Academic literature on the topic 'Astrodynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Astrodynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Astrodynamics"

1

Froeschlé, C. "Mappings in Astrodynamics." Symposium - International Astronomical Union 152 (1992): 375–90. http://dx.doi.org/10.1017/s0074180900091415.

Full text
Abstract:
We review mappings mainly devised for the study of the dynamics of comets and asteroids. An attempt of a typology according to the method used to devise the mapping and to its deterministic or stochastic character is made.
APA, Harvard, Vancouver, ISO, and other styles
2

Ni, W. T. "Deep-space laser-ranging missions ASTROD and ASTROD I for astrodynamics and astrometry." Proceedings of the International Astronomical Union 3, S248 (October 2007): 379–82. http://dx.doi.org/10.1017/s1743921308019601.

Full text
Abstract:
AbstractDeep-space laser ranging will be ideal for testing relativistic gravity, and mapping the solar-system to an unprecedented accuracy. ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I are such missions. ASTROD I is a mission with a single spacecraft; it is the first step of ASTROD with 3 spacecraft. In this talk, after a brief review of ASTROD and ASTROD I, we concentrate on the precision of solar astrodynamics that can be achieved together with implications on astrometry and reference frame ties. The precise planetary ephemeris derived from these missions together with second post-Newtonian test of relativistic gravity will serve as a foundation for future precise astrometry observations. Relativistic frameworks are discussed from these considerations.
APA, Harvard, Vancouver, ISO, and other styles
3

Misiak, Marcin. "Evolutionary Algorithms in Astrodynamics." International Journal of Astronomy and Astrophysics 06, no. 04 (2016): 435–39. http://dx.doi.org/10.4236/ijaa.2016.64035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Menshikov, Yuri. "Inverse Problem of Astrodynamics." World Journal of Mechanics 05, no. 12 (2015): 249–56. http://dx.doi.org/10.4236/wjm.2015.512023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

IAF ASTRODYNAMICS COMMITTEE. "Recent highlights in astrodynamics." Acta Astronautica 40, no. 10 (May 1997): 685–92. http://dx.doi.org/10.1016/s0094-5765(97)00133-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iaf Astrodynamics Committee. "Recent progress in astrodynamics." Acta Astronautica 17, no. 10 (October 1988): 1049–57. http://dx.doi.org/10.1016/0094-5765(88)90188-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Melton, Robert G. "Fundamentals of Astrodynamics and Applications." Journal of Guidance, Control, and Dynamics 21, no. 4 (July 1998): 672. http://dx.doi.org/10.2514/2.4291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferreira, Alessandra F. S., Antonio Elipe, Rodolpho V. De De Moraes, Antônio F. B. A. Prado, Othon C. Winter, and Vivian M. Gomes. "Low Thrust Propelled Close Approach Maneuvers." Symmetry 14, no. 9 (August 27, 2022): 1786. http://dx.doi.org/10.3390/sym14091786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biggs, James D., and Colin R. McInnes. "Time-Delayed Feedback Control in Astrodynamics." Journal of Guidance, Control, and Dynamics 32, no. 6 (November 2009): 1804–11. http://dx.doi.org/10.2514/1.43672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coffey, S., L. Healy, and H. Neal. "Applications of Parallel Processing to Astrodynamics." International Astronomical Union Colloquium 165 (1997): 61–70. http://dx.doi.org/10.1017/s0252921100046376.

Full text
Abstract:
AbstractParallel processing is being used to improve the catalog of earth orbiting satellites and for problems associated with the catalog. Initial efforts centered around using SIMD parallel processors to perform debris conjunction analysis and satellite dynamics studies. More recently, the availability of cheap supercomputing processors and parallel processing software such as PVM have enabled the reutilization of existing astrodynamics software in distributed parallel processing environments. Computations once taking many days with traditional mainframes are now being performed in only a few hours. Efforts underway for the US Naval Space Command include conjunction prediction, uncorrelated target processing and a new space object catalog based on orbit determination and prediction with special perturbations methods.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Astrodynamics"

1

Pérez, Palau Daniel. "Dynamical transport mechanisms in celestial mechanics and astrodynamics problems." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/362369.

Full text
Abstract:
L’objectiu d’aquesta tesi és afegir una petita fulla a l’arbre del coneixement. En particular a la branca del sistemes dinàmics. La teoria de sistemes dinàmics és la branca de les matemàtiques que estudia l’evolució del que ens envolta. Un dels objectius de la teoria dels sistemes dinàmics és estudiar com evoluciona amb el temps un cert procés evolutiu, és a dir, donades unes condicions inicials per a un cert estat, quin serà l’estat del sistema “t” unitats de temps. En alguns problemes és possible trobar estructures que ens separen diferents tipus de moviment. Per exemple, un moviment fitat d’un de no fitat. Aleshores, aquestes estructures determinen com evolucionà el sistema sota estudi. En aquest cas parlem de mecanismes dinàmics de transport. És a dir, quines són les possibles maneres que té un cert estat d’arribar a un altre. La teoria de sistemes dinàmics treu models i problemes gran varietat d’àmbits científics. En aquesta tesi ens centrarem en problemes de mecànica celeste i astrodinàmica. L’estructura de la present tesi és com segueix: − El Capítol 1 està dedicat a introduir alguns dels conceptes que es fan servir en els capítols posteriors, així com qüestions de notació i la definició dels sistemes dinàmics que s’empraran. − En el Capítol 2 s’introdueix l’eina principal de la tesi, el Jet Transport. Per fer-la servir cal implementar una àlgebra de polinomis. El capítol explica com fer aquesta implementació. Les primeres seccions es dediquen a explicar com fer un ús eficient de la memòria i a introduir les operacions bàsiques amb polinomis (el producte per un escalar, la suma, el producte, la divisió de dos polinomis). També s’explica com realitzar altres operacions elementals com l’exponencial, el logaritme, el sinus i el cosinus així com la derivació i la integració de polinomis. A les darreres seccions s’explica com implementar operacions més complexes com la propagació de fluxos (incloent el càlcul d’aplicacions de Poincaré i altres tècniques per a millorar els resultats obtinguts), el càlcul de la inversa funcional d’un polinomi i la transformació de densitats mitjançant una aplicació. − El Capítol 3 està dedicat a parlar sobre indicadors dinàmics. Primer es repassen els exponents de Lyapunov a temps finit i les estructures lagrangianes coherents. Fruit d’aquestes reflexions es desenvolupen algorismes per tal de disminuir el temps de còmput. Tot seguit, es donen quatre indicadors de la dinàmica alternatius basats en el Jet Transport: la màxima mida de la caixa inicial, la màxima relació d’expansió, la màxima relació de contracció i la màxima relació d’expansió a l’espai normal. El capítol segueix desenvolupant un algorisme d’extracció d’estructures per tal d’extreure i resumir la informació donada pels indicadors dinàmics. Finalment, es fan servir els indicadors dinàmics introduïts per tal de determinar zones d’estabilitat efectiva en el problema restringit de tres cossos. − En el Capítol 4 s’estudia la col·lisió de satèl·lits artificials. Primerament s’estudien les diferents per torbacions que afecten al moviment de satèl·lits al voltant de la terra. Es considera un problema de dos cossos amb pertorbacions degudes al potencial terrestre, a la força de fregament atmosfèric i a la gravetat de la Lluna i el Sol. S’estudien els efectes d’aquestes pertorbacions i també com realitzar l’implementació mitjançant el Jet Transport. El capítol acaba amb algunes simulacions de Monte Carlo per extreure informació d’una col·lisió semblant a la produïda entre els satèl·lits Iridium-33 i el Kosmos-2251 l’any 2009. − L’annex A explica breument les funcions desenvolupades per a aquesta tesi i s’introdueixen unes petites notes sobre paral·lelització de codis en C mitjançant open MP.
APA, Harvard, Vancouver, ISO, and other styles
2

Ya´rnoz, Daniel Garci´a. "Exploiting astrodynamics for the manipulation and exploration of asteroids." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24963.

Full text
Abstract:
The accessibility of minor bodies, the impact threat they pose, their scientific interest and the theorised potential for material extraction have pinpointed asteroids and comets as attractive targets for current and future space exploration. The manipulation of these minor bodies has been discussed for over a century, mainly with the aim of planetary protection, and in general based on the use of artificial external forces. Within this thesis, the manipulation of asteroids has been addressed across a range of length-scales, from orbit to dust particle manipulation, placing emphasis on exploiting natural astrodynamics. On the macro-scale regime, the capture of Near-Earth Objects into libration point orbits of the Sun-Earth system was investigated by exploiting manifold dynamics to obtain low-costs transfers. At middle scales or meso-scales, this thesis proposes the use of tidal torques acting on captured asteroids during swing-bys to manipulate the asteroid's rotational state. Possibilities included induced asteroid spin-up, de-spin, rotational fragmentation or binary break-up. In addition, the exploitation of solar radiation pressure was analysed with the purpose of generating new orbiting strategies around minor bodies. Finally, at the smallest scales or micro-scales, a novel asteroid regolith separation method based on the exploitation of differential solar radiation pressure has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
3

Whiting, James K. (James Kalani) 1980. "Path optimization using sub-Riemannian manifolds with applications to astrodynamics." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/63035.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 131).
Differential geometry provides mechanisms for finding shortest paths in metric spaces. This work describes a procedure for creating a metric space from a path optimization problem description so that the formalism of differential geometry can be applied to find the optimal paths. Most path optimization problems will generate a sub-Riemannian manifold. This work describes an algorithm which approximates a sub-Riemannian manifold as a Riemannian manifold using a penalty metric so that Riemannian geodesic solvers can be used to find the solutions to the path optimization problem. This new method for solving path optimization problems shows promise to be faster than other methods, in part because it can easily run on parallel processing units. It also provides some geometrical insights into path optimization problems which could provide a new way to categorize path optimization problems. Some simple path optimization problems are described to provide an understandable example of how the method works and an application to astrodynamics is also given.
by James K. Whiting.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Farahmand, Mitra. "ORBITAL PROPAGATORS FOR HORIZON SIMULATION FRAMEWORK." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/167.

Full text
Abstract:
This thesis describes the models of four common orbital propagators and outlines the process of integrating them into the Horizon Simulation Framework (HSF). The results of the Two-Body, J2, and J4 propagators from the HSF are then compared against the outcomes of these propagators in MATLAB and Satellite Toolkit (STK). The MATLAB algorithms verify the functionality of the propagators and determine the accuracy of the HSF implementation. The compassion against STK validates the formulation of the HSF propagators. In order to equip the HSF with a more precise means of orbit determination, adding the Simplified General Perturbations 4 (SGP4) propagator to the HSF has been the principal goal of this project. A brief description of the algorithm explains the process of configuring the original code into a format compatible with the HSF. Further, the orbital data from the SGP4 propagator across different implementations are examined. The outcomes demonstrate that the HSF algorithm generates reasonably accurate orbital data.
APA, Harvard, Vancouver, ISO, and other styles
5

Graef, Jared. "B-Plane Targeting with the Spacecraft Trajectory Optimization Suite." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2251.

Full text
Abstract:
In interplanetary trajectory applications, it is common to design arrival trajectories based on B-plane target values. This targeting scheme, B-plane targeting, allows for specific target orbits to be obtained during mission design. A primary objective of this work was to implement B-plane targeting into the Spacecraft Trajectory Optimization Suite (STOpS). This work was based on the previous versions of STOpS done by Fitzgerald and Sheehan, however STOpS was redeveloped from MATLAB to python. This updated version of STOpS implements 3-dimensional computation, departure and arrival orbital phase modeling with patched conics, B-plane targeting, and a trajectory correction maneuver. The optimization process is done with three evolutionary algorithms implemented in an island model paradigm. The algorithms and the island model were successfully verified with known optimization functions before being used in the orbital optimization cases. While the algorithms and island model are not new to this work, they were altered in this redevelopment of STOpS to closer relate to literature. This enhanced literature relation allows for easier comprehension of the both the formulation of the schemes and the code itself. With a validated optimization scheme, STOpS is able to compute near-optimal trajectories for numerous historical missions. New mission types were also easily implemented and modeled with STOpS. A trajectory correction maneuver was shown to further optimize the trajectories end conditions, when convergence was reached. The result is a versatile optimization scheme that is highly customization to the invested user, while remaining simple for novice users.
APA, Harvard, Vancouver, ISO, and other styles
6

Strange, Michael R. "Orbital Determination Feasibility of LEO Nanosatellites Using Small Aperture Telescopes." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1714.

Full text
Abstract:
This thesis is directed toward the feasibility of observing satellites on the nano scale and determining an accurate propagated orbit using a Meade LX600-ACF 14” diameter aperture telescope currently located on the California Polytechnic State University campus. The optical telescope is fitted with an f/6.3 focal reducer, SBIG ST-10XME CCD camera and Optec TCF-S Focuser. This instrumentation allowed for a 22’ X 15’ arcminute FOV in order to accurately image passing LEO satellites. Through the use of the Double-r and Gauss Initial Orbit Determination methods as well as Least Squared Differential Correction and Extended Kalman Filter Orbit Determination methods, an accurate predicted orbit can be determined. These calculated values from observational data of satellites within the Globalstar system are compared against the most updated TLEs for each satellite at the time of observation. The determined differential errors from the well-defined TLEs acquired via online database were used to verify the feasibility of the accuracy which can be obtained from independent observations. Through minimization of error caused from imaging noise, pointing error, and timing error, the main determination of accurate orbital determination lies in the instrumentation mechanical capabilities itself. With the ability to acquire up to 7 individual satellite observations during a single transit, the use of both IOD and OD methods, and the recently acquired Cal Poly telescope with an increased 14” aperture, the feasibility of imaging and orbital determination of nanosatellites is greatly improved.
APA, Harvard, Vancouver, ISO, and other styles
7

Polzine, Benjamin. "The Collisional Evolution of Orbital Debris in Geopotential Wells and Disposal Orbits." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1703.

Full text
Abstract:
This thesis investigates the orbital debris evolution in the geosynchronous disposal orbit regime and within geosynchronous orbits effected by the geopotential wells. A propagator is developed for the accurate simulation of GEO specific orbits and the required perturbations are determined and described. Collisions are then simulated in the selected regimes using a low velocity breakup model derived from the NASA EVOLVE breakup model. The simulations described in this thesis consider a set of perturbations including the geopotential, solar and lunar gravity, and solar radiation pressure forces. This thesis is based on a prior paper and additionally seeks to address an issue in simulating East-West trapped objects. The results show that this propagator successfully simulates the presence of all wells and the East-West entrapment, and the required perturbations are outlined. Five collision test cases were simulated, one for each type of entrapment and an additional for the disposal orbit.
APA, Harvard, Vancouver, ISO, and other styles
8

Bae, Sungkoo. "GLAS spacecraft attitude determination using CCD star tracker and 3-axis gyros /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iuliano, Jay R. "A Solution to the Circular Restricted N Body Problem in Planetary Systems." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1612.

Full text
Abstract:
This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large gravitational bodies affecting the dynamics, namely periodic and semi-periodic orbits, halo orbits, and low energy transfers It was also found that not only system dynamics, but models of the Jacobi constant could also be formulated similarly to the CR3BP. Validating the authenticity of these new sets of equations, the CRNBP dynamics are applied to a satellite in the Earth-Moon system and compared to a simulation of the CR3BP under identical circumstances. This test verified the dynamics of the CRNBP, showing that the two systems created almost identical results with relatively small deviations over time and with essentially identical path trends. In the Jovian system, it was found the mass ratio required to validated the assumptions required to integrate the equations of motion was around .1$\%$. Once the mass ratio grew past that limit, trajectories propagated with the CRNBP showed significant deviation from trajectories propagated with a higher fidelity model of Newtonian motion. The results from the derivation of the Jacobi constant are consistent with the 3 body system, but they are fairly standalone.
APA, Harvard, Vancouver, ISO, and other styles
10

Korn, Steven M. "An Alternative Dual-Launch Architecture for a Crewed Asteroid Mission." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/862.

Full text
Abstract:
This thesis is a feasibility study for a crewed mission to a Near Earth Asteroid (NEA). An alternate dual-launch architecture is proposed and analyzed against a more established architecture. Instead of a rendezvous in a low-Earth parking orbit, the new architecture performs the rendezvous while the two spacecraft are on an Earth-escape trajectory to the destination NEA. After selecting a target asteroid, 2000 SG344, each architecture will have its best mission compared to the best mission of the other architecture. Using the new architecture, a mission is created to the chosen NEA, 2000 SG344. A back-up Orion MPCV and a Habitation Module are launched first on a cargo configuration SLS. A crew of two astronauts is launched two hours later in the primary Orion MPCV by a crewed configuration SLS. Both of these launches are on an Earth-escape trajectory and begin rendezvous after two full days in outer space. The completed spacecraft journeys the rest of the trip to the NEA. For a period of eight days, the spacecraft remains in a tight control sphere near the asteroid by using a control algorithm and the rendezvous thrusters. The astronauts have this period to perform their EVAs and accomplish their mission objectives at the NEA. The spacecraft then departs the NEA and returns to Earth. The entire mission is 134 days and requires 2.054 km/s of Delta-v maneuvers to complete. An analysis of multiple Lambert's methods is also done due to their extensive use in this thesis. Many of the most popular Lambert algorithms are compared by evaluating each on its accuracy, speed, and singularities. The best Lambert method to use for the orbital analysis in this paper is Battin's method because it is accurate, quick, and robust for all cases that will be observed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Astrodynamics"

1

COSPAR, ed. Astrodynamics. Amsterdan: Published for the Committee on Space Research [by] Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Iaco Veris, Alessandro. Practical Astrodynamics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62220-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wiesel, William E. Modern astrodynamics. Beavercreek, Ohio: Aphelion Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pini, Gurfil, ed. Modern astrodynamics. Amsterdam: Academic, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gómez, Gerard, and Josep J. Masdemont, eds. Astrodynamics Network AstroNet-II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23986-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hintz, Gerald R. Orbital Mechanics and Astrodynamics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09444-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hintz, Gerald R. Orbital Mechanics and Astrodynamics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96573-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D, McClain Wayne, ed. Fundamentals of astrodynamics and applications. 2nd ed. El Segundo, Calif: Microcosm Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bond, Victor R. Modern astrodynamics: Fundamentals and perturbation methods. Princeton, N.J: Princeton University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wiesel, William E. Spaceflight dynamics. New York: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Astrodynamics"

1

Suresh, B. N., and K. Sivan. "Astrodynamics." In Integrated Design for Space Transportation System, 51–109. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2532-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Montenbruck, Oliver, and Eberhard Gill. "Introductory Astrodynamics." In Satellite Orbits, 15–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58351-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Macdonald, Malcolm. "Introduction to Astrodynamics." In The International Handbook of Space Technology, 61–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41101-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hintz, Gerald R. "Fundamentals of Astrodynamics." In Orbital Mechanics and Astrodynamics, 1–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09444-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hintz, Gerald R. "Techniques of Astrodynamics." In Orbital Mechanics and Astrodynamics, 127–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09444-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boden, Daryl G. "Introduction to Astrodynamics." In Space Mission Analysis and Design, 113–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3794-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boden, Daryl G. "Introduction to Astrodynamics." In Space Mission Analysis and Design, 129–56. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2692-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hintz, Gerald R. "Fundamentals of Astrodynamics." In Orbital Mechanics and Astrodynamics, 1–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96573-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hintz, Gerald R. "Techniques of Astrodynamics." In Orbital Mechanics and Astrodynamics, 139–226. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96573-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spencer, David B., and Davide Conte. "Kinematics, Dynamics, and Astrodynamics." In Interplanetary Astrodynamics, 31–86. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165071-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Astrodynamics"

1

Vaning, Walker. "Earth antipode mission astrodynamics." In Astrodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yoshikawa, Makoto, Hitoshi Ikeda, Hajime Yano, Jun Saito, Takashi Kubota, Tatsuaki Hashimoto, Akira Fujiwara, et al. "Astrodynamics Science About Itokawa, Gravity and Ephemeris." In AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-6658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gaylor, David, Richard Page, and Kathryn Bradley. "Testing of the Java Astrodynamics Toolkit Propagator." In AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-6754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rodríguez, Juan, and Jorge Garrido. "poliastro: a Python library for interactive astrodynamics." In Python in Science Conference. SciPy, 2022. http://dx.doi.org/10.25080/majora-212e5952-015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pezent, James B., Jared Sikes, William Ledbetter, Rohan Sood, Kathleen C. Howell, and Jeffrey R. Stuart. "ASSET: Astrodynamics Software and Science Enabling Toolkit." In AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-1131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oltrogge, Daniel. "AstroHD: Astrodynamics Modeling With a Distinctly Digital Flavor." In AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-7065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manzi, Matteo, and Massimiliano Vasile. "Discovering Unmodeled Components in Astrodynamics with Symbolic Regression." In 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020. http://dx.doi.org/10.1109/cec48606.2020.9185534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peterson, Joe T., Manoranjan Majji, and John L. Junkins. "Non-Minimal Hamiltonian Mechanics With Applications to Astrodynamics." In AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-2458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Roby, and Kathleen Howell. "A design concept for multiple lunar swingby trajectories." In Astrodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gist, Robert. "Spacecraft shadow impingement onto its solar arrays." In Astrodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3719.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Astrodynamics"

1

Vallado, David A. Methods of Astrodynamics, a Computer Approach. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada239662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography