customization by providing a variety of products for different market segments cost-effectively. In this paper, we propose a method for identifying a platform along with variant and unique modules in a product family using data mining techniques. Association rule mining is applied to develop rules related to design knowledge based on product function, which can be clustered by their similarity based on functional features. Fuzzy c-means clustering is used to determine initial clusters that represent modules. The clustering result identifies the platform and its modules by a platform level membership function and classification. We apply the proposed method to determine a new platform using a case study involving a power tool family.
APA, Harvard, Vancouver, ISO, and other styles
7

Niu, Qiang, Shi-Xiong Xia, and Lei Zhang. "Association Classification Based on Compactness of Rules." In 2009 Second International Workshop on Knowledge Discovery and Data Mining. WKDD 2009. IEEE, 2009. http://dx.doi.org/10.1109/wkdd.2009.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lakshmi, K. Prasanna, and C. R. K. Reddy. "Fast Rule-Based Prediction of Data Streams Using Associative Classification Mining." In 2015 5th International Conference on IT Convergence and Security (ICITCS). IEEE, 2015. http://dx.doi.org/10.1109/icitcs.2015.7292983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pandya, S. D., and P. V. Virparia. "Comparing the application of classification and association rule mining techniques of data mining in an Indian university to uncover hidden patterns." In 2013 International Conference on Intelligent Systems and Signal Processing (ISSP). IEEE, 2013. http://dx.doi.org/10.1109/issp.2013.6526935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yazdizadeh, Peyman, and Farhad Ameri. "A Text Mining Technique for Manufacturing Supplier Classification." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46694.

Full text
Abstract:
The web presence of manufacturing suppliers is constantly increasing and so does the volume of textual data available online that pertains to the capabilities of manufacturing suppliers. To process this large volume of data and infer new knowledge about the capabilities of manufacturing suppliers, different text mining techniques such as association rule generation, classification, and clustering can be applied. This paper focuses on classification of manufacturing suppliers based on the textual description of their capabilities available in their online profiles. A probabilistic technique that adopts Naïve Bayes method is adopted and implemented using R programming language. Casting and CNC machining are used as the examples classes of suppliers in this work. The performance of the proposed classifier is evaluated experimentally based on the standard metrics such as precision, recall, and F-measure. It was observed that in order to improve the precision of the classification process, a larger training dataset with more relevant terms must be used.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography