To see the other types of publications on this topic, follow the link: Association rule mining.

Journal articles on the topic 'Association rule mining'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Association rule mining.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Thomas, Binu, and G. Raju. "A Novel Web Classification Algorithm Using Fuzzy Weighted Association Rules." ISRN Artificial Intelligence 2013 (December 19, 2013): 1–10. http://dx.doi.org/10.1155/2013/316913.

Full text
Abstract:
In associative classification method, the rules generated from association rule mining are converted into classification rules. The concept of association rule mining can be extended in web mining environment to find associations between web pages visited together by the internet users in their browsing sessions. The weighted fuzzy association rule mining techniques are capable of finding natural associations between items by considering the significance of their presence in a transaction. The significance of an item in a transaction is usually referred as the weight of an item in the transaction and finding associations between such weighted items is called fuzzy weighted association rule mining. In this paper, we are presenting a novel web classification algorithm using the principles of fuzzy association rule mining to classify the web pages into different web categories, depending on the manner in which they appear in user sessions. The results are finally represented in the form of classification rules and these rules are compared with the result generated using famous Boolean Apriori association rule mining algorithm.
APA, Harvard, Vancouver, ISO, and other styles
2

Taniar, David, Wenny Rahayu, Vincent Lee, and Olena Daly. "Exception rules in association rule mining." Applied Mathematics and Computation 205, no. 2 (2008): 735–50. http://dx.doi.org/10.1016/j.amc.2008.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agrawal, Shivangee, and Nivedita Bairagi. "A Survey for Association Rule Mining in Data Mining." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 8 (2017): 245. http://dx.doi.org/10.23956/ijarcsse.v7i8.58.

Full text
Abstract:
Data mining, also identified as knowledge discovery in databases has well-known its place as an important and significant research area. The objective of data mining (DM) is to take out higher-level unknown detail from a great quantity of raw data. DM has been used in a variety of data domains. DM can be considered as an algorithmic method that takes data as input and yields patterns, such as classification rules, itemsets, association rules, or summaries, as output. The ’classical’ associations rule issue manages the age of association rules by support portraying a base level of confidence and support that the roduced rules should meet. The most standard and classical algorithm used for ARM is Apriori algorithm. It is used for delivering frequent itemsets for the database. The essential thought behind this algorithm is that numerous passes are made the database. The total usage of association rule strategies strengthens the knowledge management process and enables showcasing faculty to know their customers well to give better quality organizations. In this paper, the detailed description has been performed on the Genetic algorithm and FP-Growth with the applications of the Association Rule Mining.
APA, Harvard, Vancouver, ISO, and other styles
4

Varma, Sandeep, and LijiP I. "Secure Outsourced Association Rule Mining using Homomorphic Encryption." International Journal of Engineering Research and Science 3, no. 9 (2017): 70–76. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

G.Usha Rani, G. Usha Rani, R. Vijaya Prakash, and Prof A. Govardhan Prof. A. Govardhan. "Mining Multilevel Association Rule Using Pincer Search Algorithm." International Journal of Scientific Research 2, no. 5 (2012): 54–57. http://dx.doi.org/10.15373/22778179/may2013/21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Manoj, and Hemant Kumar Soni. "A Comparative Study of Tree-Based and Apriori-Based Approaches for Incremental Data Mining." International Journal of Engineering Research in Africa 23 (April 2016): 120–30. http://dx.doi.org/10.4028/www.scientific.net/jera.23.120.

Full text
Abstract:
Association rule mining is an iterative and interactive process of discovering valid, novel, useful, understandable and hidden associations from the massive database. The Colossal databases require powerful and intelligent tools for analysis and discovery of frequent patterns and association rules. Several researchers have proposed the many algorithms for generating item sets and association rules for discovery of frequent patterns, and minning of the association rules. These proposals are validated on static data. A dynamic database may introduce some new association rules, which may be interesting and helpful in taking better business decisions. In association rule mining, the validation of performance and cost of the existing algorithms on incremental data are less explored. Hence, there is a strong need of comprehensive study and in-depth analysis of the existing proposals of association rule mining. In this paper, the existing tree-based algorithms for incremental data mining are presented and compared on the baisis of number of scans, structure, size and type of database. It is concluded that the Can-Tree approach dominates the other algorithms such as FP-Tree, FUFP-Tree, FELINE Alorithm with CATS-Tree etc.This study also highlights some hot issues and future research directions. This study also points out that there is a strong need for devising an efficient and new algorithm for incremental data mining.
APA, Harvard, Vancouver, ISO, and other styles
7

Lekha, A., C. V. Srikrishna, and Viji Vinod. "Fuzzy Association Rule Mining." Journal of Computer Science 11, no. 1 (2015): 71–74. http://dx.doi.org/10.3844/jcssp.2015.71.74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hidber, Christian. "Online association rule mining." ACM SIGMOD Record 28, no. 2 (1999): 145–56. http://dx.doi.org/10.1145/304181.304195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ding, Qin, and William Perrizo. "Support-Less Association Rule Mining Using Tuple Count Cube." Journal of Information & Knowledge Management 06, no. 04 (2007): 271–80. http://dx.doi.org/10.1142/s0219649207001846.

Full text
Abstract:
Association rule mining is one of the important tasks in data mining and knowledge discovery (KDD). The traditional task of association rule mining is to find all the rules with high support and high confidence. In some applications, we are interested in finding high confidence rules even though the support may be low. This type of problem differs from the traditional association rule mining problem; hence, it is called support-less association rule mining. Existing algorithms for association rule mining, such as the Apriori algorithm, cannot be used efficiently for support-less association rule mining since those algorithms mostly rely on identifying frequent item-sets with high support. In this paper, we propose a new model to perform support-less association rule mining, i.e., to derive high confidence rules regardless of their support level. A vertical data structure, the Peano Count Tree (P-tree), is used in our model to represent all the information we need. Based on the P-tree structure, we build a special data cube, called the Tuple Count Cube (T-cube), to derive high confidence rules. Data cube operations, such as roll-up, on T-cube, provide efficient ways to calculate the count information needed for support-less association rule mining.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Hui. "Strategies for Sensitive Association Rule Hiding." Applied Mechanics and Materials 336-338 (July 2013): 2203–6. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.2203.

Full text
Abstract:
Data mining technologies are used widely while the side effects it incurred are concerned so seriously. Privacy preserving data mining is so important for data and knowledge security during data mining applications. Association rule extracted from data mining is one kind of the most popular knowledge. It is challenging to hide sensitive association rules extracted by data mining process and make less affection on non-sensitive rules and the original database. In this work, we focus on specific association rule automatic hiding. Novel strategies are proposed which are based on increasing the support of the left hand and decreasing the support of the right hand. Quality measurements for sensitive association rules hiding are presented.
APA, Harvard, Vancouver, ISO, and other styles
11

Sonia M, Delphin, John Robinson P, and Sebastian Rajasekaran A. "Mining Efficient Fuzzy Bio-Statistical Rules for Association of Sandalwood in Pachaimalai Hills." International Journal of Agricultural and Environmental Information Systems 6, no. 2 (2015): 40–76. http://dx.doi.org/10.4018/ijaeis.2015040104.

Full text
Abstract:
The integration of association rules and correlation rules with fuzzy logic can produce more abstract and flexible patterns for many real life problems, since many quantitative features in real world, especially surveying the frequency of plant association in any region is fuzzy in nature. This paper presents a modification of a previously reported algorithm for mining fuzzy association and correlation rules, defines the concept of fuzzy partial and semi-partial correlation rule mining, and presents an original algorithm for mining fuzzy data based on correlation rule mining. It adds a regression model to the procedure for mining fuzzy correlation rules in order to predict one data instance from contributing more than others. It also utilizes statistical analysis for the data and the experimental results show a very high utility of fuzzy association rules and fuzzy correlation rule mining in modeling plant association problems. The newly proposed algorithm is utilized for seeking close associations and relationships between a group of plant species clustering around Sandalwood in Pachaimalai hills, Eastern Ghats, Tamilnadu.
APA, Harvard, Vancouver, ISO, and other styles
12

Ali, Nzar Abdulqader. "Finding minimum confidence threshold to avoid derived rules in association rule minin." Journal of Zankoy Sulaimani - Part A 17, no. 4 (2015): 271–78. http://dx.doi.org/10.17656/jzs.10443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

XU, YUE, and YUEFENG LI. "MINING NON-REDUNDANT ASSOCIATION RULES BASED ON CONCISE BASES." International Journal of Pattern Recognition and Artificial Intelligence 21, no. 04 (2007): 659–75. http://dx.doi.org/10.1142/s0218001407005600.

Full text
Abstract:
Association rule mining has many achievements in the area of knowledge discovery. However, the quality of the extracted association rules has not drawn adequate attention from researchers in data mining community. One big concern with the quality of association rule mining is the size of the extracted rule set. As a matter of fact, very often tens of thousands of association rules are extracted among which many are redundant, thus useless. In this paper, we first analyze the redundancy problem in association rules and then propose a reliable exact association rule basis from which more concise nonredundant rules can be extracted. We prove that the redundancy eliminated using the proposed reliable association rule basis does not reduce the belief to the extracted rules. Moreover, this paper proposes a level wise approach for efficiently extracting closed itemsets and minimal generators — a key issue in closure based association rule mining.
APA, Harvard, Vancouver, ISO, and other styles
14

Shatnawi, Raed, Qutaibah Althebyan, Baraq Ghaleb, and Mohammed Al-Maolegi. "A Student Advising System Using Association Rule Mining." International Journal of Web-Based Learning and Teaching Technologies 16, no. 3 (2021): 65–78. http://dx.doi.org/10.4018/ijwltt.20210501.oa5.

Full text
Abstract:
Academic advising is a time-consuming activity that takes a considerable effort in guiding students to improve student performance. Traditional advising systems depend greatly on the effort of the advisor to find the best selection of courses to improve student performance in the next semester. There is a need to know the associations and patterns among course registration. Finding associations among courses can guide and direct students in selecting the appropriate courses that leads to performance improvement. In this paper, the authors propose to use association rule mining to help both students and advisors in selecting and prioritizing courses. Association rules find dependences among courses that help students in selecting courses based on their performance in previous courses. The association rule mining is conducted on thousands of student records to find associations between courses that have been registered by students in many previous semesters. The system has successfully generated a list of association rules that guide a particular student to select courses. The system was validated on the registration of 100 students, and the precision and recall showed acceptable prediction of courses.
APA, Harvard, Vancouver, ISO, and other styles
15

Pal, Parashu Ram, Pankaj Pathak, and Shkurte Luma-Osmani. "IHAC: Incorporating Heuristics for Efficient Rule Generation & Rule Selection in Associative Classification." Journal of Information & Knowledge Management 20, no. 01 (2021): 2150010. http://dx.doi.org/10.1142/s0219649221500106.

Full text
Abstract:
Associations rule mining along with classification rule mining are both significant techniques of mining of knowledge in the area of knowledge discovery in massive databases stored in different geographic locations of the world. Based on such combination of these two, class association rules for mining or associative classification methods have been generated, which, in far too many cases, showed higher prediction accuracy than platitudinous conventional classifiers. Motivated by the study, in this paper, we proposed a new approach, namely IHAC (Incorporating Heuristics for efficient rule generation & rule selection in Associative Classification). First, it utilises the database to decrease the search space and then explicitly explores the potent class association rules from the optimised database. This also blends rule generation and classifier building to speed up the overall classifier construction cycle. Experimental findings showed that IHAC performs better than any further associative classification methods.
APA, Harvard, Vancouver, ISO, and other styles
16

Gandhimathi, D., and N. Anbazhagan. "Extracting of Positive and Negative Association Rules." International Journal of Emerging Research in Management and Technology 6, no. 8 (2018): 421. http://dx.doi.org/10.23956/ijermt.v6i8.175.

Full text
Abstract:
Association rules analysis is a basic technique to expose how items/patterns are associated to each other. There are two common ways to measure association such as Support and Confidence. Several methods have been proposed in the literature to diminish the number of extracted association rules. Association Rule Mining is one of the greatest current data mining techniques designed to group objects together from huge databases aiming to take out the motivating correlation and relation with massive quantity of data. Association rule mining is used to discover the associated patterns from datasets. In this paper, we propose association rules from new methods on web usage mining. Generally, web usage log structure has several records so we have to overcome those unwanted records from large dataset. First of all the pre-processed data from the NASA dataset is clustered by the popular K-Means algorithm. Subsequently, the matrix calculation is progressed on that data. Further, the associations are performed on filtered data and get rid of the final associated page results. Positive and negative association rules are gathered by using new algorithm with Annul Object (𝒜𝒪). Wherever the object “𝒜𝒪” is presented those rules are known as negative association rule. Otherwise, the rules are positive association rules.
APA, Harvard, Vancouver, ISO, and other styles
17

Tzacheva, Angelina A. "Rule schemas and interesting association action rules mining." International Journal of Data Mining, Modelling and Management 4, no. 3 (2012): 244. http://dx.doi.org/10.1504/ijdmmm.2012.048106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kalia, Harihar, Satchidananda Dehuri, and Ashish Ghosh. "A Survey on Fuzzy Association Rule Mining." International Journal of Data Warehousing and Mining 9, no. 1 (2013): 1–27. http://dx.doi.org/10.4018/jdwm.2013010101.

Full text
Abstract:
Association rule mining is one of the fundamental tasks of data mining. The conventional association rule mining algorithms, using crisp set, are meant for handling Boolean data. However, in real life quantitative data are voluminous and need careful attention for discovering knowledge. Therefore, to extract association rules from quantitative data, the dataset at hand must be partitioned into intervals, and then converted into Boolean type. In the sequel, it may suffer with the problem of sharp boundary. Hence, fuzzy association rules are developed as a sharp knife to solve the aforesaid problem by handling quantitative data using fuzzy set. In this paper, the authors present an updated survey of fuzzy association rule mining procedures along with a discussion and relevant pointers for further research.
APA, Harvard, Vancouver, ISO, and other styles
19

B., Suma, and Shobha G. "Privacy preserving association rule hiding using border based approach." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 2 (2021): 1137. http://dx.doi.org/10.11591/ijeecs.v23.i2.pp1137-1145.

Full text
Abstract:
<div>Association rule mining is a well-known data mining technique used for extracting hidden correlations between data items in large databases. In the majority of the situations, data mining results contain sensitive information about individuals and publishing such data will violate individual secrecy. The challenge of association rule mining is to preserve the confidentiality of sensitive rules when releasing the database to external parties. The association rule hiding technique conceals the knowledge extracted by the sensitive association rules by modifying the database. In this paper, we introduce a border-based algorithm for hiding sensitive association rules. The main purpose of this approach is to conceal the sensitive rule set while maintaining the utility of the database and association rule mining results at the highest level. The performance of the algorithm in terms of the side effects is demonstrated using experiments conducted on two real datasets. The results show that the information loss is minimized without sacrificing the accuracy. </div>
APA, Harvard, Vancouver, ISO, and other styles
20

PriyankaV., Mahadik, and Kosbatwar Shyam P. "Mining Anomaly using Association Rule." International Journal of Computer Applications 67, no. 24 (2013): 9–12. http://dx.doi.org/10.5120/11734-7338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yao, Ran Bo, An Ping Song, Xue Hai Ding, and Ming Bo Li. "Cross Sellingusing Association Rule Mining." Applied Mechanics and Materials 687-691 (November 2014): 1337–41. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.1337.

Full text
Abstract:
In the retail enterprises, it is an important problem to choose goods group through their sales record.We should consider not only the direct benefits of product, but also the benefits bring by the cross selling. On the base of the mutual promotion in cross selling, in this paper we propose a new method to generate the optimal selected model. Firstly we use Apriori algorithm to obtain the frequent item sets and analyses the association rules sets between products.And then we analyses the above results to generate the optimal products mixes and recommend relationship in cross selling. The experimental result shows the proposed method has some practical value to the decisions of cross selling.
APA, Harvard, Vancouver, ISO, and other styles
22

Rajavat, Anand, and Pranjal singh solanki. "Modern Association Rule Mining Methods." International Journal of Computational Science and Information Technology 2, no. 4 (2014): 1–9. http://dx.doi.org/10.5121/ijcsity.2014.2401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

LIU, Xu-hui, Shi-huang SHAO, and Guang-zhu YU. "Motivation-based association rule mining." Journal of Computer Applications 29, no. 1 (2009): 189–92. http://dx.doi.org/10.3724/sp.j.1087.2009.00189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Anand, H. S., and S. S. Vinodchandra. "Association rule mining using treap." International Journal of Machine Learning and Cybernetics 9, no. 4 (2016): 589–97. http://dx.doi.org/10.1007/s13042-016-0546-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kaur, Jagmeet, and Neena Madan. "Association Rule Mining: A Survey." International Journal of Hybrid Information Technology 8, no. 7 (2015): 239–42. http://dx.doi.org/10.14257/ijhit.2015.8.7.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

YILDIRIM TAŞER, Pelin, Kökten Ulaş BİRANT, and Derya BİRANT. "Multitask-based association rule mining." TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 28, no. 2 (2020): 933–55. http://dx.doi.org/10.3906/elk-1905-88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Johan, Ragil Andika, Rispani Himilda, and Nadya Auliza. "PENERAPAN METODE ASSOCIATION RULE UNTUK STRATEGI PENJUALAN MENGGUNAKAN ALGORITMA APRIORI." Jurnal Teknik Informatika (J-Tifa) 2, no. 2 (2019): 1–7. http://dx.doi.org/10.52046/j-tifa.v2i2.268.

Full text
Abstract:
Abstrak
 Persaingan dalam bisnis khususnya dalam bisnis perdagangan semakin banyak. Agar dapat meningkatkan penjualan produk yang dijual, para pelaku harus mempunyai strategi. Salah satu cara yang bisa dilakukan adalah dengan memanfaatkan data transaksi penjualan. Data penjualan tersebut dapat diolah hingga didapatkan informasi yang berguna bagi peningkatan penjualan. Teknologi yang dapat digunakan dalam hal ini adalah data mining. Data mining adalah kegiatan pengolahan data untuk menemukan hubungan dalam suatu data yang berjumlah besar. Suatu metode yang dapat digunakan dalam data mining adalah association rule mining. Association rule mining adalah salah satu metode data mining yang dapat mengidentifikasi hubungan kesamaan antar item. Algoritma yang paling sering dipakai dalam metode ini salah satunya ialah algoritma apriori. Algoritma apriori digunakan untuk mencari kandidat aturan asosiasi. Aturan kombinasi produk berhasil ditemukan dengan penerapan metode assosiation rules menggunakan algoritma apriori dan telah diuji menggunakan tools tanagra. Semua rule yang dihasilkan pada penelitian ini memiliki nilai lift ratio lebih dari 1 sehingga dapat digunakan sebagai acuan dalam membuat strategi penjualan.
 Kata Kunci : Penjualan, Data Mining, Association Rule, Algoritma Apriori
 
 Abstract
 Competition in business, especially in the trading business more and more. In order to increase sales of the products, businessman must have a strategy. A things we can do is to use sales transaction data. The sales data can be processed so we will get information of increasing sales. The technology that can be used in this case is data mining. Data mining, often also called knowledge discovery in database (KDD), is a data processing activity to find relationships in a large amount of data. A method that can be used in data mining is association rule mining. Association rule mining is one method of data mining that can identify the similarity relationships between items. One of the most frequently used algorithms in this method is the apriori algorithm. Apriori algorithm is used to find candidate association rules. The product combination rules have been found by applying the association rules method using apriori algorithm and have been tested using tanagra tools. All rules produced in this study have a lift ratio value of more than 1 so it can be used as a reference in making sales strategies.
 Keywords: Sale, Rule Mining, Association Rule, Apriori Algorithm
APA, Harvard, Vancouver, ISO, and other styles
28

Kou, Zhicong. "Association rule mining using chaotic gravitational search algorithm for discovering relations between manufacturing system capabilities and product features." Concurrent Engineering 27, no. 3 (2019): 213–32. http://dx.doi.org/10.1177/1063293x19832949.

Full text
Abstract:
An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for efficient and cost-effective product development and production. This article proposes a chaotic gravitational search algorithm–based association rule mining method for discovering the hidden relationship between manufacturing system capabilities and product features. The extracted rules would be utilized to predict capability requirements of various machines for the new product with different features. We use two strategies to incorporate chaos into gravitational search algorithm: one strategy is to embed chaotic map functions into the gravitational constant of gravitational search algorithm; the other is to use sequences generated by chaotic maps to substitute random numbers for different parameters of gravitational search algorithm. In order to improve the applicability of chaotic gravitational search algorithm–based association rule mining, a novel overlapping measure indication is further proposed to eliminate those unuseful rules. The proposed method is relatively simple and easy to implement. The rules generated by chaotic gravitational search algorithm–based association rule mining are accurate, interesting, and comprehensible to the user. The performance comparison indicates that chaotic gravitational search algorithm–based association rule mining outperforms other regular methods (e.g. Apriori) for association rule mining. The experimental results illustrate that chaotic gravitational search algorithm–based association rule mining is capable of discovering important association rules between manufacturing system capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.
APA, Harvard, Vancouver, ISO, and other styles
29

Sasikala, D., and K. Premalatha. "Application of Class Based Association Rule Pruning to Generate Optimal Association Rules in Healthcare." Journal of Medical Imaging and Health Informatics 11, no. 11 (2021): 2859–61. http://dx.doi.org/10.1166/jmihi.2021.3876.

Full text
Abstract:
The association rule mining approach produces uninteresting association rules. When the set of association rules become large, it becomes less interesting to the user. In order to pick interesting association rules among peak volumes of found association rules, it is critical to aid the decision-maker with an efficient post-processing phase. Theymotivate the need for association analysis performance. Practically it is an overhead to analyze the large set of association rules. In this work, association rule pruning technique called Class Based Association Rule Pruning (CBARP). This pruning techniques is proposed to prune the weak association rules of the healthcare system. The results are compared with Semantic Tree Based Association Rule Mining (STAR) technique and it demonstrate that the CBARP method outperforms other methods for the given support values.
APA, Harvard, Vancouver, ISO, and other styles
30

Mashoria, Varsha, and Dr Anju Singh. "A Survey of Mining Association Rules Using Constraints." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 7, no. 3 (2013): 620–25. http://dx.doi.org/10.24297/ijct.v7i3.3441.

Full text
Abstract:
As we all know that association rule is used to find out the rules that are associated with the items present in the database that satisfy user specified support and confidence. There are many algorithms for mining association rules. For improving efficiency and effectiveness of mining task. Constraints based mining enable users to concentrate on mining interested association rules instead of the complete set of association rule.”The constraints can be defined as the condition that a pattern has to satisfy ” . This paper provides or gives the major advancement in the approaches for association rule mining using different constraints.
APA, Harvard, Vancouver, ISO, and other styles
31

Prahartiwi, Lusa Indah, and Wulan Dari. "Algoritma Apriori untuk Pencarian Frequent itemset dalam Association Rule Mining." PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic 7, no. 2 (2019): 143–52. http://dx.doi.org/10.33558/piksel.v7i2.1817.

Full text
Abstract:
Abstract
 
 Over decades, retail chains and department stores have been selling their products without using the transactional data generated by their sales as a source of knowledge. Abundant data availability, the need for information (or knowledge) as a support for decision making to create business solutions, and infrastructure support in the field of information technology are the embryos of the birth of data mining technology. Association rule mining is a data mining method used to extract useful patterns between data items. In this research, the Apriori algorithm was applied to find frequent itemset in association rule mining. Data processing using Tanagra tools. The dataset used was the Supermarket dataset consisting of 12 attributes and 108.131 transaction. The experimental results obtained by association rules or rules from the combination of item-sets beer wine spirit-frozen foods and snack foods as a Frequent itemset with a support value of 15.489% and a confidence value of 83.719%. Lift ratio value obtained was 2.47766 which means that there were some benefits from the association rule or rules. 
 
 Keywords: Apriori, Association Rule Mining.
 
 Abstrak
 
 Selama beberapa dekade rantai ritel dan department store telah menjual produk mereka tanpa menggunakan data transaksional yang dihasilkan oleh penjualan mereka sebagai sumber pengetahuan. Ketersediaan data yang melimpah, kebutuhan akan informasi (atau pengetahuan) sebagai pendukung pengambilan keputusan untuk membuat solusi bisnis, dan dukungan infrastruktur di bidang teknologi informasi merupakan cikal-bakal dari lahirnya teknologi data mining. Data mining menemukan pola yang menarik dari database seperti association rule, correlations, sequences, classifier dan masih banyak lagi yang mana association rule adalah salah satu masalah yang paling popular. Association rule mining merupakan metode data mining yang digunakan untuk mengekstrasi pola yang bermanfaat di antara data barang. Pada penelitian ini diterapkan algoritma Apriori untuk pencarian frequent itemset dalam association rule mining. Pengolahan data menggunakan tools Tanagra. Dataset yang digunakan adalah dataset Supermarket yang terdiri dari 12 atribut dan 108.131 transaksi. Hasil eksperimen diperoleh aturan asosiasi atau rules dari kombinasi itemsets beer wine spirit-frozen foods dan snack foods sebagai Frequent itemset dengan nilai support sebesar 15,489% dan nilai confidence sebesar 83,719%. Nilai Lift ratio yang diperoleh sebesar 2,47766 yang artinya terdapat manfaat dari aturan asosiasi atau rules tersebut.
 
 Kata kunci: Apriori, Association rule mining
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Zhen Yu, Zhi Hui Song, Rui Qing Yan, and Zeng Zhang. "The Optimization Algorithm of Association Rules Mining." Applied Mechanics and Materials 614 (September 2014): 405–8. http://dx.doi.org/10.4028/www.scientific.net/amm.614.405.

Full text
Abstract:
Frequent itemsets mining is the core part of association rule mining. At present most of the research on association rules mining is focused on how to improve the efficiency of mining frequent itemsets , however, the rule sets generated from frequent itemsets are the final results presented to decision makers for making, so how to optimize the rulesets generation process and the final rules is also worthy of attention. Based on encoding the dataset, this paper proposes a encoding method to speed up the generation process of frequent itemsets and proposes a subset tree to generate association rules which can simplify the generation process of rules and narrow the rulesets presented to decision makers.
APA, Harvard, Vancouver, ISO, and other styles
33

Gopagoni, Praveen Kumar, and Mohan Rao S K. "Distributed elephant herding optimization for grid-based privacy association rule mining." Data Technologies and Applications 54, no. 3 (2020): 365–82. http://dx.doi.org/10.1108/dta-07-2019-0104.

Full text
Abstract:
PurposeAssociation rule mining generates the patterns and correlations from the database, which requires large scanning time, and the cost of computation associated with the generation of the rules is quite high. On the other hand, the candidate rules generated using the traditional association rules mining face a huge challenge in terms of time and space, and the process is lengthy. In order to tackle the issues of the existing methods and to render the privacy rules, the paper proposes the grid-based privacy association rule mining.Design/methodology/approachThe primary intention of the research is to design and develop a distributed elephant herding optimization (EHO) for grid-based privacy association rule mining from the database. The proposed method of rule generation is processed as two steps: in the first step, the rules are generated using apriori algorithm, which is the effective association rule mining algorithm. In general, the extraction of the association rules from the input database is based on confidence and support that is replaced with new terms, such as probability-based confidence and holo-entropy. Thus, in the proposed model, the extraction of the association rules is based on probability-based confidence and holo-entropy. In the second step, the generated rules are given to the grid-based privacy rule mining, which produces privacy-dependent rules based on a novel optimization algorithm and grid-based fitness. The novel optimization algorithm is developed by integrating the distributed concept in EHO algorithm.FindingsThe experimentation of the method using the databases taken from the Frequent Itemset Mining Dataset Repository to prove the effectiveness of the distributed grid-based privacy association rule mining includes the retail, chess, T10I4D100K and T40I10D100K databases. The proposed method outperformed the existing methods through offering a higher degree of privacy and utility, and moreover, it is noted that the distributed nature of the association rule mining facilitates the parallel processing and generates the privacy rules without much computational burden. The rate of hiding capacity, the rate of information preservation and rate of the false rules generated for the proposed method are found to be 0.4468, 0.4488 and 0.0654, respectively, which is better compared with the existing rule mining methods.Originality/valueData mining is performed in a distributed manner through the grids that subdivide the input data, and the rules are framed using the apriori-based association mining, which is the modification of the standard apriori with the holo-entropy and probability-based confidence replacing the support and confidence in the standard apriori algorithm. The mined rules do not assure the privacy, and hence, the grid-based privacy rules are employed that utilize the adaptive elephant herding optimization (AEHO) for generating the privacy rules. The AEHO inherits the adaptive nature in the standard EHO, which renders the global optimal solution.
APA, Harvard, Vancouver, ISO, and other styles
34

Bai, Yi Ming, Xian Yao Meng, and Xin Jie Han. "Mining Fuzzy Association Rules in Quantitative Databases." Applied Mechanics and Materials 182-183 (June 2012): 2003–7. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.2003.

Full text
Abstract:
In this paper, we introduce a novel technique for mining fuzzy association rules in quantitative databases. Unlike other data mining techniques who can only discover association rules in discrete values, the algorithm reveals the relationships among different quantitative values by traversing through the partition grids and produces the corresponding Fuzzy Association Rules. Fuzzy Association Rules employs linguistic terms to represent the revealed regularities and exceptions in quantitative databases. After the fuzzy rule base is built, we utilize the definition of Support Degree in data mining to reduce the rule number and save the useful rules. Throughout this paper, we will use a set of real data from a wine database to demonstrate the ideas and test the models.
APA, Harvard, Vancouver, ISO, and other styles
35

Han, Jianchao, and Mohsen Beheshti. "Discovering Both Positive and Negative Fuzzy Association Rules in Large Transaction Databases." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 3 (2006): 287–94. http://dx.doi.org/10.20965/jaciii.2006.p0287.

Full text
Abstract:
Mining association rules is an important task of dara mining and knowledge discovery. Traditional association rules mining is built on transaction databases, which has some limitations. Two of these limitations are 1) each transaction merely contains binary items, meaning that an item either occurs in a transaction or not; 2) only positive association rules are discovered, while negative associations are ignored. Mining fuzzy association rules has been proposed to address the first limitation, while mining algorithms for negative association rules have been developed to resolve the second limitation. In this paper, we combine these two approaches to propose a novel approach for mining both positive and negative fuzzy association rules. The interestingness measure for both positive and negative fuzzy association rule is proposed, the algorithm for mining these rules is described, and an illustrative example is presented to demonstrate how the measure and the algorithm work.
APA, Harvard, Vancouver, ISO, and other styles
36

Ahluwalia, Madhu V., Aryya Gangopadhyay, and Zhiyuan Chen. "Preserving Privacy in Mining Quantitative Associations Rules." International Journal of Information Security and Privacy 3, no. 4 (2009): 1–17. http://dx.doi.org/10.4018/jisp.2009100101.

Full text
Abstract:
Association rule mining is an important data mining method that has been studied extensively by the academic community and has been applied in practice. In the context of association rule mining, the state-of-the-art in privacy preserving data mining provides solutions for categorical and Boolean association rules but not for quantitative association rules. This article fills this gap by describing a method based on discrete wavelet transform (DWT) to protect input data privacy while preserving data mining patterns for association rules. A comparison with an existing kd-tree based transform shows that the DWT-based method fares better in terms of efficiency, preserving patterns, and privacy.
APA, Harvard, Vancouver, ISO, and other styles
37

Anitha, G., R. A. Karthika, G. Bindu, and G. V. Sriramakrishnan. "Modified classic apriori algorithm for association rule mining." International Journal of Engineering & Technology 7, no. 2.21 (2018): 414. http://dx.doi.org/10.14419/ijet.v7i2.21.12455.

Full text
Abstract:
In today’s real world environment, information is the most critical element in all aspects of the life. It can be used to perform analysis and it helps to make decision making. But due to large collection of information the analysis and extraction of such useful information is tedious process which will create a major problem. In data mining, Association rules states about associations among the entities of known and unknown group and extracting hidden patterns in the data. Apriori algorithm is used for association rule mining. In this paper, due to limitations in rule condition, the algorithm was extended as new modified classic apriori algorithm which fulfills user stated minimum support and confidence constraints.
APA, Harvard, Vancouver, ISO, and other styles
38

Anuradha, C., and R. Anandavally. "Discovering Efficient Association Rule Mining via Correlation Analysis." Asian Journal of Computer Science and Technology 7, no. 1 (2018): 46–49. http://dx.doi.org/10.51983/ajcst-2018.7.1.1831.

Full text
Abstract:
A Discovery of Association rule mining is an essential task in Data Mining. Traditional approaches employ a support confidence framework for finding association rule. This leads to the exploration of a number of uninteresting rules, such rules are not interesting to the users. To tackle this weakness, this paper examines the correlation measures to augment with support and confidence framework, which resulting in the mining of correlation rules. We then added an additional interesting measure based on statistical significance and correlation analysis. This paper reveals an overview of interesting measures and gives an insight into the discovery of more meaningful rules from large applications than traditional approach. Also it covers a theoretical issues associated with correlations that have yet to be explored.
APA, Harvard, Vancouver, ISO, and other styles
39

Prakash, R. Vijaya, S. S. V. N. Sarma, and M. Sheshikala. "Generating Non-redundant Multilevel Association Rules Using Min-max Exact Rules." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (2018): 4568. http://dx.doi.org/10.11591/ijece.v8i6.pp4568-4576.

Full text
Abstract:
Association Rule mining plays an important role in the discovery of knowledge and information. Association Rule mining discovers huge number of rules for any dataset for different support and confidence values, among this many of them are redundant, especially in the case of multi-level datasets. Mining non-redundant Association Rules in multi-level dataset is a big concern in field of Data mining. In this paper, we present a definition for redundancy and a concise representation called Reliable Exact basis for representing non-redundant Association Rules from multi-level datasets. The given non-redundant Association Rules are loss less representation for any datasets.
APA, Harvard, Vancouver, ISO, and other styles
40

Mattiev, Jamolbek, and Branko Kavsek. "Coverage-Based Classification Using Association Rule Mining." Applied Sciences 10, no. 20 (2020): 7013. http://dx.doi.org/10.3390/app10207013.

Full text
Abstract:
Building accurate and compact classifiers in real-world applications is one of the crucial tasks in data mining nowadays. In this paper, we propose a new method that can reduce the number of class association rules produced by classical class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose a new associative classifier that selects “strong” class association rules based on overall coverage of the learning set. The advantage of the proposed classifier is that it generates significantly smaller rules on bigger datasets compared to traditional classifiers while maintaining the classification accuracy. We also discuss how the overall coverage of such classifiers affects their classification accuracy. Performed experiments measuring classification accuracy, number of classification rules and other relevance measures such as precision, recall and f-measure on 12 real-life datasets from the UCI ML repository (Dua, D.; Graff, C. UCI Machine Learning Repository. Irvine, CA: University of California, 2019) show that our method was comparable to 8 other well-known rule-based classification algorithms. It achieved the second-highest average accuracy (84.9%) and the best result in terms of average number of rules among all classification methods. Although not achieving the best results in terms of classification accuracy, our method proved to be producing compact and understandable classifiers by exhaustively searching the entire example space.
APA, Harvard, Vancouver, ISO, and other styles
41

Agarwal, Reshu, and Mandeep Mittal. "Inventory Classification Using Multi-Level Association Rule Mining." International Journal of Decision Support System Technology 11, no. 2 (2019): 1–12. http://dx.doi.org/10.4018/ijdsst.2019040101.

Full text
Abstract:
Popular data mining methods support knowledge discovery from patterns that hold in relations. For many applications, it is difficult to find strong associations among data items at low or primitive levels of abstraction. Mining association rules at multiple levels may lead to more informative and refined knowledge from data. Multi-level association rule mining is a variation of association rule mining for finding relationships between items at each level by applying different thresholds at different levels. In this study, an inventory classification policy is provided. At each level, the loss profit of frequent items is determined. The obtained loss profit is used to rank frequent items at each level with respect to their category, content and brand. This helps inventory manager to determine the most profitable item with respect to their category, content and brand. An example is illustrated to validate the results. Further, to comprehend the impact of above approach in the real scenario, experiments are conducted on the exiting dataset.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Guang Jiang, and Shi Guo Jin. "Application of Association Rule Mining Technology in Collection and Management of Wireless Sensor Network Node." Applied Mechanics and Materials 685 (October 2014): 575–78. http://dx.doi.org/10.4028/www.scientific.net/amm.685.575.

Full text
Abstract:
Association rule mining is an important data mining method; it is the key link of finding frequent itemsets. The process of association rules mining is roughly into two steps: the first step is to find out from all the concentration of all the frequent itemsets; the second step is to obtain the association rules from frequent itemsets. This paper analyzes the collected information of nodes in wireless sensor network and management. The paper presents application of association rule mining technology in the collection and management of wireless sensor network node.
APA, Harvard, Vancouver, ISO, and other styles
43

Mohan, S. Vijayarani, and Tamilarasi Angamuthu. "Association Rule Hiding in Privacy Preserving Data Mining." International Journal of Information Security and Privacy 12, no. 3 (2018): 141–63. http://dx.doi.org/10.4018/ijisp.2018070108.

Full text
Abstract:
This article describes how privacy preserving data mining has become one of the most important and interesting research directions in data mining. With the help of data mining techniques, people can extract hidden information and discover patterns and relationships between the data items. In most of the situations, the extracted knowledge contains sensitive information about individuals and organizations. Moreover, this sensitive information can be misused for various purposes which violate the individual's privacy. Association rules frequently predetermine significant target marketing information about a business. Significant association rules provide knowledge to the data miner as they effectively summarize the data, while uncovering any hidden relations among items that hold in the data. Association rule hiding techniques are used for protecting the knowledge extracted by the sensitive association rules during the process of association rule mining. Association rule hiding refers to the process of modifying the original database in such a way that certain sensitive association rules disappear without seriously affecting the data and the non-sensitive rules. In this article, two new hiding techniques are proposed namely hiding technique based on genetic algorithm (HGA) and dummy items creation (DIC) technique. Hiding technique based on genetic algorithm is used for hiding sensitive association rules and the dummy items creation technique hides the sensitive rules as well as it creates dummy items for the modified sensitive items. Experimental results show the performance of the proposed techniques.
APA, Harvard, Vancouver, ISO, and other styles
44

Agarwal, Reshu, Mandeep Mittal, and Sarla Pareek. "Loss Profit Estimation Using Temporal Association Rule Mining." International Journal of Business Analytics 3, no. 1 (2016): 45–57. http://dx.doi.org/10.4018/ijban.2016010103.

Full text
Abstract:
Temporal association rule mining is a data mining technique in which relationships between items which satisfy certain timing constraints can be discovered. This paper presents the concept of temporal association rules in order to solve the problem of classification of inventories by including time expressions into association rules. Firstly, loss profit of frequent items is calculated by using temporal association rule mining algorithm. Then, the frequent items in particular time-periods are ranked according to descending order of loss profits. The manager can easily recognize most profitable items with the help of ranking found in the paper. An example is illustrated to validate the results.
APA, Harvard, Vancouver, ISO, and other styles
45

Jain, Deepti, and Divakar Singh. "A Review on associative classification for Diabetic Datasets A Simulation Approach." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 7, no. 1 (2013): 533–38. http://dx.doi.org/10.24297/ijct.v7i1.3483.

Full text
Abstract:
Association rules are used to discover all the interesting relationship in a potentially large database. Association rule mining is used to discover a small set of rules over the database to form more accurate evaluation. They capture all possible rules that explain the presence of some attributes in relation to the presence of other attributes. This review paper aims to study and observe a flexible way, of, mining frequent patterns by extending the idea of the Associative Classification method. For better performance, the Neural Network Association Classification system is also analyzed here to be one of the approaches for building accurate and efficient classifiers. In this review paper, the Neural Network Association Classification system is studied and compared in order to find best possible accurate results. Association rule mining and classification rule mining can be integrated to form a framework called as Associative Classification and these rules are referred as Class Association Rules. This review research paper also analyzes how data mining techniques are used for predicting different types of diseases. This paper reviewed the research papers which mainly concentrated on predicting Diabetes.
APA, Harvard, Vancouver, ISO, and other styles
46

Qian, Guoqi, Calyampudi Radhakrishna Rao, Xiaoying Sun, and Yuehua Wu. "Boosting association rule mining in large datasets via Gibbs sampling." Proceedings of the National Academy of Sciences 113, no. 18 (2016): 4958–63. http://dx.doi.org/10.1073/pnas.1604553113.

Full text
Abstract:
Current algorithms for association rule mining from transaction data are mostly deterministic and enumerative. They can be computationally intractable even for mining a dataset containing just a few hundred transaction items, if no action is taken to constrain the search space. In this paper, we develop a Gibbs-sampling–induced stochastic search procedure to randomly sample association rules from the itemset space, and perform rule mining from the reduced transaction dataset generated by the sample. Also a general rule importance measure is proposed to direct the stochastic search so that, as a result of the randomly generated association rules constituting an ergodic Markov chain, the overall most important rules in the itemset space can be uncovered from the reduced dataset with probability 1 in the limit. In the simulation study and a real genomic data example, we show how to boost association rule mining by an integrated use of the stochastic search and the Apriori algorithm.
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Hui. "Association Rule: From Mining to Hiding." Applied Mechanics and Materials 321-324 (June 2013): 2570–73. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.2570.

Full text
Abstract:
Data mining is to discover knowledge which is unknown and hidden in huge database and would be helpful for people understand the data and make decision better. Some knowledge discovered from data mining is considered to be sensitive that the holder of the database will not share because it might cause serious privacy or security problems. Privacy preserving data mining is to hide sensitive knowledge and it is becoming more and more important and attractive. Association rule is one class of the most important knowledge to be mined, so as sensitive association rule hiding. The side-effects of the existing data mining technology are investigated and the representative strategies of association rule hiding are discussed.
APA, Harvard, Vancouver, ISO, and other styles
48

Shimada, Kaoru, Kotaro Hirasawa, and Jinglu Hu. "Genetic Network Programming with Acquisition Mechanisms of Association Rules." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 1 (2006): 102–11. http://dx.doi.org/10.20965/jaciii.2006.p0102.

Full text
Abstract:
A method of association rule mining using Genetic Network Programming (GNP) is proposed to improve the performance of association rule extraction. The proposed mechanisms can calculate measurements of association rules directly using GNP, and measure the significance of the association via the chi-squared test. Users can define the conditions of importance of association rules flexibly, which include the chi-squared value and the number of attributes in a rule. The proposed system evolves itself by an evolutionary method and obtains candidates of association rules by genetic operations. Extracted association rules are stored in a pool all together through generations and reflected in genetic operators as acquired information. Besides, our method can contain negation of attributes in association rules and suit association rule mining from dense databases. In this paper, we describe an extended algorithm capable of finding important association rules using GNP with sophisticated rule acquisition mechanisms and present some experimental results.
APA, Harvard, Vancouver, ISO, and other styles
49

YU, LIGUO, and STEPHEN R. SCHACH. "APPLYING ASSOCIATION MINING TO CHANGE PROPAGATION." International Journal of Software Engineering and Knowledge Engineering 18, no. 08 (2008): 1043–61. http://dx.doi.org/10.1142/s0218194008004008.

Full text
Abstract:
A software system evolves as changes are made to accommodate new features and repair defects. Software components are frequently interdependent, so changes made to one component can result in changes having to be made to other components to ensure that the system remains consistent; this is called change propagation. Accurate detection of change propagation is essential for software maintenance, which can be aided by accurate prediction of change propagation. In this paper, we study change propagation in three leading open-source software products: Linux, FreeBSD, and Apache HTTP Server. We use association rules-based data-mining techniques to detect change-propagation rules from the product version history. These rules are evaluated with respect to different training data sets and different test data sets. We discuss the applicability of using association-rule mining for change propagation, and several related issues. We find that a challenging issue in association-rule mining, concept drift, exists in software systems. Concept drift complicates the task of change-propagation prediction and requires special approaches, different from currently-used techniques for predicting change propagation.
APA, Harvard, Vancouver, ISO, and other styles
50

KORPIPÄÄ, PANU. "Visualizing constraint-based temporal association rules." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, no. 5 (2001): 401–10. http://dx.doi.org/10.1017/s0890060401155034.

Full text
Abstract:
When dealing with time continuous processes, the discovered association rules may change significantly over time. This often reflects a change in the process as well. Therefore, two questions arise: What kind of deviation occurs in the association rules over time, and how could these temporal rules be presented efficiently? To address this problem of representation, we propose a method of visualizing temporal association rules in a virtual model with interactive exploration. The presentation form is a three-dimensional correlation matrix, and the visualization methods used are brushing and glyphs. Interactive functions used for displaying rule attributes and exploring temporal rules are implemented by utilizing Virtual Reality Modeling Language v2 mechanisms. Furthermore, to give a direction of rule potential for the user, the rule statistical interestingness is evaluated on the basis of combining weighted characteristics of rule and rule matrix. A constraint-based association rule mining tool which creates the virtual model as an output is presented, including the most relevant experiences from the development of the tool. The applicability of the overall approach has been verified by using the developed tool for data mining on a hot strip mill of a steel plant.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography